
Artificial Intelligence and 
Machine Learning 101

Artificial intelligence (AI) is transforming the way that  
we interact with machines and the way that machines 
interact with us. This guide breaks down how AI functions,  
the strengths and limitations of various types of machine  
learning, and the evolution of this ever-changing field of  
study. It also explores the role of AI-enabled security  
analytics or user and entity behavioral analytics (UEBA)  
to better protect enterprises from today’s complex  
cybersecurity threats.
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Part 1: Machine vs Human Learning

Artificial intelligence (AI) is everywhere—at least, that’s how it seems. At Micro Focus®, the rise of AI is both 

exciting and challenging. But as we’ve engaged with our peers, customers, and partners, we have come 

to realize that the concept of AI is not always easily understood. To start this AI and Machine Learning 

101 guide, we will unpack the AI puzzle by answering the main question many folks are asking: “What is 

artificial intelligence, really?”

The easiest way to understand artificial intelligence is to map it to something we already understand—our 

own intelligence. How does non-artificial, human intelligence work? At the most basic level, our intelligence 

follows a simple progression: we take in information, we process it, and ultimately the information helps 

us act .

Let’s break this down into a system diagram. In the figure below, the three general steps of human intel-

ligence from left to right: input, processing, and output. In the human brain, input takes place in the form 

of sensing and perceiving things. Your eyes, nose, ears, etc., take in raw input on the left, such as photons 

of light or the smell of pine trees, and then process it. On the system’s right side is output. This includes 

speech and actions, both of which are dependent on how we process the raw input that our brain is re-

ceiving. The processing happens in the middle, where knowledge or memories are formed and retrieved, 

decisions and inferences and made, and learning occurs.

How does non-artificial, 
human intelligence 
work? At the most basic 
level, our intelligence 
follows a simple 
progression: we take in 
information, we process 
it, and ultimately the 
information helps us act.
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Figure 1. Human intelligence
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Picture stopping at a roadway intersection. Your eyes see that the traffic light in front of you has just turned 

green. Based on what you have learned from experience (and driver’s education), you know that a green 

light indicates that you should drive forward. So, you hit the gas pedal. The green light is the raw input, your 

acceleration is the output; everything in between is processing.

To intelligently navigate the world around us—answering the phone, baking chocolate chip cookies, or 

obeying traffic lights—we need to process the input that we receive. This is the core of human intelligence 

processing, and it is ultimately broken down into three distinct aspects:

1. Knowledge and memory. We build up knowledge as we ingest facts (i.e., the Battle of Hastings took  

place in 1066) and social norms (i.e., saying “Please” and “Thank you” is considered polite). Additionally,  

memory enables us to recall and apply information from the past to present situations. For example,  

Edward remembers that Jane did not thank him for her birthday present, so he does not expect her  

to thank him when he gives her a Christmas present .

2. Decision and inference. Decisions and inferences are made based on raw input combined with  

knowledge and/or memory. For example, Edward ate a jalapeno pepper last year and did not like it.  

When Johnny offers a pepper to Edward, he decides not to eat it.

3. Learning. Humans can learn by example, observation, or algorithm. In learning by example, we are  

told that one animal is a dog, the other is a cat. In learning by observation, we figure out on our 

own that dogs bark and that cats meow. The third learning method—algorithm—enables us to 

complete a task by following a series of steps or a specific algorithm (e.g., performing long division).

These aspects of human intelligence parallel artificial intelligence. Just as we take in information, process 

it, and share output, so can machines. Let’s take a look at the figure below to see how this maps out.

To intelligently navigate 
the world around us—
answering the phone, 
baking chocolate chip 
cookies, or obeying traffic 
lights—we need to process 
the input that we receive.
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In machines, the input part of artificial intelligence is exemplified by natural language processing, speech 

recognition, visual recognition, and more. You see such technologies and algorithms everywhere, from 

self-driving cars that need to sense the roadways and obstacles, to Alexa or Siri when it recognizes your 

speech . The output that follows are ways in which machines interact with the world around us . This might 

take the form of robotics, navigation systems (to guide those self-driving cars), speech generation (e.g., 

Siri), etc. In between, we have various forms of processing that takes place.

Similar to our accrual of knowledge and memories, machines can create knowledge representations (e.g., 

graph databases, ontologies) that help them store information about the world. Just as humans make 

decisions or draw inferences, machines can make a prediction, optimize for a target or outcome, and 

determine the best next steps or decisions to meet a specific goal.

Finally, just as we learn by example, observation, or algorithm, machines can be taught using analogous 

methods. Supervised machine learning is much like learning by example: the computer is given a dataset 

with “labels” within the data set that act as answers, and eventually learns to tell the difference between dif-

ferent labels (e.g., this dataset contains photos labeled as either “dog” or “cat”, and with enough examples, 

the computer will notice that dogs generally have longer tails and less pointy ears than cats).

Unsupervised machine learning, on the other hand, is like learning by observation. The computer observes 

patterns (dogs bark and cats meow) and, through this, learns to distinguish groups and patterns on its own 

(e.g., there are two groups of animals that can be separated by the sound they make; one group barks—

dogs—and the other group meows—cats). Unsupervised learning doesn’t require labels and can therefore 

be preferable when data sets are limited and do not have labels. Finally, learning by algorithm is what hap-

pens when a programmer instructs a computer exactly what to do, step-by-step, in a software program.

Ideally, the most accurate and efficient artificial intelligence results require a combination of learning meth-

ods. Both supervised and unsupervised machine learning are useful methods—it’s all about applying the 

right approach or approaches to the right use case .

Next, we’ll put machine learning under the microscope to understand how this part of AI mirrors the neurons 

in our brain to turn input into to optimal output.

Part 2: The Neural Network and Deep Learning

Machine learning is just one part of AI, although it has a massive subset of algorithms within it. One method 

that you hear frequently today is “deep learning,” an algorithm that has received a fair share of attention in 

the news in recent years. To understand its popularity and success, it’s helpful to understand how it works. 

Deep learning is an evolution of a machine learning algorithm that was popular in the 1980s that you may 

recognize: neural networks .

Ideally, the most accurate 
and efficient artificial 
intelligence results require 
a combination of learning 
methods. Both supervised 
and unsupervised 
machine learning are 
useful methods—it’s all 
about applying the right 
approach or approaches 
to the right use case.
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Much of what we think of 
as human learning can be 
described by how strong 
the connection between 
two neurons in our brain is, 
along with the strength of 
the firing of our synapses.

Neural networks—a programming paradigm in which we train machines to “learn”—are inspired by neu-

rons, or specialized cells in the human body that form the foundation of our nervous system, and brains 

in particular. These cells transmit signals throughout our bodies trigger nervous system responses and 

processes. Neurons are what enable us to see, hear, smell, etc.

In part one of this guide, we discussed the basic process of human intelligence: input on the left, and 

output on the right . The neuron (pictured above) plays a critical role in this. On the left side of the neuron, 

the cell body collects “input.” Once it receives enough input or stimulation, the axon fires, transmitting the 

information to the right side—the synapse. The “output” is then sent to other neurons.

At any given moment, our neurons are passing messages between each other. These cells are responsible 

for our ability to perceive our surroundings. And when we learn, our neurons become very active. In fact, 

much of what we think of as human learning can be described by how strong the connection between two 

neurons in our brain is, along with the strength of the firing of our synapses.

A neural network is a mathematical simulation of a collection of neuron cells. The image below represents 

a basic neural network with 3 layers and 12 nodes.

Each circular node represents an artificial, biologically inspired “neuron.” The lines represent a connection 

from the output of one artificial neuron on the left to the input of another on the right. Signals between 

these neurons flow along the lines from left to right. In these networks, input—such as pixel data—flows 

from the input layer, through the middle “hidden” layers, and ultimately to the output layer in a manner de-

scribed by mathematical equations loosely inspired by the electrical activity in actual biological neurons.

Dendrites

Nucleus

Synapse

Axon

Figure 3. How neurons receive and send messages
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Neural networks learn by trying to match data sets presented to the input layer to desired outcomes in 

the output layer. The mathematical equations compute the outputs, compare the simulated output to the 

desired outcome, and the resulting differences then produce tweaks to the strength of the connections. 

These tweaks are iteratively modified until the computed output is close enough to the desired outcome, 

at which point we say the neural network has “learned.”

These “deeper” neural networks can do much more complex predictions. There can be thousands of 

nodes and hundreds of layers, which means thousands of different calculations. Deep learning models 

have become very good at specific problems, such as speech or image recognition.

Neural networks learn by 
trying to match data sets 
presented to the input 
layer to desired outcomes 
in the output layer.  
The mathematical 
equations compute the 
outputs, compare the 
simulated output to the 
desired outcome, and 
the resulting differences 
then produce tweaks 
to the strength of 
the connections. 

Figure 4. Simple neural network

Figure 5. Complex neural network

OutputInput

OutputInput
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It’s worth noting, however, that deep learning is not a silver bullet for machine learning—especially not in 

cybersecurity, where sometimes there is not the large volume of clean data that is ideal for deep learning 

methods. It is important to pick the right algorithm, data, and principles for the job. This is the best way for 

machines to gather evidence, connect the dots, and draw a conclusion.

Neural networks might seem like the stuff of the future, but it’s been around for a while. In fact, neural 

networks are based on ideas that started circulating back in the 1940s. In the next section, we will take a 

short trip back in time to understand how neural networks and machine learning have come to permeate 

many parts of modern life .

Part 3: A Brief History of Artificial Intelligence

For some people, the term artificial intelligence (AI) might evoke images of futuristic cities with flying cars 

and household robots. But AI isn’t a futuristic concept, at least not anymore.

Although not referred to as such, the idea of artificial intelligence can be traced back to antiquity (i.e., Greek 

god Hephaestus’s talking mechanical handmaidens).¹ Since the 1930s, scientists and mathematicians 

alike have been eager to explore creating true intelligence separate from humans.

AI’s defining moment in the mid-20th century was a happy confluence of math and biology, with research-

ers like Norbert Wiener, Claude Shannon, and Alan Turing having already chipped away at the intersection 

of electrical signals and computation. By 1943, Warren McCulloch and Walter Pitts had created a model 

for neural networks. Neural networks paved the way for a brave new world of computing with greater 

horsepower, and, in 1956, the field of AI research was officially established as an academic discipline.

The latter half of the century was an exciting age for AI research and progress, interrupted occasionally 

by “AI winters” in the mid-70s and late 80s where AI failed to meet public expectations, and investment 

in the field was reduced. But despite setbacks, different applications for AI and machine learning were 

appearing left and right. One particular anecdote of such an application has become a popular parable 

within the scientific community, speaking quite effectively to the trials and tribulations of AI research and 

implementation .

The story goes something like this:

In the 1980s, the Pentagon decided to use a neural network to identify camouflaged tanks. Working with 

just one mainframe (from the 1980s, keep in mind), the neural net was trained with 200 pictures—100 tanks 

and 100 trees. Despite the relatively small neural network (due to 1980’s limitations on computation and 

memory), the lab training resulted in 100% accuracy. With such success, the team decides to give it a go 

out in the field. The results were not great.

Neural networks might 
seem like the stuff of  
the future, but it’s been 
around for a while. In fact, 
 neural networks are based  
on ideas that started 
circulating back in  
the 1940s.
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Why did the neural network do so fantastically on the photos in the lab, but fail so completely in the field? 

It turned out that the non-tank photos were all taken on days where the sky was cloudy; all the pictures of 

trees were taken on days where the sun was shining. The neural net had been trained to recognize sun-

niness, not tanks.

Eventually, though, visual recognition via deep learning—facilitated by neural networks that are much 

more complex than the Pentagon’s 1980s mainframe would have been able to handle—became a reality. 

In 2012, Stanford professor Andrew Ng and Google fellow Jeff Dean created one of the first deep neural 

networks using 1000 computers with 16 cores each. The task: analyze 10 million YouTube videos. The 

result: it found cats.² Thanks to its “deep learning” algorithm, the network was able to recognize cats over 

time, and with very good accuracy.

With the availability of vast computing resources that were undreamed of back in the 1980’s, deep neural 

networks have quickly become a popular area for research. Deep learning gives a system the ability to 

automatically “learn” through billions of combinations and observations, reducing the dependency on 

human resources. Within the cybersecurity domain, the method has become particularly promising for 

detecting malware—scenarios in which we have large datasets with many examples of malware from 

which the network can learn .

Unfortunately, deep learning methods are currently less effective when it comes to certain use cases, like 

insider threat, because we simply don’t have the right kind of data on these types of attacks, in the volumes 

required. Most often, the information we have on insider threats are anecdotal, which cannot be used ef-

ficiently by these types of neural networks. Until we can gather more effective datasets (and reduce the 

With the availability of  
vast computing resources 
that were undreamed  
of back in the 1980’s,  
deep neural networks  
have quickly become 
a popular area for 
research. Deep learning 
gives a system the 
ability to automatically 
“learn” through billions 
of combinations and 
observations, reducing 
the dependency on 
human resources.

Figure 6. Lab vs field pictures (Source: Neural Network Follies, Neil Fraser, September 1998)
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cost and complexity of deep learning systems), deep learning is not the right choice for all use cases. And 

that’s okay. Deep learning is just one of many machine learning algorithms, and these approaches can be 

just as if not more valuable—it all depends on the job at hand.

We have seen immense potential of AI technologies in the six decades since its official “birth,” and we have 

only just scratched the surface, especially in security. Next, we will take a deeper dive into the potential 

applications for AI and analytics to change the way that we identify and respond to security threats.

Part 4: A New Vision for Security Analytics

So far, this guide has taken a close look at machine learning, understanding its limitations and strengths. 

There is enormous potential for machine learning to facilitate AI, but it’s worth noting that the broader game 

of threat detection is not just about deep learning or machine learning as we know it today. New analytical 

methods combined with new data types can give us entirely new frameworks in which to analyze and act 

upon security threats .

We have seen what analytics can do for other industries, and there is potential for analytics to have a 

profound impact on cybersecurity, too. We see this taking shape in a new field that we refer to as security 

analytics, which essentially takes the battle-tested algorithms and methodologies that we have discussed 

(and more) and applies them help solve the really difficult problems in security.

We have seen  
immense potential of  
AI technologies in the  
six decades since its 
official “birth,” and 
we have only just 
scratched the surface, 
especially in security.

Predictive analytics is just one piece of a much larger puzzle that can give us  
much more useful insight for security teams.

New Methods Adaptive Analysis 
Continual Analysis 
Optimization under Uncertainty

Responding to context 
Responding to local change/feedback 
Quantifying or mitigating risk

Traditional Optimization 
Predictive Modeling 
Simulation 
Forecasting 
Alerts 
Query/Drill Down 
Ad hoc Reporting 
Standard Reporting

Decision complexity, solution speed 
Casually, probabilistic, confidence levels 
High fidelity, games, data farming 
Larger data sets, nonlinear regression 
Rules/triggers, context sensitive, complex events 
In memory data, fuzzy search, geo spatial 
Query by example, user defined reports 
Real time, visualizations, user interaction

New Data Entity Resolution 
Relationship, Feature Extraction 
Annotation and Tokenization

People, roles, locations, things 
Rules, semantic inferencing, matching 
Automated, crowd sourced

To
d

ay

Table 1. New analytical methods and new data types givie us new ways to detect threats . 
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The most common analytics we see in security today involves predictive models, which allow us to identify 

where risks might be within large amounts of data (this is where anomaly detection fits in). In a nutshell, 

predictive modeling combines historical data with real-time behavior to understand or predict future be-

havior. With this, we can answer the question, “What happens next?”

But our vision for security analytics doesn’t stop here. Predictive analytics is just one piece of a much larger 

puzzle that can give us much more useful insight for security teams. The ideal analytics paradigm combines 

intelligent sensor and ubiquitous data sources—desktops and servers, mobile, cloud, social networks, 

open data, etc.—with multiple advanced analytical approaches to behavioral and threat analysis, includ-

ing forensic analysis, risk modeling, anomaly detection, behavioral and response optimization, and more.

This means that we can do far more than predict or identify a threat. It allows us to go even further to offer 

not just advanced detection but insight into how to respond most effectively. Security analytics gives us 

the power to answer other key questions, like “How many threats are there?” and “What is the best pos-

sible reaction?”

We haven’t seen other classes of analytics like optimization methods applied to cybersecurity yet, but 

they have immense potential. These techniques look at all the possible reactions to a security risk and 

determining the best response. Yes, there are ways to do this with math.

For example, optimization methods are used when you place a call to your cell phone service provider with 

an issue . They are not randomly making a recommendation on whether or not to upgrade your service plan 

at a discount; they rely on a set of mathematics in the background that looks at your call logs, the number 

of dropped calls, how your history compares with that of other users, etc. It even calculates the probability 

that you might switch to another service provider. Then, out of all the possible next steps, it computes the 

best next step to maximize customer retention.

The same math can be applied to a security team to identify a risk, provide a number of ways in which to 

react, and determine mathematically the best response to maximize containment of this particular risk.

The rapid rise and evolution of security threats make this type of response efficiency critical. We have more 

data today than ever before. Thankfully, we also have more compute power, better algorithms, and broader 

investment in research and technologies to help us make sense of this data through mathematics . By all 

accounts, we believe security analytics is just getting started.

We have more data 
today than ever before. 
Thankfully, we also have 
more compute power, 
better algorithms, and 
broader investment in 
research and technologies 
to help us make sense 
of this data through 
mathematics. By all 
accounts, we believe 
security analytics is 
just getting started.
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