

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Apache® NiFi™
Cloudera Special Edition

Foreword by Mark Payne

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Apache® NiFi™ For Dummies®, Cloudera Special Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and may not be used without written permission. Apache, Apache NiFi, NiFi, Hadoop, Minifi, and
associated logos are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. No endorsement by The Apache Software Foundation is
implied by the use of these marks. Cloudera and associated marks and trademarks are registered
trademarks of Cloudera, Inc. All other company and product names may be trademarks of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department
in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub.
For information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-62406-6 (pbk); ISBN 978-1-119-62407-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
FOREWORD...v

INTRODUCTION.. 1
About This Book.. 1
Icons Used in This Book.. 1
Beyond the Book... 1
Where to Go from Here.. 2

CHAPTER 1:	 Why NiFi?... 3
The Advantages to Apache NiFi... 3
NiFi Core Concepts.. 4
NiFi Expression Language and Other Query Languages.................. 7

JSONPath... 9
XPath/XQuery... 9

CHAPTER 2:	 Getting Started with NiFi... 11
Importing a NiFi Template.. 12
Adding a NiFi Template to the NiFi Canvas...................................... 13
Setting Up and Running the Hello World Example......................... 15

Configuring HandleHttpRequest NiFi processor........................ 15
Configuring the other processors.. 16
Running the Hello World example... 17

Understanding the Hello World Example... 18

CHAPTER 3:	 General Debugging & Monitoring.................................. 19
Debugging through the User Interface... 19

Status bar.. 20
Summary... 20
Status History... 22

Configuring Backpressure.. 22
Checking Provenance... 24
Checking the NiFi Server Logs... 26

CHAPTER 4:	 NiFi Use Cases... 27
Importing Datasets into a Database... 28
Listening for HTTP Posts... 29
Polling a RESTFul API to Extract a JSON Attribute............................ 30

Table of Contents iii

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 5:	 Generating NiFi Streams from Data Sources....... 33
Options for Data Ingest with NiFi.. 33
Pairing Log-Based Change Data Capture with NiFi......................... 34
Integrating NiFi with New Sources.. 36
Considering Performance by Source Type....................................... 38

Relational databases and data warehouses............................... 38
Mainframe.. 39
Messaging systems.. 39
File system.. 39

CHAPTER 6:	 Six NiFi Resources.. 41

iv Apache NiFi For Dummies, Cloudera Special Edition

Foreword v

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Foreword

Nearly ten years ago, I was presented with an amazing
opportunity. I was fortunate enough to join a team of three
incredibly talented engineers to build a new platform. This

platform would be responsible for handling the ever-increasing
volumes of data that would be streamed through my organization.
It would have to allow users to quickly add new sources of data on
the fly and route, analyze, process, and transform the data, all
before delivering it to its final destination. In short, the goal was
to get the right data to the right place, in the right format and
schema, at the right time.

Thus began a long and engaging journey. Over the next year, I
would take on more and more responsibilities, ultimately taking
full responsibility for the development of the framework. The vol-
ume and variety of the data continued to increase. My organiza-
tion decided that if the software were to be open sourced, it would
not only benefit us but also many others who were on a similar
journey. So, in November of 2014, this software was donated to
the Apache Software Foundation and became known as Apache
NiFi.

Since its debut, NiFi has been adopted by companies and orga-
nizations across every industry. The authors of this book have
been with them through it all—training the users, assessing the
strengths and weaknesses of the platform, and even getting their
hands dirty to improve the code. They have seen a vast number
of different use cases for NiFi across these industries and been
active in the day-to-day use of the software to solve their criti-
cal dataflow problems. I have had the pleasure of working along-
side some of the authors to tackle their most difficult dataflow
challenges and learn from their experiences. Others have written
of their experiences using NiFi and established that they have a
great understanding of not just the software itself but also where
it came from and where it is heading.

This book is not intended to provide an in-depth understanding
of every aspect of NiFi but rather is meant to provide an under-
standing of what NiFi is and explain when, how, and why to use
NiFi. Additionally, it will explore the features that make the soft-
ware unique. Through tutorials, examples, and explanations, it

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

vi Apache NiFi For Dummies, Cloudera Special Edition

provides an excellent overview and walkthrough of NiFi that will
benefit the uninitiated and experienced users alike.

While reading this book, you will gain a firm grasp on NiFi fun-
damentals and how to use the software. You should also be able
to relate them to some of the challenges that you are facing and
understand how NiFi can help to address them. Most importantly,
I hope that you enjoy the read and that it encourages you to read
more about NiFi and explore it on your own.

Cheers,

Mark Payne

Apache NiFi Committer and PMC Member, Sr. Member of Technical
Staff, Cloudera

Introduction 1

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Apache NiFi was built to automate and manage the flow of
data between systems and address the global enterprise
dataflow issues. It provides an end-to-end platform that

can collect, curate, analyze and act on data in real-time,
on-premises, or in the cloud with a drag-and-drop visual
interface.

About This Book
This book gives you an overview of NiFi, why it’s useful, and some
common use cases with technical information to help you get
started, debug, and manage your own dataflows.

Icons Used in This Book
Remember icons mark the information that’s especially impor-
tant to know.

The Tip icon points out helpful suggestions and useful nuggets of
information.

The Warning icon marks important information that may save
you headaches.

Beyond the Book
NiFi is an open-source software project licensed under the Apache
Software Foundation. You can find further details at https://
nifi.apache.org/.

https://nifi.apache.org/
https://nifi.apache.org/

2 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Where to Go from Here
The book is modular so you can start with Chapter 1, but feel free
to roam around to the chapters that fit best. You can also pick out
a topic that interests you from the Table of Contents.

CHAPTER 1 Why NiFi? 3

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Why NiFi?

The information age caused a shift from an industry-based
economy to a computer-based economy. For organizations,
the information age has led to a situation in which immense

amounts of data are stored in complete isolation, which makes
sharing with others for collaboration and analysis difficult.

In response to this situation, several technologies have emerged,
such as Hadoop data lakes, but they lack one major compo-
nent—data movement. The capability to connect databases, file
servers, Hadoop clusters, message queues, and devices to each
other in a single pane is what Apache NiFi accomplishes. NiFi
gives organizations a distributed, resilient platform to build their
enterprise dataflows on.

In this chapter, we discuss how Apache NiFi can streamline the
development process and the terminology and languages that you
need to be successful with NiFi.

The Advantages to Apache NiFi
The ability to bring subject matter experts closer to the busi-
ness logic code is a central concept when building a NiFi flow.
Code is abstracted behind a drag-and-drop interface allowing for

Chapter 1

IN THIS CHAPTER

»» What to use NiFi for

»» Learning NiFi core concepts

»» Understanding the expression and query
languages for NiFi

4 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

groups to collaborate much more effectively than looking through
lines of code. The programming logic follows steps, like a white-
board, with design intent being apparent with labels and easy-
to-understand functions.

Apache NiFi excels when information needs to be processed
through a series of incremental steps. Examples of this include:

»» Files landing on an FTP server: An hourly data dump is
made available by a vendor and needs to be parsed,
enriched, and put in a database

»» Rest requests from a web application: A website needs to
make complex rest API calls and middleware must make a
series of database lookups

»» Secure transmission of logs: An appliance at a remote site
needs to transmit information back to the core datacenter
for analysis

»» Filtering of events data: Event data is being streamed and
needs to be evaluated for specific conditions before being
archived

NiFi Core Concepts
NiFi is a processing engine that was designed to manage the flow
of information in an ecosystem. Everything starts with a piece of
data that flows through multiple stages of logic, transformation,
and enrichment.

When building flows in NiFi, keep in mind where the data is com-
ing from and where it will ultimately land. In many ways NiFi
is a hybrid information controller and event processor. An event
can be anything from a file landing in an FTP to an application
making a REST request. When you consider information flow as a
series of distinct events rather than a batch operation, you open a
lot of possibilities.

One of the biggest paradigm shifts teams may face is going from
monolithic scheduled events to sequence of individual tasks. When
big data first became a term, organizations would run gigantic
SQL operations on millions of rows. The problem was that this

CHAPTER 1 Why NiFi? 5

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

type of operation could only be done after the data was fully loaded
and staged. With NiFi, those same companies can consider their
SQL databases as individual rows at time of ingest. This situation
allows for data to be enriched and served to the end consumer in
a much faster and reliable fashion. Due to the fact that each row
is individually analyzed, a corrupt value would only cause that
individual event to fail rather then the entire procedure.

NiFi consists of three main components:

»» Flowfiles: Information in NiFi consists of two parts: the
attributes and the payload. Flowfiles typically start with a
default set of attributes that are then added to by additional
operations. Attributes can be referenced via the NiFi
expression language, which you can find out about in the
“NiFi Expression Language and Other Query Languages”
section. The payload is typically the information itself and
can also be referenced by specific processors.

»» Flowfile processors: These do all the actual work in NiFi.
They’re self-contained segments of code that in most cases
have inputs and outputs. One of the most common processors,
GetFTP, retrieves files from an FTP server and creates a
flowfile. The flowfile includes attributes about the directory it
was retrieved from — such as, creation date, filename, and a
payload containing the file’s contents. This flowfile can then be
processed by another common processor, RouteOnAttribute.
This processor looks at an incoming flowfile and applies
user-defined logic based on the attributes before passing it
down the chain.

»» Connections: These detail how flowfiles should travel
between processors. Common connections are for success
and failure, which are simple error handling for proces-
sors. Flowfiles that are processed without fault are sent to
the success queue while those with problems are sent to a
failure queue. Processors such as RouteOnAttribute
have custom connections based on the rules created.

Additional connection types may be Not Found or Retry
and depend on the processor itself. Connections can also be
Auto-Terminated if the user wishes to immediately discard
a specific type of event. Configuring the advanced features of
connections, such as backpressure, is covered in Chapter 3.

6 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Figure 1-1 shows a basic flow incorporating these three basic
concepts. A processor gets files from a local directory and creates
flowfiles. These flowfiles go through the connection to another
processor that puts the data into Hadoop.

Processors can be turned on and off (started/stopped), which is
indicated by a green triangle (running) or red square (stopped).
A stopped processor doesn’t evaluate flow files.

Processors are configurable by righting-click; four tabs are
available:

»» Settings: This tab allows you to rename how the processor
appears and auto-terminate relationships. If a processor
allows user-defined relationships to be created (such as
RouteOnAttribute), they also appear here after created.
More advanced settings, for example, penalty and yield
duration, allow for how to handle re-trying flowfiles if the
first attempt fails.

»» Scheduling: NiFi provides several different scheduling
options for each processor. For most cases, the Timer-Driven
strategy is most appropriate. This can accommodate running
on a specified interval or running as fast as NiFi can schedule
it (when data is available) by setting the scheduling period to
0 seconds.

FIGURE 1-1: The first flow.

CHAPTER 1 Why NiFi? 7

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Additionally, you can increase the concurrency on this tab.
Doing so allocates additional threads to the processor, but to
be mindful of the number of threads available to NiFi and
oversubscription.

»» Comments: Allows developers to add comments at the per
processor level.

»» Properties: This tab is where the processor’s specific
settings are configured. If the processor allows custom
properties to be configured, click the plus sign in the
top-right to add them. Some properties allow for the NiFi
Expression Language.

To tell whether a property allows for the NiFi Expression
Language, hover over the question mark next to the
property name and see if the Supports Expression Language
property is true or false.

NiFi Expression Language and
Other Query Languages

The NiFi expression language is the framework in which attri-
butes (metadata) can be interacted with. The language is built on
the attribute being referenced with a preceding ${ and proceed-
ing }. For example, if you want to find the path of a file retrieved
by GetFile, it would be ${path}. Additional terms can be added
for transformation and logic expressions, such as contains or
append. Multiple variables can be nested to have a multi-variable
term. Examples include

»» Check whether the file has a specific name

${filename:contains('Nifi')}

»» Add a new directory to the path attribute

${path:append('/new_directory')}

8 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Reformat a date

${string_date:toDate("yyyy-MM-DD")}

»» Mathematical operations

${amount_owed:minus(5)}

»» Multi-variable greater than

${variable_one:gt(${variable_two})}

Some processors require a Boolean expression language term to
filter events such as RouteOnAttribute, shown in Figure 1-2.

While others, such as UpdateAttribute, allow more freeform use
of the language, as shown in Figure 1-3.

FIGURE 1-2: This processor requires a Boolean expression.

CHAPTER 1 Why NiFi? 9

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

JSONPath
When referencing JSONs with processors such as EvaluateJson
Path, you use the JSONPath expression language. In this language,
the JSON hierarchy is referenced with a $ to represent the root and
the names of the nested fields get a value, such as $.account.
user_name.first_name. For example, you can enumerate a list
of accounts, such as $.account[0].user_name.first_name.
Additional complex operations are available:

»» Search any level of JSON for a field called Version

$..Version

»» Filter only for subversions greater than 5

$..Version[?(@.subVersion>5)]

XPath/XQuery
The XPath/Query language is available for accessing data in XMLs
through processors such as EvaluateXPath and EvaluateXQuery.

FIGURE 1-3: This processor gives you a lot of freedom in your language.

10 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Much like JSONPath, it allows for data to either be exactly speci-
fied or searched:

»» Specify the value of the account holder’s first name

/account/user_name/first_name

»» Specify the value of the first account if multiple
accounts are present in the XML

/account[0]/user_name/first_name

»» Search any level of XML for a field called Version

//Version

»» Filter only for subversions greater than 5

//Version[subVersion>5]

CHAPTER 2 Getting Started with NiFi 11

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Getting Started with NiFi

Apache NiFi is one of the most flexible, intuitive, feature
rich dataflow management tools within the open-source
community. NiFi has a simple drag-and-drop user

interface (UI), which allows administrators to create visual
dataflows and manipulate the flows in real time and it provides
the user with information pertaining to audit, lineage, and
backpressure.

For example, to really begin to understand some of the capabili-
ties, it’s best to start with a simple Hello World dataflow. The
traditional Hello World example (as every technologist is used
to starting with when learning any programming language) is a
bit different with a dataflow management tool such as NiFi. This
simple example demonstrates the flexibilities, ease of use, and
intuitive nature of NiFi.

In this chapter, we explain how to import a NiFi template, create
a NiFi dataflow, and how data is processed and stored.

Chapter 2

IN THIS CHAPTER

»» Importing a NiFi template

»» Creating a NiFi dataflow

»» Understanding the Hello World example

12 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Importing a NiFi Template
When you have NiFi successfully installed and running, you can
import the HelloWorld.xml file, which is a NiFi template cloned
from the GitHub repository (see the sidebar on how to clone the
GitHub repository).

DOWNLOADING NIFI
AND CLONING A REPO
Installing and starting NiFi is outside the scope of this book.
Information on how to install and start NiFi can be found at
https://nifi.apache.org/docs.html.

You can download Apache NiFi at https://nifi.apache.org/
download.html. The demo GitHub repository we follow throughout
this book was tested with version 1.1.0 but should work with later
versions of NiFi. Once NiFi is running, you need to clone or download
the GitHub repository to follow along with the Hello World dataflow
example in this chapter.

To clone the GitHub repository from a command line, type the
following in a command line

git clone https://github.com/drnice/NifiHelloWorld.git

To download the GitHub repository, point your web browser at
https://github.com/drnice/NifiHelloWorld, click the green
Clone or Download button, and select Download ZIP. After it’s
downloaded, extract the zip file.

After the repository is cloned or downloaded and extracted, note the
location of the files. Remember to change the location we use in this
chapter to your location.

Note: Update these files in the repository to reflect your location:

•	server.sh (the content of this file points to the location of
wsclient.html, and should point to a location on the computer)

•	server.sh = cat /Users/drice/Documents/websocket/
index.html

•	index.html (which is included in the repo)

https://nifi.apache.org/docs.html
https://nifi.apache.org/download.html
https://nifi.apache.org/download.html
https://github.com/drnice/NifiHelloWorld.git
https://github.com/drnice/NifiHelloWorld

CHAPTER 2 Getting Started with NiFi 13

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Follow these steps to import a NiFi template (see Figure 2-1):

1.	 Launch NiFi by pointing your browser to this location
http://localhost:9090/nifi/ (or similar location based
on how NiFi was installed).

2.	 Click the Upload Template button within the Operate
window.

3.	 Click the magnifying glass icon.

4.	 Browse to the location where you downloaded the
GitHub repository, and select the HelloWorld.xml file.

5.	 Click Open and then Upload.

Adding a NiFi Template
to the NiFi Canvas

With the NiFi template uploaded, you can add the Hello World
template to the NiFi canvas by following these steps (see
Figure 2-2):

1.	 Click the Template icon in the grey navigation bar at the
top of the screen and drag and drop it anywhere on the
canvas.

FIGURE 2-1: Importing HelloWorld.xml NiFi template.

http://localhost:9090/nifi/

14 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

2.	 In the Add Template window, choose the Hello World
template.

3.	 Click the Add button.

The Hello World dataflow opens on your canvas, as shown in
Figure 2-3. The NiFi processors have a yellow exclamation icon
next to them. You need to modify these processors (along with the
PutFile processor and the ExecuteStreamCommand processor) for
the Hello World dataflow to work.

FIGURE 2-2: Adding the Hello World template to the NiFi canvas.

FIGURE 2-3: The Hello World example dataflow.

CHAPTER 2 Getting Started with NiFi 15

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Setting Up and Running
the Hello World Example

With the Hello World template added onto the NiFi canvas, you
can clean up some properties and configurations within the
processors that have a yellow exclamation icon next to them. The
yellow exclamation icon indicates those processors need attention.

Configuring HandleHttpRequest
NiFi processor
Start by correcting the HandleHttpRequest NiFi processor by
following these steps:

1.	 Right-click the Nifi-WebServer-HandleHTTP NiFi
processor and select Configure.

2.	 In the Configure Processor window, click the
Properties tab.

3.	 Click the right-pointing arrow in the third column next to
StandardHttpContextMap (see Figure 2-4).

4.	 In the Process Group Configuration window, click the light-
ning bolt on the same row as the StandardHttpContextMap
to enable this controller service (see Figure 2-5).

FIGURE 2-4: Configure the HandleHttpRequest processor.

16 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

5.	 Leave the Scope as Service Only and click Enable and
then Close.

6.	 Close the Process Group Configuration window.

With the HandleHttpRequest NiFi Processor configured properly,
there is now a red box next to it, indicating the processor isn’t
running.

Configuring the other processors
When you know how to configure the HandleHttpRequest NiFi
processor, you can easily configure the other processors needed
to run the Hello World dataflow: ListenWebSocket, PutFile, and
ExecuteStreamCommand. Just as you do with HandleHttpRequest,
right-click the processor you want to configure, and select
Configure. Then on the Properties tab of the Process Group
Configuration window, change these settings for each processor:

»» ListenWebSocket: Click the right-pointing arrow in the third
column next to JettyWebSocketServer. Click its lightning
bolt to enable the service. Select Service Only for the Scope.
Then click the Enable and Close buttons.

»» PutFile: Change the Directory property to the directory
where you want the data from the web application to write
to and click the Apply button.

»» ExecuteStreamCommand: Change the Command Path
property to the directory where you downloaded the NiFi
HelloWorld GitHub repository and extracted the server.sh
file. Then click the Apply button.

When you have the processors configured correctly, each has a red
box next to it, indicating the processor isn’t running, instead of
the yellow exclamation icon.

FIGURE 2-5: Enable the StandardHttpContextMap controller.

CHAPTER 2 Getting Started with NiFi 17

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Running the Hello World example
To start the Hello World flow, follow these steps (see Figure 2-6):

1.	 Click anywhere on the NiFi canvas so that nothing is
selected (meaning no processor or connection is
highlighted).

2.	 Click the Start button on the left side of the Operate
window.

Every red box for each processor changes to a green triangle
pointing to the right, indicating the processor is running.

Now you can launch a web browser that NiFi is hosting. Follow
these steps (see Figure 2-7):

1.	 Point a web browser to http://localhost:6688/.

You see a text box along with three buttons: Open, Send,
and Close.

2.	 Click the Open button.

3.	 Enter Hello World in the text box.

4.	 Click the Send button.

Congratulations, you just submitted Hello World through
your NiFi flow.

To validate that Hello World flowed through NiFi, open the des-
tination path defined in the PutFile NiFi processor and you see a
file that contains the phrase “Hello World” inside it.

FIGURE 2-6: Running the Hello World dataflow.

http://localhost:6688/

18 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding the Hello World Example
Now that you’ve successfully executed the Hello World dataflow,
you can better understand how it works behind the scenes.

The HandleHttpReqest NiFi processor starts a HTTP server
in NiFi and listens for HTTP requests on a specific port. In this
case, the NiFi processor is already set up on port 6688. When you
pointed your browser to http://localhost:6688, NiFi handled
this request and passed it to the next process, which executed the
server.sh shell script.

This shell script launches the HTML file inside of NiFi. Like any
webserver, the call is then routed to see whether the response is
successful and this is how the HTML file is presented in the web
browser.

The content of the index.html file is a simple form. The Open com-
mand established a connection from the web client to the Listen
WebSocket connection over port 9998 (the ListenWebSocket was
pre-configured to listen to this port when you imported the NiFi
template). After the connection is established, you can publish
any data over the web socket connection.

Eventually, the data put on the WebSocket connection is routed to
the PutFile processor within NiFi where the data is stored on a
local disk in the directory you specified.

FIGURE 2-7: Executing the Hello World demo.

http://localhost:6688

CHAPTER 3 General Debugging & Monitoring 19

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

General Debugging
& Monitoring

The last thing anyone wants is for a processor to stop running
unexpectedly, which prevents it from completing or pre-
venting others from running altogether. Fortunately, NiFi

offers several methods to monitor them.

In this chapter, we discuss how to interpret information about
your processes through the user interface, set up backpressure to
allow NiFi to regulate itself, use provenance to help with debug-
ging efforts when things don’t go as planned, and monitoring
processes through the NiFi server logs when you want more detail.

Debugging through the User Interface
You can glean a lot of information right from the user interface,
through the status bar, the Summary window, and the Status
History menu.

Chapter 3

IN THIS CHAPTER

»» Getting information through the NiFi’s
user interface

»» Setting up backpressure to help
processes run smoothly

»» Debugging with provenance

»» Getting information from the NiFi server
logs

20 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Status bar
The status bar is located at the top of the user interface under the
drag-and-drop toolbox. It provides metrics related to:

»» Nodes in the cluster

»» Threads running

»» Flowfile count and content size

»» Remote process groups in transmitting or disabled state

»» Processors status (for example, which ones are running,
stopped, invalid, disabled, the last time the UI was refreshed)

The amount of information reported in the status bar is minimal.
When you need more in-depth information, choose the Summary
found in the menu.

Summary
The Summary window contains tabs for processors, input ports,
output ports, remote process groups (RPGs), connections, and
process groups.

The processor groups located on the canvas contain their own
status bars and general metrics; they’re also available on the
Summary’s Process Groups tab in a tabular report. The Connec-
tions tab provides basic information as well: name, relation type
being connected, the destination, queue size, % of queue thresh-
old used, and output size in bytes. Metrics that track the input and
outputs are tracked over a five-minute window.

Funnels are notoriously used as anti-patterns to store flow-
files that may not be expiring. While valid in development, such
setups can back up and cause other operational issues. With the
Summary’s Connections tab, all the funnels on the canvas can
be identified to validate that they’re being used downstream
and not just dead ends from other processors, as shown in
Figure 3-1.

CHAPTER 3 General Debugging & Monitoring 21

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Additionally, at the bottom right of the Summary on any tab is the
system diagnostics link. There are three tabs:

»» The JVM tab shows metrics about on and off-heap utilization
and garbage collection counts along with total time.

»» System, as shown in Figure 3-2, shows the number of CPU cores
and the amount of space used on the partition that the reposi-
tory is stored on.

»» Version contains detailed build numbers of NiFi, the version
of Java NiFi is running with, and details on the OS.

FIGURE 3-1: You can keep track of funnels through the Connections tab.

FIGURE 3-2: The system storage use for the NiFi repositories.

22 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Status History
The Status History menu is one of the most useful features, next
to Data Provenance, in debugging a slow flow. The Status History
menu contains all the generic information expected such as the
name and the time the status has been collected for. The graph
in the menu, as shown in Figure 3-3, can visualize many met-
rics related to the processor or connection (over 5 minutes) and
includes separate plotting for each NiFi node in the cluster.

The line graph in the Status History menu can be zoomed in by
dragging from one part of the graph to the next.

Configuring Backpressure
Backpressure isn’t typically thought of as a first-class citizen in
many data movement systems, but NiFi provides it as a first-class
feature. From an operational perspective, backpressure enables
you to design a system that self regulates the amount of storage
it’s utilizing to prevent it from crashing! In NiFi, backpressure
is configured at the connection level, where you can manage the
backpressure policies.

FIGURE 3-3: The graph and information that you can find via the Status
History menu.

CHAPTER 3 General Debugging & Monitoring 23

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

It’s important to understand how the backpressure is configured
in the flow to understand its behavior. If a connection is ever
completely utilized by storage or flowfile count, the processor
upstream of the connection stops processing and waits for room
to be made in the connection. This problem is typically caused by
a slow processor downstream of the connection that can’t
consume the flowfiles as fast as upstream processors can place
them into the connection queue.

The simplest visual to monitor appears on the Connections tab
of the Summary window with both flowfile and storage size icons
that represent capacity: Green (most), Yellow, and Red (least).
(See the earlier “Summary” section for more about the Connec-
tions tab.) It also lists the source and target processor names
along with utilization and last five-minute metrics. The Connec-
tions tab can be targeted for a specific node or the entire NiFi
cluster.

Use this information to identify specific ingestion methods that
skew, such as a Kafka processor that has a high skew to a specific
keyed partition where a specific NiFi node would be responsible
for a single partition receiver.

You can configure backpressure from two perspectives: value and
infrastructure storage:

»» Value: Accepting that it’s impossible to store everything is
the first step to designing systems that have the capability to
self regulate their contents.

»» Storage: The infrastructure itself has physical limitations on
total storage available for Flowfile, Content, and Provenance
repositories to use. By defining the value of specific mes-
sages in the flow, the flowfiles of lesser importance can be
dropped while holding onto more important ones.

NiFi supports three ways to configure the backpressure policies
of a connection:

»» Flowfile count: Ensure only a specific number of files are in
the queue to be processed and expire others.

»» ContentSize: Limit the amount of downstream flow storage
used and also ensure that the total storage for all connec-
tions is set up in a manner that prevents the flow from filling
a disk completely.

24 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Time: Expire data that remained in the queue for too long so
that it no longer holds any value in being processed.

Filling the storage mounts on a NiFi server can lead to very odd
behavior of the repositories, which can result in requiring special
actions to restore normal operation of the NiFi server that filled.
Refer to the Summary menu’s system diagnostics link for detailed
storage use by the NiFi nodes (see the earlier section).

The Flowfile repository is much smaller than the Content reposi-
tory. For example, a sample flow in a NiFi cluster with three nodes
holding 32,500 flowfiles totaling 872.5MB results in the reposi-
tories on a single node (1/3) looking like the following table. It’s
important to note that in a cluster, work is distributed and some
servers could have more work depending on the ingestion and
transformations taking place in the flow on each server.

Node Repository Size

1 Content 285MB

1 Flowfile 5.4MB

2 Content 305MB

2 Flowfile 6.2MB

3 Content 265MB

3 Flowfile 5.9MB

If you’re trying to empty a queue and flowfiles remain, the
downstream processor may have a lease on the files. Stopping the
processor allows you to clear out these files.

Checking Provenance
NiFi’s data provenance provides debugging capabilities that allow
for flowfiles themselves to be tracked from start to end inside
the workflow. Flowfiles can have their contents inspected, down-
loaded, and even replayed. The combination of these features
enables ease of troubleshooting to find out why a specific path was
taken in the workflow. This capability allows you to make minor
changes to the workflow based on what occurred and replay the
message to ensure the new path is correctly taken.

CHAPTER 3 General Debugging & Monitoring 25

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Both processors and connections have data provenance available
by right-clicking; alternatively, you can access the complete Prov-
enance repository from the Provenance menu. The Provenance
menu includes the Date/Time, ActionType, the Unique Flowfile
ID, and other stats. On the far left is a small ‘i’ encircled in blue;
click this icon, and you get the flowfile details. On the right, what
looks like three little circles connected together is Lineage.

Lineage is visualized as a large directed acyclic graph (DAG) that
shows the steps in the flow where modifications or routing took
place on the flowfile. Right-click a step in the Lineage to view
details about the flowfile at that step or expand the flow to under-
stand where it was potentially cloned from. At the very bottom
left of the Lineage UI is a slider with a play button to play the pro-
cessing flow (with scaled time) and understand where the flowfile
spent the most time or at which point it got routed.

Inside the flowfile details, you can find a detailed analysis of both
the content and its metadata attributes. More interesting metrics
are potentially the Queue Positions and Durations along with the
worker the flowfile is located on. The Content tab allows you to
investigate before and after versions of a flowfile after it’s been
processed (see Figure 3-4); just read the data in the browser or
download it for later. To correct a problem, use the Replay capabil-
ity to make a connection to the flow and replay the flowfile again.
(And then inspect it again to be sure it runs the way you want.)

FIGURE 3-4: A major advantage to provenance is the capability to view the
before and after content of a flowfile.

26 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Checking the NiFi Server Logs
Each NiFi server has a set of application and bootstrapping logs.
NiFi uses SLF4J to provide a robust and configurable logging
framework that you can configure to provide as much detail as
you want. The logs contain detailed information about processes
occurring on the server.

By default, the NiFi server logs are located in the logs/ directory
found in the NiFi folder. This folder is also called $NIFI_HOME.
If you downloaded and untarred/unzipped NiFi, the directory is
NIFI_HOME.

The nifi-app.log application log contains more details about
processors, remote process groups (for site to site), Write Ahead
Log functions, and other system processes.

The nifi-bootstrap.log bootstrap contains entries on whether
the NiFi server is started, stopped, or dead. It also contains the
complete command with classpath entries used to start the NiFi
service.

The logback.xml located in $NIFI_HOME/conf can be edited on
the fly without having to restart NiFi. It takes approximately
30 seconds before the new logging configuration takes effect. The
log level can be configured per node and isn’t a clusterwide con-
figuration. For example, to only change the Processor log level,
edit the logback.xml and change the logger line for org.apache.
nifi.processors to INFO from WARN.

CHAPTER 4 NiFi Use Cases 27

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

NiFi Use Cases

P
lanning the first NiFi data integration project requires
attention to:

»» Data volume and velocity: Pulling flat files from a monitored
directory often leads to large files made available infrequently,
which can require lots of memory to process. In contrast,
when data is pushed from an external source to a NiFi listener
over a TCP/IP port, each data row tends to be small in size but
is received frequently.

»» Data types to ingest: NiFi has the ability to support both
binary and text data sets.

»» Capacity of connected systems: When considering system
capacity needed, pay close attention to each of the connected
systems’ capabilities to accept the data as it becomes avail-
able, support temporary content data storage, and store data
long term.

While NiFi can support many different ingest use cases, in this
chapter we examine three sample use case scenarios.

Chapter 4

IN THIS CHAPTER

»» Importing data into a database

»» Pushing the data over a HTTP connection

»» Polling and saving data for later use

28 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Importing Datasets into a Database
In this scenario, the requirement is to monitor a directory on disk
and on a scheduled basis read all the files in the directory, validate
the data in those files, and finally write the valid records into a
database.

The flow consists of the following steps:

1.	 Periodically scans the directory and fetches the contents
whenever a new file arrives.

The ListFile and FetchFile processors accomplish this
step.

2.	 Validates the contents of the data.

The ValidateRecord processor, which accomplishes this
step, is configured with a schema that describes how the data
should look. In this case, the flow routs invalid records to a
processor and writes them to an errors directory. The
ValidateRecord processor is configured with a Record
Reader so that it’s capable of processing any kind of record-
oriented data, such as CSV, JSON, Avro, or even unstructured
log data.

3.	 Publishes the data to the database using the
PutDatabaseRecord processor.

Again, this processor uses a Record Reader so that it can
process any record-oriented data.

Failures during data integration can happen, so you need to plan
for errors. NiFi handles this nicely through the ability to route
exceptions into a failure queue to either hold for reprocessing or
to write to an output file for offline editing.

The sample scenario validates that the data file contents match a
schema and any invalid records are written to an error directory
via the PutFile processor. This processor can also be stopped to
hold the data in the queue within NiFi. From here, you can review
the input content, make any necessary corrections to the flow,
and reprocess the data. See Figure 4-1.

At the same time, any records that did match the schema are
written to the database by the PutDatabaseRecord processor.

CHAPTER 4 NiFi Use Cases 29

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This processor allows you to configure where the data should be
published and how, including mapping of field names in the data
to database column names.

The concepts used for this NiFi dataflow can be extended to a
variety of different import scenarios — for example, pulling from
a relational database or a RESTful query.

Listening for HTTP Posts
In this scenario, an external system pushes the data over a HTTP
connection into NiFi using a POST option. The approach to set up
a listener operation is as simple as inserting the ListenHTTP pro-
cessor, as shown in Figure 4-2.

FIGURE 4-1: The steps to this dataflow.

FIGURE 4-2: This flow inserts a ListenHTTP processor.

30 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This flow is listening on the same server the NiFi process is
running on and listening to a port configured in the ListenHTTP
processor, as shown in Figure 4-3.

With this configuration, any HTTP POST operation to the NiFi
server using the URL http://{nifi server address}:7001/
contentListener gets picked up by the listener and then gets
passed on to the next step in the dataflow.

The capability to specify a base path (the example in Figure 4-3
specifies contentListener) means that it’s possible to have mul-
tiple readable HTTP endpoints for all the different workflows
supported by your NiFi instance.

Polling a RESTFul API to
Extract a JSON Attribute

In this scenario, the flow executes RESTful queries every 30 sec-
onds and then saves the result as a NiFi attribute for use in other
downstream functions, as shown in Figure 4-4.

The first step in this scenario is to poll the RESTful API to query
the Yahoo Weather service every 30 seconds and return a flow file
in JSON format. To control the polling interval, specify 30 seconds
for the Run Schedule property on the Scheduling tab.

FIGURE 4-3: The ListenHTTP processor includes a port for listening.

CHAPTER 4 NiFi Use Cases 31

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Without any programming, you can specify a HTTP URL on the
Properties tab to make the Yahoo Weather query.

To make this use case work, you need to extract the wind speed
from the full JSON object. The data returned by the GetHTTP pro-
cessor is actually a fairly complex JSON object. This is a problem
because the objective is to only pull out the wind speed attribute
from within this large JSON object.

To extract just the Wind Speed JSON attribute, you need to add a
NiFi attribute using the EvaluateJsonPath processor, as shown
in Figure 4-5.

To add it, click the + sign in the top-right corner of the Evaluate
JsonPath processor Properties tab and add the wind_speed attri-
bute. Looking at the output from the EvaluateJsonPath, you find
a new attribute with an actual wind_speed value.

FIGURE 4-4: This flow shows a RESTful query runs every 30 seconds and saves
the result.

32 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 4-5: Use EvaluateJsonPath processor to extract the wind speed.

CHAPTER 5 Generating NiFi Streams from Data Sources 33

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Generating NiFi Streams
from Data Sources

Organizations often struggle to ingest data from many
sources in an efficient, cost-effective, and scalable fash-
ion. They must manage hundreds and even thousands of

data feeds and can’t depend on custom development for every
source system.

In this chapter, we explore the options on how to generate data
streams for ingestion into Apache NiFi.

Options for Data Ingest with NiFi
NiFi has a variety of options for ingesting data from simple
bulk data transfer to more sophisticated real-time data move-
ment that automatically responds to source metadata changes.
Figure 5-1 shows a maturity model that highlights the data ingest
approaches organizations typically take on their journeys with
NiFi.

Chapter 5

IN THIS CHAPTER

»» Ingesting data with NiFi

»» Using log-based CDC with NiFi

»» Integrating NiFi with source systems

»» Looking at performance for each source
type

34 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Pairing Log-Based Change
Data Capture with NiFi

Change data capture (CDC) replicates just the most recent pro-
duction data and metadata changes that the source has registered
during a given time period, typically seconds or minutes. CDC can
be the primary replication method, or it can accompany batch
loads. In the latter case, CDC captures updates during the batch
replication process, applies them to the target, and then main-
tains fully updated target data once the batch job is complete. Like
full load, CDC can copy data from one source to one target, or one
source to multiple targets.

CDC has two primary benefits:

»» It enables faster and more accurate decisions based on the
most current data.

»» It reduces the need for, or even replaces, batch loading.

This second benefit is critical because it makes replication more
feasible for a variety of use cases. For example, killing the batch
window with CDC speeds up production operations. Your analytics
team might be willing to wait for the next nightly batch load to
run their queries (although that’s increasingly less common). But
even then, companies can’t stop their 24/7 production databases
for that long bulk/batch load. CDC also makes cloud migrations
and cloud analytics more feasible. Sending a continuous stream of
small replicas over the Wide Area Network (WAN) consumes less
bandwidth and time than a full-load data transfer.

FIGURE 5-1: The NiFi data integration maturity model.

CHAPTER 5 Generating NiFi Streams from Data Sources 35

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Given these benefits, an increasing number of organizations are
using CDC, both as a feature of replication platforms such as
Attunity Replicate and as a feature of broader extract, transform,
and load (ETL) offerings such as Microsoft SQL Server Integration
Services (SSIS).

CDC engines can identify and copy changes in several ways:

»» Timestamps in a dedicated table column can record the
time of the last update, thereby flagging any row contain-
ing data more recent than the last CDC replication task. For
example, IBM InfoSphere CDC uses this method. While
timestamps are a straightforward method of tracking
updates, they can slow operations by frequently querying
production tables. They also can create complexity as
administrators need to ensure time zones are accurately
represented.

»» Triggers log transaction events in an additional “shadow”
table that can be “played back” to copy those events to the
target on a regular basis. For example, Oracle GoldenGate
CDC uses this method when replicating data from SQL
Server 2016. While triggers enable the necessary updates
from source to target, the creation of these additional
tables can increase processing overhead and slows
operations.

»» Log readers, as the name implies, identify new transactions
by scanning change logs from a remote server. This method
is often the fastest and least disruptive of the CDC options
because it requires no new table and doesn’t query produc-
tion operations. Attunity Replicate uses this approach. One
consideration here is that some source databases and data
warehouses, such as Teradata, don’t have change logs, and
therefore require CDC engines to regularly query the
production database for changes.

Attunity Replicate empowers organizations to accelerate data
replication, and ingest and stream across a wide range of het-
erogeneous databases, data warehouses, and big data platforms.
It moves data easily, securely, and efficiently with minimal oper-
ational impact.

Using Attunity Replicate, organizations can accelerate data move-
ment to NiFi without the need for manual coding. The software can

36 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Simplify massive ingestion into big data platforms from
thousands of sources

»» Automatically generate target schemas based on source
metadata

»» Efficiently process big data loads with parallel threading

»» Use change data capture process (CDC) to maintain true
real-time analytics with less overhead

Integrating NiFi with New Sources
NiFi and Cloudera Data Flow (CDF) can help organizations
harness the power of Industrial IoT. Traditional technologies, such
as the extract, transform, load (ETL) tools, simply aren’t suited to
handle the complexity and volumes inherent in big data. Thus,
enterprise CDC tools come into play to manage that complexity.

Whether you want to aggregate information from remote sensors
into an on-premises data warehouse, on-premise data lake, or
cloud-based versions of either, you may want to reconsider whether
ETL is truly needed. In most situations, when heavy transforma-
tions are not required, an ELT model is better suited for big data.

When leveraging ELT, a best practice recommended and supported
by Hadoop applications, organizations can move data rapidly, easily,
and securely over WAN networks and low-bandwidth connections
that include satellites and the cloud. Real-time replication of data to
analytics platforms means access to faster, better business insights
and more sustainable sources of competitive advantage.

Here are a few best practices to consider when integrating data
from different sources:

»» Review the operational impact to source performance.
When designing streaming applications to include historical
processing, being able to support known database queries,
especially common patterns from source systems, typically
means better performance and focus on the customer need.
For example, creating aggregates and summaries of data
within the data warehouse structure itself is a common
practice.

CHAPTER 5 Generating NiFi Streams from Data Sources 37

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Assess the impact on business operations. Isolate
business intelligence (BI) and analytics workloads from
production systems to ensure operations and transactions
run affected.

»» Reduce performance overhead to the collection of
historical data. Transaction systems typically only have
current data. By storing snapshots of this data collectively
over a period of time, organizations can gradually build
historical datasets for analytics.

Here are selection criteria for real-time replication tools that
integrate with these data sources:

»» Minimal production impact

»» Automation of manual tasks

»» Broad platform support — data warehouses (DWs), data-
bases (DBs), legacy data, NoSQL, Hadoop, cloud

»» Scalability — add sources, targets, platform types with no/
minimal process change

»» Security — data access governance, secure WAN transfer

»» Performance, including WAN transfer

»» Filtering of replicated data

»» Fault resilience and recoverability

»» Source schema change propagation

»» API integration with third-party management frameworks
and dashboards

CDC technology has become a strategic component of integration
between operational databases and BI architectures. Given today’s
ever-increasing struggle for more immediate access to real-time
data and information, constant pressure on efficiency costs, and
the exponential growth of underlying data volumes, CDC tools
used for extraction have become a must have for a modern data
lake project. Furthermore, the advantages of an architecture that
combines powerful CDC and ETL with streaming tools such as
NiFi are now hard to ignore.

38 Apache NiFi For Dummies, Cloudera Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Here are some key considerations when integrating with NiFi:

»» Data capture architecture options include agents-based
extracts, intermediate servers to cache and carry across
corporate networks, and extracting from the transactional/
journal logs versus query/trigger-based CDC processing.

»» CDC replication options are sequential transactions,
optimized batches, integration with native DW loaders, and/
or message streaming.

Considering Performance by Source Type
Each type of source that you connect with NiFi performs
differently, which you need to take into consideration.

Relational databases
and data warehouses
A CDC tool is required for timeliness to extract, design, build, and
process the information and integrate from the operational data
stores. Business users need up-to-date information, with low latency
ranging from hours to minutes or even seconds. This requirement
is fueled by competitive pressures, new business models, and cus-
tomer satisfaction requirements. The data in the warehouse is a few
days old, typically updated daily or weekly. Information in a data
warehouse is normally in a summary format and doesn’t effectively
address operational requirements. Data volumes are doubling every
one to two years, making the option of moving the entire source
data impractical or even infeasible. Traditionally, the entire source
database is extracted, transformed, and then loaded to the target
data warehouse or data mart. These batch windows represent peri-
ods of time when the operational system isn’t working, but rather
processing data for ETL purposes. Continuous uptime and the need
to use every bit of resources for transaction processing means that
batch windows in many cases are no longer permissible by the
business. While NiFi can accommodate batch windows with JDBC
extracts, increasingly IT organizations are simply copying produc-
tion data updates real time into separate data lakes. CDC technolo-
gies are ideal for these scenarios and strategies.

CHAPTER 5 Generating NiFi Streams from Data Sources 39

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Mainframe
Information residing in mainframe systems, such as DB2 iSeries
or AS/400, VSAM, IMS or Adabas, is usually mission critical and
carries historical business logic. Using a CDC solution eliminates
the need to move data in periodic batches, thereby keeping that
data in sync and providing real-time access to the data in other
platforms. Log-based CDC for DB2 (leveraging the DB2 journals)
as well as for VSAM and IMS eliminates the need for repeated
brute-force data queries that incur a hefty MIPS price tag.

Look for CDC solutions that can unlock mainframe data without
incurring the complexity and expense that come with sending
ongoing queries into the mainframe database.

Messaging systems
A solution that can capture non-relational data should be able
to deliver the information in a way that can be easily processed
by other tools such as ETL or Enterprise Application Integra-
tion (EAI). NiFi can natively extract from JMS and messaging
platforms.

If changes are processed by an ETL tool that uses SQL, look for a
solution that can normalize the non-relational data and provide
a relational metadata model. If changes are processed by a NiFi
tool, typically in XML, JSON, or any other operational updates,
look for a solution that can map the legacy data source into an
XML document with a corresponding XML schema that represents
the original record hierarchy.

File system
Often as applications store log files and historical transactional
stories are slowly FTPed into mount points full of flat files, NiFi
was built to listen on end points and process them. Furthermore,
NiFi applications and processors have been built to incorporate
greater processing with these scenarios. As these solutions are
integrated, the native connectors have optimizations to make this
possible.

CHAPTER 6 Six NiFi Resources 41

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Six NiFi Resources

H
ere we present six resources that provide more informa-
tion to help you successfully use Apache NiFi:

»» HelloWorld sample code from Chapter 2 https://github.
com/drnice/NifiHelloWorld

»» Apache Technical Wiki https://cwiki.apache.org/
confluence/display/NIFI/FAQs

»» Cloudera DataFlow http://bit.ly/nifi-for-dummies-
cdf-page

»» 451 report: Cloudera updates DataFlow for IoT data process-
ing at the edge http://bit.ly/nifi-for-dummies-
cdf-update

»» Download Cloudera DataFlow http://bit.ly/nifi-for-
dummies-download-cdf

»» Cloudera Flow Management Datasheet http://bit.ly/
nifi-for-dummies-cfm-datasheet

Chapter 6

https://github.com/drnice/NifiHelloWorld
https://github.com/drnice/NifiHelloWorld
https://cwiki.apache.org/confluence/display/NIFI/FAQs

https://cwiki.apache.org/confluence/display/NIFI/FAQs

http://bit.ly/nifi-for-dummies-cdf-page
http://bit.ly/nifi-for-dummies-cdf-page
http://bit.ly/nifi-for-dummies-cdf-update
http://bit.ly/nifi-for-dummies-cdf-update
http://bit.ly/nifi-for-dummies-download-cdf
http://bit.ly/nifi-for-dummies-download-cdf
http://bit.ly/nifi-for-dummies-cfm-datasheet
http://bit.ly/nifi-for-dummies-cfm-datasheet

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Foreword
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Chapter 1 Why NiFi?
	The Advantages to Apache NiFi
	NiFi Core Concepts
	NiFi Expression Language and Other Query Languages
	JSONPath
	XPath/XQuery

	Chapter 2 Getting Started with NiFi
	Importing a NiFi Template
	Adding a NiFi Template to the NiFi Canvas
	Setting Up and Running the Hello World Example
	Configuring HandleHttpRequest NiFi processor
	Configuring the other processors
	Running the Hello World example

	Understanding the Hello World Example

	Chapter 3 General Debugging & Monitoring
	Debugging through the User Interface
	Status bar
	Summary
	Status History

	Configuring Backpressure
	Checking Provenance
	Checking the NiFi Server Logs

	Chapter 4 NiFi Use Cases
	Importing Datasets into a Database
	Listening for HTTP Posts
	Polling a RESTFul API to Extract a JSON Attribute

	Chapter 5 Generating NiFi Streams from Data Sources
	Options for Data Ingest with NiFi
	Pairing Log-Based Change Data Capture with NiFi
	Integrating NiFi with New Sources
	Considering Performance by Source Type
	Relational databases and data warehouses
	Mainframe
	Messaging systems
	File system

	Chapter 6 Six NiFi Resources
	EULA

Apache NiFi

