
An Introduction to Open Source 
Supply Chain Attacks

WHITEPAPER

The world runs on code. We secure it.



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    2

Table of Contents
Introduction 

Open Source Challenges 

List of Open Source Supply Chain Attacks 

Confusion-based Attacks (aka Dependency Confusion) 

Typosquatting 

Repository Jacking (aka ChainJacking) 

Conclusion

3

4

4

5

8

11

15



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    3

Introduction
When we think about Supply Chain attacks, we usually think of third-party suppliers. Traditionally, 
these are organizations that supply products or services to their customers on the customers’ 
behalf. Under some sort of contract or agreement with their customers, third-party suppliers 
typically have access to many different types of sensitive data about their customers, their 
customers’ employees, and other client-specific data. This access to private information makes 
third-party suppliers a prime target for cyberattacks. 

However, in this past year, we have seen a surge in supply chain attacks that are targeting a 
different supply chain—the open source software supply chain. Instead of pursuing third-party 
vendors, their systems, and platforms, attackers are starting to shift their focus, taking direct aim 
at developers by targeting the developers’ best friend: open source software. 

The main reason that open source is a viable target is due to the pervasiveness of its use in today’s 
codebases. For organizations who thrive on the software they develop, much of that software is 
actually open source. In fact, several studies show that open source adoption continues to rise.  
One study shows that 99% of codebases contain at least some open source, with a growing trend  
of nearly 445 open-source components per codebase. Another study shows that 35% of 
commercial applications reviewed have at least some open source components. When analyzing 
code that was developed for internal use, the percentage grew to 75%. 

Certainly, there is a growing concern among organizations who rely on their custom software, used 
to primarily run their own business operations, and serve their clients online. There are a host of 
reasons why open source usage makes sense, but most of them revolve around time-to-market 
demands and saving time and money by not reinventing what has already been proven to be 
effective. Regardless of the reasoning, open source consumption will continue to increase, resulting 
in increased risk as well. 

This white paper is designed for those looking to learn more about the open source software risks 
they are likely being exposed to. Simply put, if you are not aware of the risks, then you will not be 
able to manage them effectively.

https://www.securitymagazine.com/articles/92368-synopsys-study-shows-91-of-commercial-applications-contain-outdated-or-abandoned-open-source-components
https://techbeacon.com/security/state-open-source-commercial-apps-youre-using-more-you-think


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    4

Open Source Challenges
The increased reliance on open source creates many challenges. First is the need to be up to date 
with the latest and greatest versions. Otherwise, open source libraries quickly become outdated, 
and even more problematic, updating them can often lead to unwanted functionality or defects. 
Second, the lack of visibility into an organization’s open source usage sets them up for a  number of 
vulnerability issues and growing risks, which could result in disaster. For these reasons, malicious 
actors are increasingly focusing their attention on open source libraries as the delivery mechanisms 
to distribute their attacks. 

In this white paper, we will look at some of the most popular ways attackers are manipulating 
open source packages and repositories to take advantage of unsuspecting developers, and 
consequently, their organizations. These tactics are often very subtle and can present themselves 
as the simple misspelling of a package name, or a “new” version of a package that gets pulled 
in a codebase as part of an automated software build process. Other types of attacks prey on 
abandoned repositories that can be redirected to malicious code, or brand new repositories that are 
masquerading as trusted entities. 

One of the worst outcomes from open source supply chain attacks starts with infecting a developer’s 
computer. This can be particularly damaging due to its relatively high-level privileges and access to 
the organizations intellectual property (IP). In fact, there are many examples of attacks that targeted 
developers’ computers, using them as catalysts for other attacks like ransomware, gaining remote 
access, credential stealing, etc.  

So, what are the hallmarks of successful supply chain attacks? They are generally:

> Infect/affect a well defended “link” in 
the chain by targeting a trusted, but less 
defended one.

> Multiplying impact by infecting one “link” in 
the chain, that will end up affecting multiple 
links in the chain. 

List of Open Source 
Supply Chain Attacks
In the next sections, we’ll discuss many different open source supply chain attacks and the TTPs in 
use. Plus, we’ll provide a few recommendations to avoid falling victim, and, if you do, how to lessen 
their potential impact.  



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    5

Confusion-based Attacks 
(aka Dependency Confusion)
Throughout this section, we’ll highlight a number of different types of supply chain attacks. All of 
these are a type of a confusion-based attack. These attacks make use of a wide variety of strategies 
ranging from attacks that prey on typos that developers make while searching for package names, to 
vulnerabilities in package manager configurations and operations. 

Internal vs. External Repository Confusion

Many organizations use an internal repository for hosting open source libraries with the goal 
of making sure that all packages are coming from a known and safe location. In an ideal world, 
this would prevent any kind of confusion. However, in many organizations, package managers 
download the dependencies from internal private repositories, but they also allow the use of public 
repositories in certain use cases.  

In these types of scenarios, package managers are allowed to retrieve libraries from both private and 
public repositories based on availability, but not based on specific logic to retrieve a very specific 
package from a very specific source. In some cases, this logic can be configured to select external 
first, which is often the reason some of these attacks are so successful. This creates an attack 
vector for malicious actors and it’s one of the biggest reasons that attackers can create confusion.

The risks only get higher when attackers can direct these types of dependency confusion attacks 
towards internal packages. In these scenarios, attackers can strategically place malicious code in an 
external package (named the exact same way as the internal package) in a public repository in hopes 
that the package managers are configured in such a way that the malicious code is unknowingly 
downloaded into the organization’s application.

Protecting Your Organization from Internal-External Repository 
Confusion Attacks

Some organizations have taken the initiative and registered the packages names in the relevant 
package manager. For example, company “aaa” wrote a python package for internal usage using the 
name “aaa-sdk”. If someone would maliciously register a public python package under that name, 
they might find themselves infecting the internal infrastructure of company “aaa”. On the other 
hand, if “aaa” registered a placeholder package under that name, they would defend themselves 
against dependency confusion attacks without needing to do any changes in all software where 
“aaa-sdk” is used.



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    6

Dependencies with Higher Version Numbers

Figure 1. Mix of private and public package dependencies

Malicious actors can artificially raise the version number of a package to try to trick package 
managers into believing that a newer version of a package exists. For attackers who want to infect as 
many targets as possible, they will typically focus this attack on a very commonly used package in 
the hopes that it will be pulled down unknowingly. However, an even more targeted version of this 
attack can be focused on specific organizations. 

Instead of targeting open source packages, this specific type of attack can even be used to 
target internally developed packages! But how would an attacker know the name of an internally 
developed package? Easy. When making changes to open source packages, some organizations 
contribute the changes back to the community. 

Attackers often write code that can crawl through public repositories like GitHub, and look for 
package manager dependency lists, which often contain information about the private libraries that 
were used internally by the organization. An example of these types of files might be the package.
json file in NPM, or the requirements.txt file in Python. 

Previously, we briefly discussed how in many organizations, package managers download 
dependencies from internal private repositories. But they also allow the use of public repositories in 
certain use cases. 
 
In these scenarios, we have a mix of both private and public package dependencies. The 
internal dependencies are hosted privately (for example in Nexus or Artifactory), while the public 
dependencies are hosted from the internet. For an example, see Figure 1.

Public Repositories

Private Repositories

Build Server

Code

Expected

Mix of private and 
public package 
dependencies

The private dependencies 
are hosted privately  
(e.g Artifactory)

The public dependencies 
are downloaded from the 
internet

flask

flask

flask

angular

angular

angular

Checking new versions for:
flask, angular, company-infra

Private Dependency Hosting

financial-application

Downloading Dependencies Compilation

financial-application.tar.gz

Build Release

flask

company-infra

angular

Company-infra

Company-infra
v2.2.3



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    7

During the build process, the expected outcome is that the appropriate packages will be pulled from 
their respective locations. In Figure 1, “flask” and “angular” are both retrieved from public repositories, 
while “company-infra” is retrieved from an internal private repository. Now let’s take a look at a 
compromised scenario where an attacker publishes a malicious code package.  

In this scenario, the attacker publishes a package using the same name as the internally hosted 
package and he gives it a new, higher version number. This package is published to a public 
repository. 

Now during a build process, when the build is downloading dependencies, it still pulls down 
“flash” and “angular” from the public repository. However, this time, the process recognizes a new 
version of “company-infra”, which is a version that is higher than the one stored internally on 
the private repository. If your package manager is not configured properly, this can be a disastrous 
scenario, since the malicious package will be pulled from the public repository, instead of grabbing 
the safe package internally. See Figure 2 for an example.

Figure 2. Example of higher version number attack

Protecting Your Organization from Inflated (Higher) Version 
Numbers
We suggest mitigating this risk in a similar way to the dependency confusion attack above. This 
risk can also be mitigated by registering a placeholder package on the relevant package manager 
with a low version number. In our effort to help organizations prevent these types of attacks, and 
to help identify dependencies in your project(s) that might be vulnerable to this kind of attack, 
Checkmarx has released this solution.

Public Repositories

Private Respositories 

Build Server

Code

Under Attack

An attacker published 
a malicious public 
package

They use the same name 
as used internally, with a 
higher version number

The malicious package is 
taken from the internet 
instead of the local repo

flask

flask

flask

angular

angular

angular

Checking new versions for:
flask, angular, company-infra

Private Dependency Hosting

financial-application

Downloading Dependencies Compilation

financial-application.tar.gz

Build Release

flask

company-infra

angular

Company-infra

Company-infra
v2.2.3

Company-infra
v2.2.3

Company-infra
v999.999.999

https://github.com/Checkmarx/dustilock


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    8

Typosquatting
In the context of open source package management, typosquatting attacks are caused by attackers 
creating and publishing malicious packages using names that are very close to legitimate ones. There 
are several types of typosquatting techniques, ranging from combosquatting, omission, repetition, 
and transposition, which we’ll cover next. These variations of typosquatting are all designed to 
sneak a package past unsuspecting, or often very hurried developer eyes, by taking advantage of 
developers’ minor typing errors. It allows attackers to unsuspectingly introduce malicious packages 
into development environments and then spread into organizations at large. 

Typosquatting attacks have a very wide-ranging impact, simply because the attack preys on an 
inadvertent spelling mistake, which is something every developer has likely done many times. Add to 
this the fact that package names are becoming more eclectic with their naming conventions, and it  
can quickly become challenging to understand what is real, and what is being passed off as real, but  
is actually malicious.   

Combosquatting

Combosquatting is a technique that often tries to impersonate legitimate open source packages 
by adding (or often appending) common words, terms, or letters to the authentic package name. 
Combosquatting is considered to be the most common of the typosquatting examples. 

Here are a couple of examples of Combosquatting:

In the examples above, “node” and “js” are both frequently used terminology for developers 
who work with JavaScript, making these types of attacks very difficult to protect against by 
relying on human awareness alone. 

> dflow - dflow-node > lodash - lodashs> xpath-converter - xpath-converter.js



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    9

Transposition

Omission

The focus for this type of confusion attack is when attackers switch the position of two adjacent 
letters, which is often completely overlooked, due to the way the human eye and brain interact. 
Often the most common errors in typing occur when users press keys in the wrong order, which 
most of us know happens quite often. This fact, combined with common spelling mistakes, makes 
transposition errors very hard to detect.

One of the most well-known examples of transposition typosquatting is the now-removed package 
“electorn,” which was created as a spinoff from the “electron” package by simply switching the order  
of a few letters as follows:

By definition, omission is centered around a person or thing (in this case a letter, word, or phrase) 
being left out or excluded intentionally. The most common omissions are usually a single letter or 
character, like a hyphen. This type of attack is often targeted towards words that have repeating 
letters in them. 

The NPM registry updated their naming rules recently after a user on Twitter informed the NPM 
community that a package with a very similar name to the popular “cross-env” package was 
sending environment variables from its installation context out to npm.hacktast.net. See an 
example below:

In total, NPM found around 38 different packages that were attributed to some form of omission-
based typosquatting.

> cross-env - crossenv

> electron - electorn > middleware-js - middelware-js

Repetition

Repetition takes advantage of words that sound like they may have reoccurring letters, or are often 
misspelled by lots of people. A common example is the JQuery package, which is often mistyped 
with repeated letters. 

> jquery - jquerry

https://blog.npmjs.org/post/168978377570/new-package-moniker-rules


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    10

Protecting Your Organization from Typosquatting Attacks

These types of attacks are difficult to protect against by vigilance alone, since they prey on the 
one consistent truth that all developers eventually face—distractions. Developers are constantly 
given more responsibilities and shorter deadlines due to organizations demanding newer 
features, faster. These types of working conditions force developers to work both faster and more 
efficiently, which is often difficult to do.  

As a result, developers need a completely reliable and consistent way of identifying which open 
source packages are being used within their applications. A traditional Software Composition 
Analysis (SCA) tool can assist with this requirement; however, not all of them are capable of looking 
for packages with typosquatting-like attributes.  

For many SCA tools, if a package is misnamed by any of the strategies outlined above, the tool will 
most likely not recognize the package at all, and often completely ignore it. More advanced tools 
might list the package but will not be able to match it to a known package repository, so there will 
be little to no additional information.  

The most advanced and comprehensive SCA solutions will perform additional analysis to determine 
if the package is pretending to be something it is not. They perform this analysis by looking at 
pre-existing typosquatting examples, then applying the same principals to other package names. 
When found, these SCA solution will reflect the package as malicious giving the developers a 
chance to remediate before deployment, which is the ideal way to effectively manage risk. 

One practice that might help avoid this kind of mistake is to always copy the installation 
command from the package manager web page. Most of these web pages provides easy to copy 
commands to be used in your CLI. Looking at the authenticity of this web page can reduce the 
number of mistakes, although it is not foolproof. See Figure 3.

Figure 3. Python HTTP for Humans: requests 2.26.0

https://checkmarx.com/product/cxsca-open-source-scanning/
https://pypi.org/project/requests/


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    11

Repository Jacking 
(aka ChainJacking)

In theory, this is a helpful feature that most embrace. However, the redirects open the door for 
attackers to masquerade their code as known entities. All they need to do is re-register the 
abandoned GitLab account name, provide code to a same-named repository, and then any project 
that depended on that repository would start pulling code from the newly re-registered repository. 
Repository Jacking can be especially challenging with the Go programming language.  

Slipping through the cracks between the designs of GitHub and Go Package Manager could allow 
an attacker to take control of popular Go packages, poison them, and even infect developers’ and 
users’ computers. 

Go build tools provide an easy way for developers to download and use open-source libraries in 
their projects. Compared to other languages such as Python and Rust, Go doesn’t use a central 
repository to download libraries from. Instead, the Go tooling pulls code packages straight from 
version control systems such as GitHub. This fact is likely to increase risk. 

GitHub is the largest source-code repository on the internet, hosting the majority of Go packages.  
One feature GitHub provides allows users to change usernames, abandoning their old ones, and 
leaving them available for others to claim. When changing the username, the old name becomes 
available for anyone to re-register them. Until the old name has been registered again, GitHub 
redirects any old URLs to the new username URL. It is up to the previous owner to change all of 
their old URLs.

The change of username process is quick and simple. As shown below, a warning lets you know that 
all traffic for the old repository’s URL will be redirected to the new one. See Figure 4. 

Repository Jacking (also known as ChainJacking) refers to a lesser-known type of attack that can 
occur when the current owner of a repository changes their username, brought about by a specific 
feature that exists in GitHub called “Repository Redirects” This happens when an existing and 
trusted repository URL starts to redirect to a different repository.

Redirects can happen in three different ways:

1. When a user renames their repository.
2. When a user/organization renames their account.
3. When someone transfers a repository to another user or organization.

https://github.blog/2013-05-16-repository-redirects-are-here/


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    12

Figure 4. Username change dialog on GitHub

What GitHub fails to mention is an important implication that it does list in its documentation as 
follows:

Since the owner of the open-source project has no control over other projects that use their package, 
this can be misused. An attacker can easily claim the abandoned username and start serving 
up malicious code to anyone who downloads the package, relying on the credibility gained by its 
former owner. Doing so in a popular Go package repository could result in a chain reaction that 
substantially widens this code distribution, and infects large numbers of downstream products and 
subsequent organizations. In fact, Checkmarx has published a blog that provides additional details 
on this issue. 

After changing your username, your old username becomes 
available for anyone else to claim...

”
“

https://checkmarx.com/blog/a-new-type-of-supply-chain-attack-could-put-popular-admin-tools-at-risk/


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    13

Direct ChainJacking

To better understand the concept of Direct ChainJacking, let’s step through an example as follows:

A developer named Annastacia opens a GitHub account under the username “Annastacia.” She then 
publishes a useful Go package in a repository under the nam e “useful.” Anyone who wants to use 
this package either downloads or installs it via the command: 
>  “go get github.com/Annastacia/useful”

Or imports the package into their code via:  >  “import github.com/Annastacia/useful”

This action will add an entry to the “go.mod” file, allowing the tooling provided by Go to update the 
package when new versions are released.

For example, imagine that some time goes by and thanks to its usefulness, the package becomes 
rather popular. For some reason, Annastacia decides she wants a shorter name for her repository, and 
with just a few clicks, she changes her GitHub username to “Anna”. 

Subsequently, two things will happen:

See Figure 5 for GitHub username change example.

1. The username “Annastacia” is now available to be registered by anyone else.
2. All requests for “github.com/Annastacia/useful” are now redirected to “github.com/

Anna/useful”.

Figure 5. GitHub Username Change Example



WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    14

All current packages using “github.com/Annastacia/useful” can still use it as before, so nothing 
breaks and there are no user complaints (as of yet).

If an attacker manages to claim this “Annastacia” username, they can publish their own malicious 
code under the repository name “useful”. 

This action breaks the redirect to “Anna/useful,” and GitHub now serves the attacker’s malicious 
code from “github.com/Annastacia/useful,” which could compromise anyone using the old URL.

The main concept is rather simple. Now, every new installation of this package can potentially 
infect the developer’s machine or cause other unwanted outcomes. Even more potentially damaging, 
any new package or third-party product written in the future that depends on this poisoned 
package, will also cause infection on the machine it is installed on.

As package owners, the best way to prevent this kind of attack is to avoid renaming your GitHub 
repository. If you must do so, make sure you retain the old username and leave it as a place holder  
to prevent malicious actors from grabbing it.

As developers, if you’d like to make sure your own code does not include vulnerable packages, 
you should use the Checkmarx open-source ChainJacking tool, to find which of your GitHub 
dependencies is susceptible to a ChainJacking attack.

Protecting Your Organization from Repository Jacking

https://github.com/checkmarx/chainjacking


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    15

Conclusion
Although many industry thought leaders indicate the open source supply chain is “at risk,” today’s 
developers and security teams need to first be equipped with knowledge of supply chain attacks, 
indicators of compromise, and attackers’ TTPs. This knowledge is invaluable. Beyond knowledge, 
developers and security teams also need to be equipped with technology (tooling) that can help 
them identify issues before allowing those issues to become part of their own risk profiles. Proper 
knowledge and tooling are imperative to safely navigate the open source supply chain.

Final Comments

We have provided a considerable amount of attack scenarios, unwanted outcomes, and suggested 
mitigation techniques for some of the scenarios. We hope you find this information useful when 
securing your own open source usage. 

About Checkmarx
Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and 
simple for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing 
leader, we provide the industry’s most comprehensive solutions, giving development and security teams unparalleled 
accuracy, coverage, visibility, and guidance to reduce risk across all components of modern software – including 
proprietary code, open source, APIs, and Infrastructure as code. Over 1,675 customers, including 45% of the Fortune 
50, trust our security technology, expert research, and global services to securely optimize development at speed 
and scale. For more information, visit our website, check out our blog, or follow us on LinkedIn.

© 2022 Checkmarx Ltd. All rights reserved. Checkmarx is a registered trademark of Checkmarx Ltd. All other marks and trade names mentioned 
herein belong to their respective owners. Checkmarx reserves the right to modify, transfer, or otherwise revise this publication at its sole 
discretion and without notice.

https://checkmarx.com/
https://checkmarx.com/blog/
https://www.linkedin.com/company/checkmarx


WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    16WHITEPAPER    |    AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS    |    1

Checkmarx at a Glance

1,675+
Customers in 70 countries

30+
Languages & frameworks

750
Employees in 25 countries

500k+
KICS downloads in 2021

45%
of the Fortune 50 are customers


