Study confirms IoT devices are source of security compromise

Study confirms IoT devices are source of security compromise

A study from Zscaler reveals a 700% increase in IoT-specific malware and reports most IoT attacks originated in China, the United States and India.

Zscaler, a leader in cloud security, has released a new study examining the state of IoT devices left on corporate networks during a time when businesses were forced to move to a remote working environment.

The new report, IoT in the Enterprise: Empty Office Edition, analyzed over 575 million device transactions and 300,000 IoT-specific malware attacks blocked by Zscaler over the course of two weeks in December 2020 – a 700% increase when compared to pre-pandemic findings.

These attacks targeted 553 different device types, including printers, digital signage and smart TVs, all connected to and communicating with corporate IT networks while many employees were working remotely during the COVID-19 pandemic.

The Zscaler ThreatLabz research team identified the most vulnerable IoT devices, most common attack origins and destinations, and the malware families responsible for the majority of malicious traffic to better help enterprises protect their valuable data.

Deepen Desai, CISO of Zscaler

“For more than a year, most corporate offices have stood mostly abandoned as employees continued to work remotely during the COVID-19 pandemic. However, our service teams noted that despite a lack of employees, enterprise networks were still buzzing with IoT activity,” said Deepen Desai, CISO of Zscaler.

“The volume and variety of IoT devices connected to corporate networks is vast and includes everything from musical lamps to IP cameras. Our team saw 76% of these devices still communicating on unencrypted plain text channels, meaning that a majority of IoT transactions pose great risk to the business.”

What devices are most at risk?

Out of over half a billion IoT device transactions, Zscaler identified 553 different devices from 212 manufacturers, 65% of which fell into three categories: set-top boxes (29%), smart TVs (20%) and smartwatches (15%). The home entertainment and automation category had the greatest variety of unique devices but they accounted for the least number of transactions when compared to manufacturing, enterprise and healthcare devices.

Most traffic instead came from devices in manufacturing and retail industries – 59% of all transactions were from devices in this sector and included 3D printers, geolocation trackers, automotive multimedia systems, data collection terminals like barcode readers and payment terminals. Enterprise devices were the second most common, accounting for 28% of transactions, and healthcare devices followed at nearly 8% of traffic.

ThreatLabz also discovered a number of unexpected devices connecting to the cloud, including smart refrigerators and musical lamps that were still sending traffic through corporate networks.

Who’s responsible?

The ThreatLabz team also looked closely at activities specific to IoT malware tracked in the Zscaler cloud. Volume-wise, a total of 18,000 unique hosts and roughly 900 unique payload deliveries were observed in a 15-day timeframe. Malware families Gafgyt and Mirai were the two most common families encountered by ThreatLabz, accounting for 97% of the 900 unique payloads.
These two families are known for hijacking devices to create botnets – large networks of private computers that can be controlled as a group to spread malware, overload infrastructure or send spam.

Who is being targeted?

The top three nations targeted by IoT attacks were Ireland (48%), the United States (32%) and China (14%). The majority of compromised IoT devices, nearly 90%, were observed sending data back to servers in one of three countries: China (56%), the United States (19%) or India (14%).

How can organizations protect themselves?

As the list of ‘smart’ devices out in the world grows on a daily basis, it’s almost impossible to keep them from entering your organization. Rather than trying to eliminate shadow IT, IT teams should enact access policies that keep these devices from serving as open doors to the most sensitive business data and applications.
These policies and strategies can be employed whether or not IT teams (or other employees) are on-premises. ThreatLabz recommends the following tips to mitigate the threat of IoT malware, both on managed and BYOD devices:
● Gain visibility into all your network devices. Deploy solutions able to review and analyze network logs to understand all devices communicating across your network and what they do.
● Change all default passwords. Password control may not always be possible, but a basic first step for deploying corporate-owned IoT devices should be to update passwords and deploy two-factor authentication.
● Update and patch regularly. Many industries-particularly manufacturing and healthcare-rely on IoT devices for their day-to-day workflows. Make sure you stay apprised of any new vulnerabilities that are discovered and that you keep device security up-to-date with the latest patches.
● Implement a zero trust security architecture. Enforce strict policies for your corporate assets so that users and devices can access only what they need, and only after authentication. Restrict communication to relevant IPs, ASNs and ports needed for external access. Unsanctioned IoT devices that require Internet access should go through traffic inspection and be blocked from all corporate data, ideally through a proxy. The only way to stop shadow IoT devices from posing a threat to corporate networks is to eliminate implicit-trust policies and tightly control access to sensitive data using dynamic identity-based authentication – also known as zero trust.

Browse our latest issue

Intelligent CIO North America

View Magazine Archive