
The world runs on code. We secure it.

The Many Facets of Modern
Application Development
A Comprehensive Guide for Leaders and Practitioners – Part 1

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 2

Table of Contents
Introduction

What is Application Development

Why MAD Now?

MAD Culture

MAD Architecture

MAD Challenges

MAD Security Risks

MAD Next Steps

3

4

6

7

8

9

12

14

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 3

Introduction
In a world that has evolved on the physical and logical underpinnings of the internet, we’re completely
dependent on software applications (apps) that run nearly every aspect of our lives. Few would debate
that software is the foundation of the future.

For organizations that have evolved into software-driven entities, the marching orders are clear: make
faster, smarter, and easier-to-use apps to influence revenue and market share. As a result, the demands
driving innovative app development, delivery, and deployment are moving at a previously unimaginable
pace. Free from the chains of the internet’s underlying infrastructure, the potential of unprecedented
usability, scalability, and scope are limitless.

Amid the obligations to revolutionize, modern application development (MAD) was spawned and has
since grown beyond its adolescence to stand at the forefront of nearly every public- and private-sector
organization that thrives on software it creates. A new approach to creating value through software is
here to stay, and MAD holds the key to modernization. Those who embrace this new era will reap the
benefits, and those who don’t will likely be compensated with a high margin of failure.

In Part 1 of this e-book, we’ll uncover the many facets of MAD to help you build a foundational understanding
of the concept, including how your organization can begin to move to this new development and delivery
paradigm. The topics we’ll cover will be of particular interest to those in leadership positions, but you’ll
also find a great deal to consider as a practitioner. Organizations that embark upon a MAD journey must
acknowledge that moving slowly and cautiously may keep them from ever crossing the finish line. In the
world of MAD, nothing moves gradually.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 4

In the new age of software development,
imagine developing applications capable of
running anywhere—and on any commodity
infrastructure—at scale. MAD brings this into
reality through cloud-based, native facilities that
disassociate the services software provides from
previous design, development, and deployment
practices, ultimately allowing teams to operate at
greater scale than previously possible. Functioning
under the notion that everything is code, MAD
assumes nothing is defined with the old operational
aspects of previous monolithic software builds.

In the past, software was expected to be developed
in a traditional, well-defined fashion, often deployed
on-premises in a data center. That approach required
a host of physical servers to run the various functions
code performs: one server might be used for the
web-based user interface, another for a data access
layer, another to provide a data store, and so on.

MAD isolates software innovation from operational
boundaries, enabling teams to spend more time
building innovative features and functions instead
of wasting time considering the effects on underlying
systems. In MAD, small malfunctions don’t cause
or influence system outages because services are
decoupled from what they are running on. Requiring
developers to fundamentally shift the way they
think, MAD is all about the creation of new
transactional value.

Figure 1 provides a conceptual view of what
a traditional architecture might look like.

Today, MAD changes all this.

User
Interface

Data Access
Layer

Data
Store

App1

What Is Modern
Application Development?

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 5

MAD operates at ridiculous speeds. Initially, this
can stress developers out because of the linear
mindset ingrained from their previous experiences.
Everything is integrated and automated in MAD,
whereby all delays caused by humans are removed
or overcome. MAD influences development, delivery,
and development practices so radically that many
may not initially accept its promises due to sheer
lack of understanding or fear of the unknown. MAD
is like delivering five years’ worth of software
development in one year.

Now that we’ve taken a quick look at MAD from a
theoretical perspective, let’s dig in a little deeper
and compare MAD to what is commonly called
cloud native.

MAD Speed MAD vs. Cloud Native

1 “Who we are,” Cloud Native Computing Foundation, accessed August 30, 2021, https://www.cncf.io/about/who-we-are.

In the past, people in IT and operations would
deploy servers with operating systems and
applications running on top. Cables, switches,
routers, load balancers, and more were physically
deployed and implemented. Today, all that effort
can be abstracted into lines of code that account
for everything needed to run an application and
provide a service.

In comparison to MAD, cloud native is a methodology
of building and running applications that exploits
the advantages of the cloud computing delivery
model. Software development in a cloud native
environment still includes the conceptual initiatives
of DevOps and certainly capitalizes on continuous
integration, delivery, and deployment (CI/CD)
fundamentals. In addition, cloud native can often
be considered a subset of MAD because not all
projects are fully designed to be cloud native.
Software designed to be deployed on-premises,
solely in the cloud, or in hybrid environments can
still be developed using MAD fundamentals and
approaches.

The Cloud Native Computing Foundation says:
“Cloud native technologies empower organizations
to build and run scalable applications in modern,
dynamic environments such as public, private,
and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and
declarative APIs exemplify this approach. These
techniques enable loosely coupled systems that are
resilient, manageable, and observable. Combined
with robust automation, they allow engineers
to make high-impact changes frequently and
predictably with minimal toil.”1

Although cloud native technology is undoubtedly
a component of MAD, let’s uncover some of the
drivers bringing MAD to the forefront of innovative
organizations.

https://www.cncf.io/about/who-we-are

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 6

Traditional software development can often be compared to assembling a train in a railyard. Train
cars (autorack, boxcar, centerbeam, flatcar, etc.) are physically connected to an engine one at a time
in a line, eventually assembling a long train. Connecting the cars, ensuring they are operational, and
releasing the train to safely travel is a long and cost-prohibitive process, but simply put, the train
cannot proceed to its destination until everything is assembled.

Traditional methods of developing software were similar. Organizations hoping to deploy a new
software build quickly saw delays as teams poured effort into low- value deliverables and waited
on other internal tasks to be done, but many of these delays had little to do with actually developing
software. MAD was born to eliminate the linear inner workings by taking a parallel approach to
delivery. Time-to-market demands in today’s competitive market landscape mean a need for speed.

MAD empowers developers to take advantage of cloud native technologies to accelerate the design
process, and then applies the same logic to the modeling, building, and delivering phases. It lets
developers innovate through a componentized approach to optimizing software development, accelerating
delivery, and improving the quality of their deliverables. It tears down the walls between development,
operations, and infrastructure—and with digital transformation in overdrive, organizations are beginning
to understand the importance of MAD initiatives. Moreover, MAD influences and inspires changes to
the traditional culture. Let’s delve into the cultural changes needed to make MAD initiatives successful.

Why MAD now?

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 7

MAD Culture
Companies often used to assume that if they built something, people would buy it. In today’s world of
software and services, that is no longer the case. MAD reverses that concept with a customer-first focus.
Working backward from the customer’s point of view, companies make business decisions based on a
constant stream of customer feedback. This way, they can continually iterate their products and services
to deliver what customers want and expect. With this in mind, what type of culture does MAD need?

The main cultural shift required for a successful MAD environment is to enable innovation through
ownership. In the past, developers worked primarily on “projects”— they received a task, they worked on
it, and they delivered the result. However, in MAD, developers take ownership of the products they are to
deliver, and they are held accountable for the development of the whole product and its overall success.
They have autonomy to determine how and where their product runs, in addition to continuously maintaining
and improving it to meet ever-changing customer demands. This approach to software modernization
means developers can work in an atmosphere where experimentation thrives instead of worrying about
non–business value aspects.

This cultural shift fosters ownership of innovative outcomes. Empowering developers to deliver new and
exciting customer results with more autonomy opens the door to more creativity, which flourishes in a
culture increasingly inclined to accept risk. Trust is at MAD’s very core, so developers will no longer feel
like they’re just a piece of the puzzle. Instead, they’re the designers of the puzzle, and it’s ultimately up
to them how all the pieces fit together. MAD can generate a culture developers want to work in and often
thrive in, which requires a new operational architectural model. Let’s look at that concept next.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 8

As shown in figure 2, in the MAD “legolized”
architecture, each piece has its intended purpose,
and they all fit together to deliver the desired
outcome. Developers can update, improve, and
deploy the various code pieces on the fly as
needed, and the speed and flexibility MAD offers
is a complete game changer.

Now that we’ve discussed many of the positive
attributes of MAD, we should also look at the
challenges organizations may face with MAD
initiatives.

MAD Architecture

> Applicative code

> Container code

> Infrastructure as code

Open source (third-party) code
Microservices/Serverless code
API code

•
•
•

An iterative mindset is at the very core of MAD,
and it requires a sort of rinse, improve, and
repeat mentality. Ensuring internal and external
customer feedback loops are in place, MAD folds
in the feedback during the mixing process, which
happens by design as MAD is driven by increasing
levels of automation. MAD is all about the quality
of the end product since continuous functional
and application security testing are foundational
elements.

MAD does not rely on a monolithic, linear approach
to software development and deployment. Instead,
you could compare it to something built from Legos.
Each block has a slightly different purpose, but
they all fit together perfectly because they are made
with that intention in mind. The components of MAD
that supportthis new architecture are as follows:

App Code

Microservices A Microservices B

External Services

Containers3rd Party

IaC AWS

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 9

MAD Challenges
Although MAD is considered revolutionary, its result is still software. Inputs and outputs, networking,
storage, databases, and so on still exist in MAD outcomes. Developers enjoy the freedom MAD offers, but
as they become more accustomed to using development frameworks, the abstractions keep increasing. In
other words, when a deployed application is not working as desired, an organization’s developers may not
know how to quickly fix it since they may not fully comprehend the underpinnings of how that application
worked in the past.

For example, in the days of writing code in COBOL and using a COBOL assembler, developers who were
intimately familiar with the code could rapidly fix a particular problem. MAD keeps abstracting this further
and further away. Take JavaScript frameworks for another example: there are so many abstractions that
when things start to break, it can take much longer to troubleshoot. Developers must fully understand
the dependencies, interdependencies, dependencies of dependencies, and so on, which can present a
significant challenge.

In the past, development of an application to operate in a data center running on a three-tier architecture
was often done by one development team. Likewise, security fell to one AppSec team, and support for
the deployed application to one operations team. Now, everything is decentralized and all the frameworks
in use can have different development, security, and deployment requirements. In MAD, developers can
choose the frameworks and languages they want to use, further adding to the overall complexity of the
final product. Before moving on, we should take a closer look at MAD abstractions.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 10

MAD Abstractions

Remember the days of building a data center network using a Visio diagram, following the design
verbatim, and plugging hundreds of Cat 5 cables into the switches, routers, load balancers, and servers
in a 19” rack? Now, that entire process has been summarized into simply calling an infrastructure as
code function. That’s the type of abstraction we are talking about here.

Suppose an organization suddenly realizes that its Amazon Elastic Block Store (EBS) no longer works
with its Amazon Elastic Compute Cloud (EC2) due to a recent change. Because developers are abstracted
so far from the result and lack necessary knowledge, no one in the organization knows how to rapidly
fix the issue. Then, when development moves from using an assembler in the past, abstracted all the
way up to Golang for example, there are abstractions of abstractions. When a production incident
occurs, you’ll often hear, “I only know this layer and not the rest.”

Because of this abstraction, developers often don’t fully understand security, beginning with the
basics at the network layer. Instead of developing hardened approaches through a comprehensive
understanding of ports, protocols, and the network layer, they’ll pervasively allow everything to get
through using an any, any, allow all policy—effectively leaving the door wide open. These are just a
few of the caveats of MAD. Let’s move on to a few more.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 11

MAD Scalability and Observability

Although speed is the name of the game in MAD, scalability and observability are an entirely different
discussion. Unfortunately, in MAD, organizations must address how they scale, since many older
practices don’t scale as well as one might hope. It may take longer to provision, support, fine-tune,
troubleshoot, and so on in MAD environments. When an organization moves to cloud native for instance,
the support needs and complexity can be extremely high.

Beyond scalability, observability should be on everyone’s radar. When there are stability issues—say,
processes coming online and quickly dying—without an observability layer in place, many teams may say,
“What just happened?” They will seriously lack the necessary details to keep things running smoothly.
Simply put, the most complicated pieces of some newer architectures are the logging and observability
capabilities.

When observing a monolithic application running in a data center, seeing the entire stack is relatively
simple. Through monitoring software, developers, security, and operations teams can get a bird’s-eye
view easily, quickly, and dependably. In MAD, observability is completely different. Take microservices,
for example. When potentially hundreds of microservices (if not more) are running to support a single
application and many depend on other services up- or downstream, it’s imperative to be able to observe all
of them, no matter where or how they are deployed.

In MAD, organizations need a comprehensive view that can fully correlate all the running statistics and
metrics into a single pane of glass so they can calculate and measure a healthy app over time. App-level
visibility that can be associated with customer experience is optimal. Response rates, error rates, logs,
traces, metrics, and more are key parts of complete visibility across an entire system. Beyond scalability
and observability, let’s look at another stipulation of MAD: tool sprawl.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 12

MAD Tool Sprawl

Before embarking on a MAD initiative, you might think MAD will reduce or eliminate many of the tools
in place to develop and secure code. However, you should expect the exact opposite. In the past, you
needed only a handful of IDE, CI/CD, SCM, and AppSec tools. In MAD, suddenly, you might hear,
“We need 15 new development tools we didn’t need yesterday.” And that’s just the tip of the iceberg.

Take Kubernetes for example. Many devs know just enough about containers to begin using them
more and more. The next big problem is when developers start extending Kubernetes, and start
incorporating open source, and then suddenly management hears, “We need another tool (or two)
in our arsenal to make this work.”

Soon, everyone believes their tools are the greatest, but organizations still need to standardize—
particularly to manage and reduce costs—and standardizing isn’t as easy as it sounds. Most want
to give their teams more flexibility, and the teams often fight for it because they want to be as agile
as possible. One group will want their tools, another group will want their tools, and soon there are
so many in play that they become completely unmanageable. Now that we understand some of the
organizational challenges to be expected in MAD, let’s not forget about an entirely new set of
security risks that come into play. Let’s look at an overview of MAD security risks next.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 13

In a corporate context, security risk—in the form of data loss, breaches, ransomware, etc.—is certainly
top of mind. In software, security risk is primarily derived from exploitable vulnerabilities when the
software is running in production. Regarding software risks like those highlighted in the OWASP Top
10, CWE/SANS Top 25, and other similar lists, organizations normally have application security
testing (AST) processes in place to help detect and mitigate these risks.

These lists are excellent starting points to help developers and application security (AppSec) pros
understand secure coding practice and how to mitigate software risk. However, and specifically
pertaining to MAD, the risk landscape becomes increasingly larger due to a new set of risks that
emerge. Beyond traditional, web-based software risks as highlighted in the OWASP Top 10, the
outcome of MAD extends the landscape considerably beyond traditional risk.

Today, organizations must not only acknowledge the risks listed by OWASP (and others), but also an
entirely new set of risks that emerge in MAD initiatives, such as:

> Open source code

> Containers

> Microservices

> Infrastructure as code

> APIs2

Inconsistent security standards
Unknown source code origins
Licensing noncompliance

Running containers from insecure sources
Exposing sensitive data through container
images
Too much faith in image scanning
Broader attack surface
Bloated base images
Lack of rigid isolation
Less visibility

Expanding complexity
Limited environment control
Inappropriately securing data
Inappropriately securing the network

Steep learning curve
Human error
Configuration drifts
Exposing sensitive data and ports

Broken object level authorization
Broken user authentication
Excessive data exposure
Lack of resources and rate limiting
Broken function level authorization
Mass assignment
Security misconfiguration
Injection
Improper assets management
Insufficient logging and monitoring

•
•
•

•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•

MAD Security Risks

2 “OWASP API Security Top 10 2019,” OWASP, accessed August 30, 2021, https://owasp.org/www-project-api-security.

https://owasp.org/www-project-api-security

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 14

OWASP Top 10 Web Application
Security Risks

1.	 Injection

2.	 Broken Authentication

3.	 Sensitive Data Exposure

4.	 XML External Entities

5.	 Broken Access Control

6.	 Security Misconfiguration

7.	 Cross-Site Scripting (XSS)

8.	 Insecure Deserialization

9.	 Using Components with Known Vulnerabilities

10.	 Insufficient Logging & Monitoring

We can manage some of these emerging risks by implementing better security-focused policies,
processes, and procedures. Others, however, we can only solve by implementing an entirely new set
of AST solutions, using a platform-based approach accompanied by a correlation layer specifically
designed to address many other emerging MAD risks. Organizations making the transition to MAD
will quickly realize that their current approaches to security testing don’t always fit well in this model.

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 15

© 2022 Checkmarx Ltd. All rights reserved. Checkmarx is a registered trademark of Checkmarx Ltd. All other marks and trade names mentioned
herein belong to their respective owners. Checkmarx reserves the right to modify, transfer, or otherwise revise this publication at its sole discretion
and without notice. cx_eb_mad-part1_050122

About Checkmarx
Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and
simple for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing
leader, we provide the industry’s most comprehensive solutions, giving development and security teams unparalleled
accuracy, coverage, visibility, and guidance to reduce risk across all components of modern software – including
proprietary code, open source, APIs, and Infrastructure as Code. Over 1,600 customers, including half of the Fortune
50, trust our security technology, expert research, and global services to securely optimize development, at both
speed and scale. For more information, visit our website, check out our blog, or follow us on LinkedIn, Twitter,
YouTube, and Facebook.

MAD Next Steps
In this e-book, we began with a discussion on the fundamentals of modern application development and
explained why many organizations worldwide are adopting this new methodology. We highlighted the
culture of MAD and briefly discussed some of its architectural components. Hopefully, we showed that
while MAD offers many benefits, like anything that brings change, you should also expect challenges.

We then looked at these challenges and highlighted some of the issues that would likely surface. We also
listed the expanding security risks organizations will face due to the way modern applications operate.
We’re absolutely not trying to dissuade organizations from moving to MAD. On the contrary, we fully
support MAD initiatives—we use these same approaches at Checkmarx. Our AST solutions are built by
developers, for developers, and used in both traditional and modern development environments.

MAD can spawn lengthy discussions since the concept is quite complex, but now you should have a
better idea of what MAD is all about. In Part 2 of this e-book, we’ll delve much deeper into each of the
security-related risks mentioned in Part 1 and offer recommendations on how to manage and mitigate
them. For now, it’s a good idea just to acknowledge that a whole new set of risks exists.

https://checkmarx.com/
https://checkmarx.com/blog/
https://www.linkedin.com/company/checkmarx
https://twitter.com/checkmarx
https://www.youtube.com/user/CheckmarxResearchLab
https://www.facebook.com/Checkmarx.Source.Code.Analysis

E-BOOK | THE MANY FACETS OF MODERN APPLICATION DEVELOPMENT | 16
Checkmarx at a Glance

1,675+
Customers in 70 countries

30+
Languages & frameworks

750
Employees in 25 countries

500k+
KICS downloads in 2021

45%
of the Fortune 50 are customers

