
Azure e-book series

Getting started 
with Azure Red Hat 
OpenShift
An introduction



PREFACE  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1
 Who this book is for � � � � � � � � � � � � � � � � � � � � � � � � �1
 What this book covers � � � � � � � � � � � � � � � � � � � � � � �1

WHAT CAN AZURE DO FOR YOU? � � � � � � � � � � � 2

INTRODUCTION TO RED HAT OPENSHIFT � � � � 3
 Red Hat OpenShift Overview � � � � � � � � � � � � � � � � 3
 Business Value  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4
 What do you get with OpenShift 
 as opposed to Kubernetes?  � � � � � � � � � � � � � � � � � 6
 Concepts of OpenShift � � � � � � � � � � � � � � � � � � � � � � 8

AZURE RED HAT OPENSHIFT  � � � � � � � � � � � � � � 20
 Architecture  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 21
 Management  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 24
 Security � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 24
 Support  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 25

SETTING UP THE CLUSTER, NETWORKING 
AND SECURITY � � � � � � � � � � � � � � � � � � � � � � � � � � � 26
 Install the Azure CLI and sign in to Azure � � � � 26
 Create an Azure Active Directory tenant 
 for your cluster � � � � � � � � � � � � � � � � � � � � � � � � � � � � 27
 Create the administrator user and 
 administrator security group � � � � � � � � � � � � � � � 28
 Create an Azure Active Directory 
 app registration authentication � � � � � � � � � � � � � 30
 Restrict the cluster access to assigned 
 users and assign user access � � � � � � � � � � � � � � � � 33
 Create the cluster and connect it to 
 your existing Virtual Network  � � � � � � � � � � � � � � 35

ACCESSING THE CLUSTER  � � � � � � � � � � � � � � � � � 38
Via the Web UI  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 38
Via OpenShift CLI � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 39

CREATING A MULTI-CONTAINER 
RATINGS APPLICATION � � � � � � � � � � � � � � � � � � �40
 Application Overview � � � � � � � � � � � � � � � � � � � � � � 40
 Connect to the cluster and create a project � � 41
 Deploy MongoDB � � � � � � � � � � � � � � � � � � � � � � � � � 41
 Deploy the ratings-api service � � � � � � � � � � � � � � 43
 Deploy the ratings-web frontend using 
 S2I strategy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 45
 Create a route for the ratings-web frontend � 45
 Scaling the application and the cluster � � � � � � 46
 Controlling networking using 
 networking policies � � � � � � � � � � � � � � � � � � � � � � � � 47

USING AN APP TO BECOME FAMILIAR WITH 
OPENSHIFT AND KUBERNETES  � � � � � � � � � � � �49
 Application Overview � � � � � � � � � � � � � � � � � � � � � � 49
 Deploy the OSToy application � � � � � � � � � � � � � � 50
 Explore Logging � � � � � � � � � � � � � � � � � � � � � � � � � � � 54
 Health Checks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 55
 Persistent Storage � � � � � � � � � � � � � � � � � � � � � � � � � 58
	 Configuration	-	ConfigMaps,	Secrets, 
 Environment Variables � � � � � � � � � � � � � � � � � � � � � 61
 Networking and Scaling  � � � � � � � � � � � � � � � � � � � 62

CONCLUSION � � � � � � � � � � � � � � � � � � � � � � � � � � � �64

© 2019 Microsoft Corporation and Red Hat� All rights reserved� This document is provided 
“as	is.”	Information	and	views	expressed	in	this	document,	including	URL	and	other	
internet	website	references,	may	change	without	notice.	You	bear	the	risk	of	using	it.

Contents



Who this book 
is for

What this book 
covers

This guide is meant for developers who are looking to learn how to bolster their 
application building and deployment capabilities by leveraging Azure and Red 
Hat OpenShift for full-service deployment of fully managed OpenShift clusters� 

In	this	guide,	we	will	walk	you	through	the	ins	and	outs	of	using	Azure’s	development	
tools on the OpenShift platform� We will begin by introducing you to Red Hat 
OpenShift and the reasons why so many developers and operators choose this as 
their cluster management platform and how they derive so much utility from it� After 
learning why	OpenShift	is	your	preferred	platform,	you’ll	learn	how	to	get	the	most	out	
of	it.	We’ll	explain	everything	you’ll	need	to	know	about	Red	Hat	OpenShift,	as	well	as	
how	Azure	fits	into	the	picture,	starting	with	the	fundamental	concepts	and	building	
blocks of OpenShift� Once you have a solid understanding of the basic OpenShift 
concepts,	a	hands-on	guide	will	teach	you	everything	from	how	to	set	up	your	first	
cluster,	to	management,	to	deploying	data	services,	all	powered	by	Azure.

1Getting Started with Azure Red Hat OpenShift

PREFACE



Whether	you’re	a	professional	developer	or	just	write	
code	for	fun,	developing	with	Azure	puts	the	latest	
cloud technology and best-in-class developer tools at 
your	fingertips,	making	it	easy	to	build	cloud-native	
applications in your preferred language�

With	Azure,	you	can	get	work	done	faster,	take	your	
development	skills	to	the	next	level,	and	imagine	and	
build	tomorrow’s	applications.

Multiply your impact with: 

  A cloud platform

  Developer tools

  Management services

Integrated	tightly	together,	
these form a true ecosystem 
that enable you to create 
amazing applications and 
seamless digital experiences 
that run on any device�

Take advantage of the incredible 
and always growing capabilities 
of	Azure.	Let’s	dive	deep	
to see what you can do�

2Getting Started with Azure Red Hat OpenShift

WHAT CAN AZURE 
DO FOR YOU?



Red Hat OpenShift 
Overview

Red Hat OpenShift is an enterprise-ready Kubernetes container platform with full-stack 
automated operations to manage hybrid cloud and multi-cloud deployments and is 
optimized to improve developer productivity and promote innovation� With automated 
operations	and	streamlined	lifecycle	management,	RedHat	OpenShift	empowers	
development teams to build and deploy new applications and helps operations teams 
provision,	manage,	and	scale	a	Kubernetes	platforms.	

Development teams have access to validated images and solutions from hundreds of 
partners with security scanning and signing throughout the delivery process� They can 
access on-demand images and get native access to a wide range of third-party cloud 
services,	all	through	a	single	platform.	

Operations	teams	are	given	visibility	into	deployments	wherever	they	are,	and	across	
teams,	with	built-in	logging	and	monitoring.	Red	Hat	Kubernetes	Operators	embed	
the	unique	application	logic	that	enables	the	service	to	be	functional,	not	simply	
configured	but	tuned	for	performance	and	updated	and	patched	from	the	OS	with	a	
single touch� Red Hat OpenShift is truly a one-stop-shop that enables organizations to 
unleash the power of their IT and development teams�
 

3Getting Started with Azure Red Hat OpenShift

INTRODUCTION TO 
RED HAT OPENSHIFT



Business Value Over	1,000	customers	trust	Red	Hat	OpenShift	to	change	the	way	they	deliver	
applications,	improve	their	relationships	with	customers,	and	gain	competitive	
advantages to be leaders in their industries� Per a Forrester Total Economic Impact 
commissioned	study,	development	teams	of	the	organizations	using	OpenShift	Hosted	
can	better	meet	business	demand	and	support	important	IT	initiatives,	even	as	they	
have shifted development cost structures away from IT infrastructure and platform 
related	costs.	Benefits	seen	by	these	customers	include:	

• Developers experience a 90% productivity lift for initial application 
development,	testing,	and	deployment.	Developers	use	OpenShift’s	templated	
runtime	images,	saving	days	of	time	and	effort	for	both	greenfield	projects	
and legacy application modernization projects� Over three years and a 
cumulative	total	of	454	applications,	shorter	development	cycles	are	worth	
more than $2�2 million in productivity gains to the composite organization�

• The hosted OpenShift solution reduces elapsed wait time for environment 
creation	by	98%.	Red	Hat’s	automated	management	of	environment	creation	
reduces the amount of downtime developers faced before using the solution� 
Over three years and a cumulative total of 454 applications developed or 
modernized,	developers	save	78	hours	per	application.	The	organization	
recaptures 10% of this productivity and establishes a shorter environment 
creation	cycle,	worth	a	cumulative	$121,000	over	three	years.

• Automatic scaling and load balancing managed by Red Hat relieve DevOps 
and	operations	teams,	providing	a	20%	lift	in	operational	efficiency.	
Customers no longer worry about manual scaling by monitoring memory 
and	CPU	utilization	because	the	platform	autoscales	services/pods	to	fit	
their	computing	needs	efficiently.	Over	three	years	and	a	cumulative	total	
of	45	employees,	the	managed	services-driven	operational	benefit	is	worth	
$693,000	to	the	organization.

•	 Red	Hat	secures	and	maintains	the	platform,	saving	over	3,000	hours	of	
customer	labor	per	year.	Red	Hat	is	responsible	for	the	security,	maintenance,	
and major upgrades of the OpenShift Dedicated platform� Over three years 
and	a	cumulative	total	of	9,270	hours	and	24	events,	this	managed	services-
driven	benefit	is	worth	$332,000	to	the	organization.

OpenShift helps 
users deliver timely 
and compelling 
applications and 
features across 
their complex and 
heterogeneous IT 
environments and 
supports key IT 
initiatives such as 
containerization,	
microservices,	and	
cloud migration 
strategies�

4Getting Started with Azure Red Hat OpenShift



• Operations and administrative costs decrease by 2 FTEs each year� Migrating 
and modernizing legacy applications using the service improve their 
availability	and	performance,	reducing	the	amount	of	administrative	and	
operational time the organization spent managing legacy applications in 
place� The shift away from internally managed legacy solutions to OSD 
deployments	is	worth	more	than	$974,000	to	the	organization.

• IT infrastructure cost reductions: Developing on the OpenShift platform 
requires fewer testing and production servers due to its support of 
containerization,	microservices,	and	multitenancy,	contributing	to	lower	
infrastructure costs for interviewed organizations even as their application 
development	efforts	expand.	Forrester’s	interviews	with	three	existing	
customers	and	subsequent	financial	analysis	found	that	an	organization	based	
on	these	interviewed	organizations	experienced	benefits	of	$4.3M	over	three	
years	versus	costs	of	$981K,	adding	up	to	a	net	present	value	(NPV)	of	$3.4M	
and an ROI of 343%�

Read the full Forrester TEI report for more information on 
how	OpenShift	drove	significant	business	results.

Security and 
maintenance 
efficiencies

$331,965	over
three-year analysis

Reduction in 
developer wait time

$120,632	over
three-year analysis

Automatic scaling 
and load balancing

$692,654	over
three-year analysis

Operations and
admin cost savings

$974,267	over
three-year analysis

Developer
productivity lift

$2,227,056	over
three-year analysis

5Getting Started with Azure Red Hat OpenShift

https://www.redhat.com/en/resources/economic-impact-openshift-dedicated-analyst-paper
https://www.redhat.com/en/resources/economic-impact-openshift-dedicated-analyst-paper


OpenShift	is	often	referred	to	as	“Enterprise	Kubernetes”	–	but	don’t	let	that	convince	
you	that	they	are	one	and	the	same.	It’s	also	not	fair	to	provide	an	apples-to-apples	
comparison	of	Kubernetes	vs.	OpenShift,	since	Kubernetes	is	an	open	source	project,	
while OpenShift is an enterprise grade product with a high level of service offerings� 

Running containers in production with Kubernetes requires additional tools and 
resources,	such	as	an	image	registry,	storage	management,	networking	solutions,	
and	logging	and	monitoring	tools,	all	of	which	must	be	versioned	and	tested	
together� Building container-based applications requires even more integration 
work	with	middleware,	frameworks,	databases,	and	CI/CD	tools.	Azure	Red	Hat	
OpenShift	combines	all	this	into	a	single	platform,	bringing	ease	of	operations	
to IT teams while giving application teams what they need to execute� All of 
these	topics	will	be	covered	in	greater	detail	later	in	the	guide,	but	with	this	
in	mind,	let’s	take	a	look	at	some	of	the	key	differences	between	the	two.

• Ease of deployment: Deploying an application in Kubernetes can be 
time	consuming.	This	involves	pulling	your	GitHub	code	onto	a	machine,	
spinning	up	a	container,	hosting	it	in	a	registry	like	Docker	Hub	and	finally	
understanding	your	CI/CD	pipeline,	which	can	be	very	complicated..	
OpenShift,	on	the	other	hand,	automates	the	heavy	lifting	and	the	backend	
work,	only	requiring	you	to	create	a	project	and	upload	your	code.

• Security:	Today,	we	see	that	most	Kubernetes	projects	are	worked	on	in	
teams of multiple developers and operators� Even though Kubernetes now 
supports	things	like	RBAC	and	IAM,	it	still	requires	a	manual	setup	and	
configuration,	which	takes	time.	Red	Hat	and	OpenShift	have	done	a	great	
job	of	identifying	security	best	practices	after	years	of	experience,	which	are	
available	to	customers	out	of	the	box.	You	simply	add	new	users	and	OpenShift	
will handle things like name-spacing and creating different security policies� 

• Flexibility:	In	using	Azure	Red	Hat	OpenShift,	you’re	able	to	take	advantage	
of	well-known	best	practices	of	deployment,	management	and	updating.	
All the heavy lifting within the backend is taken care of for you without 
the	need	for	much	finger	pushing,	enabling	you	to	influence	your	apps	
quicker.	While	it’s	nice	for	teams	that	like	being	told	how	to	get	things	
done	and	benefit	from	a	streamlined	approach,	the	Kubernetes	platform	
allows you to manually customize your CI/CD DevOps pipeline which offers 
more	room	for	flexibility	and	creativity	when	developing	your	processes.

What do you get 
with OpenShift 
as opposed to 
Kubernetes?

6Getting Started with Azure Red Hat OpenShift



• Day to Day Operations: Clusters are comprised of a group of multiple VMs 
and inevitably your operations teams will need to spin up new VMs that 
need	to	be	added	to	a	cluster.	The	configuration	process	through	Kubernetes	
can	be	time	consuming	and	complex,	requiring	scripts	to	be	developed	
to set up things like self-registration or cloud automation� With Azure Red 
Hat	OpenShift,	cluster	provisioning,	scaling,	and	upgrade	operations	are	
automated and managed by the platform�

• Management: While you can take advantage of the Kubernetes default 
dashboards	that	come	with	any	distribution,	most	developers	need	something	
more robust Azure Red Hat OpenShift offers great web console that builds 
on	the	Kubernetes	API’s	and	capabilities	for	operations	teams	to	manage	their	
workloads�

7Getting Started with Azure Red Hat OpenShift



Containers

The basic units of Azure Red Hat OpenShift applications are called containers� Linux 
container technologies are lightweight mechanisms for isolating running processes so 
that they are limited to interacting with only their designated resources�

Many application instances can be running in containers on a single host without 
visibility	into	each	other’s	processes,	files,	network,	and	so	on.	Typically,	each	container	
provides	a	single	service	(often	called	a	“micro-service”),	such	as	a	web	server	or	a	
database,	though	containers	can	be	used	for	arbitrary	workloads.

Images

Containers in Azure Red Hat OpenShift are based on Docker-formatted container 
images� An image is a binary that includes all the requirements for running a single 
container,	as	well	as	metadata	describing	its	needs	and	capabilities.

You	can	think	of	it	as	a	packaging	technology.	Containers	only	have	access	to	resources	
defined	in	the	image	unless	you	give	the	container	additional	access	when	creating	
it� By deploying the same image in multiple containers across multiple hosts and load 
balancing	between	them,	Azure	Red	Hat	OpenShift	can	provide	redundancy	and	
horizontal scaling for a service packaged into an image�

Concepts of 
OpenShift

8Getting Started with Azure Red Hat OpenShift



Pods and Services

Azure Red Hat OpenShift leverages the Kubernetes concept of a pod,	which	is	one	or	
more	container	deployed	together	on	one	host,	and	the	smallest	compute	unit	that	can	
be	defined,	deployed,	and	managed.

Pods	are	the	rough	equivalent	of	a	machine	instance	(physical	or	virtual)	to	a	container.	
Each	pod	is	allocated	its	own	internal	IP	address,	therefore	owning	its	entire	port	space,	
and containers within pods can share their local storage and networking�

Pods	have	a	life	cycle;	they	are	defined,	then	they	are	assigned	to	run	on	a	node,	then	
they	run	until	their	container(s)	exit	or	they	are	removed	for	some	other	reason.	Pods,	
depending	on	policy	and	exit	code,	may	be	removed	after	exiting,	or	may	be	retained	
in order to enable access to the logs of their containers�

Azure Red Hat OpenShift treats pods as largely immutable; changes cannot be made 
to	a	pod	definition	while	it	is	running.	Azure	Red	Hat	OpenShift	implements	changes	
by	terminating	an	existing	pod	and	recreating	it	with	modified	configuration,	base	
image(s),	or	both.	Pods	are	also	treated	as	expendable,	and	do	not	maintain	state	when	
recreated.	Therefore,	pods	should	usually	be	managed	by	higher-level	controllers,	
rather than directly by users�

9Getting Started with Azure Red Hat OpenShift



Projects and Users

A project is a Kubernetes namespace with additional annotations and is the central 
vehicle by which access to resources for regular users is managed� A project allows 
a community of users to organize and manage their content in isolation from other 
communities.	Users	must	be	given	access	to	projects	by	administrators,	or	if	allowed	to	
create	projects,	automatically	have	access	to	their	own	projects.

Projects can have a separate name,	displayName,	and	description�
• The mandatory name	is	a	unique	identifier	for	the	project	and	is	most	visible	

when using the CLI tools or API� The maximum name length is 63 characters�

• The optional displayName is how the project is displayed in the web console 
(defaults	to	name).

• The optional description can be a more detailed description of the project 
and is also visible in the web console�

Developers and administrators can interact with projects using the 
CLI or the web console�

10Getting Started with Azure Red Hat OpenShift



Builds and Image Streams

A build is the process of transforming input parameters into a resulting object� Most 
often,	the	process	is	used	to	transform	input	parameters	or	source	code	into	a	runnable	
image� A BuildConfig	object	is	the	definition	of	the	entire	build	process.

Azure Red Hat OpenShift leverages Kubernetes by creating Docker-formatted 
containers from build images and pushing them to a container image registry�

Build	objects	share	common	characteristics:	inputs	for	a	build,	the	need	to	complete	
a	build	process,	logging	the	build	process,	publishing	resources	from	successful	
builds,	and	publishing	the	final	status	of	the	build.	Builds	take	advantage	of	resource	
restrictions,	specifying	limitations	on	resources	such	as	CPU	usage,	memory	usage,	and	
build or pod execution time�

The Azure Red Hat OpenShift build system provides extensible support for build 
strategies	that	are	based	on	selectable	types	specified	in	the	build	API.	There	are	three	
primary build strategies available:

• Docker build
•	 Source-to-Image	(S2I)	build
• Custom build

By	default,	Docker	builds	and	S2I	builds	are	supported.

The resulting object of a build depends on the builder used to create it� For Docker and 
S2I	builds,	the	resulting	objects	are	runnable	images.	For	Custom	builds,	the	resulting	
objects	are	whatever	the	builder	image	author	has	specified.

Additionally,	the	Pipeline	build	strategy	can	be	used	to	implement	sophisticated	
workflows:

• continuous integration
• continuous deployment

11Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/index.html#defining-a-buildconfig


Source-to-Image (S2I)

Source-to-Image	(S2I)	is	a	toolkit	and	workflow	for	building	reproducible	container	
images from source code� S2I produces ready-to-run images by injecting source 
code into a container image and letting the container prepare that source code for 
execution.	By	creating	self-assembling	builder	images,	you	can	version	and	control	
your build environments exactly like you use container images to version your runtime 
environments�

For	a	dynamic	language	like	Ruby,	the	build-time	and	run-time	environments	are	
typically the same� Starting with a builder image that describes this environment 
-	with	Ruby,	Bundler,	Rake,	Apache,	GCC,	and	other	packages	needed	to	set	up	and 
run a Ruby application installed - source-to-image performs the following steps:

1� Start a container from the builder image with the application source injected 
into a known directory

2� The container process transforms that source code into the appropriate  
runnable	setup	-	in	this	case,	by	installing	dependencies	with	Bundler	and 
moving the source code into a directory where Apache has been pre- 
configured	to	look	for	the	Ruby	config.ru	file.

3� Commit the new container and set the image entrypoint to be a script 
(provided	by	the	builder	image)	that	will	start	Apache	to	host	the	Ruby 
application�

For	compiled	languages	like	C,	C++,	Go,	or	Java,	the	dependencies	necessary	for	
compilation might dramatically outweigh the size of the actual runtime artifacts� To 
keep	runtime	images	slim,	S2I	enables	a	multiple-step	build	processes,	where	a	binary	
artifact	such	as	an	executable	or	Java	WAR	file	is	created	in	the	first	builder	image,	
extracted,	and	injected	into	a	second	runtime	image	that	simply	places	the	executable	
in the correct location for execution�

For	example,	to	create	a	reproducible	build	pipeline	for	Tomcat	(the	popular	Java	
webserver)	and	Maven:

1.	 Create	a	builder	image	containing	OpenJDK	and	Tomcat	that	expects	to	have 
a	WAR	file	injected.

2.	 Create	a	second	image	that	layers	on	top	of	the	first	image	Maven	and	any 
other	standard	dependencies,	and	expects	to	have	a	Maven	project	injected.

3.	 Invoke	source-to-image	using	the	Java	application	source	and	the	Maven 
image to create the desired application WAR�

4.	 Invoke	source-to-image	a	second	time	using	the	WAR	file	from	the	previous 
step and the initial Tomcat image to create the runtime image�

12Getting Started with Azure Red Hat OpenShift



By	placing	our	build	logic	inside	of	images,	and	by	combining	the	images	into	multiple	
steps,	we	can	keep	our	runtime	environment	close	to	our	build	environment	(same	JDK,	
same	Tomcat	JARs)	without	requiring	build	tools	to	be	deployed	to	production.

The	goals	and	benefits	of	using	Source-To-Image	(S2I)	as	your	build	strategy	are:
• Reproducibility: Allow build environments to be tightly versioned by 

encapsulating	them	within	a	container	image	and	defining	a	simple	interface	
(injected	source	code)	for	callers.	Reproducible	builds	are	a	key	requirement	to	
enabling security updates and continuous integration in containerized infra-
structure,	and	builder	images	help	ensure	repeatability	as	well	as	the	ability	to	
swap runtimes�

• Flexibility: Any existing build system that can run on Linux can be run inside 
of	a	container,	and	each	individual	builder	can	also	be	part	of	a	larger	pipeline.	
In	addition,	the	scripts	that	process	the	application	source	code	can	be	injected	
into	the	builder	image,	allowing	authors	to	adapt	existing	images	to	enable	
source handling�

• Speed:	Instead	of	building	multiple	layers	in	a	single	Docker	file,	S2I	
encourages authors to represent an application in a single image layer� This 
saves time during creation and deployment and allows for better control over 
the	output	of	the	final	image.

• Security:	Docker	files	are	run	without	many	of	the	normal	operational	controls	
of	containers,	usually	running	as	root	and	having	access	to	the	container	
network� S2I can be used to control what permissions and privileges are 
available to the builder image since the build is launched in a single container� 
In	concert	with	platforms	like	OpenShift,	source-to-image	can	enable	admins	
to tightly control what privileges developers have at build time�

13Getting Started with Azure Red Hat OpenShift



Replication Controllers

A replication controller	ensures	that	a	specified	number	of	replicas	of	a	pod	are	running	
at	all	times.	If	pods	exit	or	are	deleted,	the	replication	controller	acts	to	instantiate	
more,	up	to	the	defined	number.	Likewise,	if	there	are	more	running	than	desired,	it	
deletes	as	many	as	necessary	to	match	the	defined	amount.

A	replication	controller	configuration	consists	of:
•	 The	number	of	replicas	desired	(which	can	be	adjusted	at	runtime).
•	 A	pod	definition	to	use	when	creating	a	replicated	pod.
• A selector for identifying managed pods�
• A selector is a set of labels assigned to the pods that are managed by the 

replication	controller.	These	labels	are	included	in	the	pod	definition	that	the	
replication controller instantiates� The replication controller uses the selector 
to determine how many instances of the pod are already running in order to 
adjust as needed�

The	replication	controller	does	not	perform	auto-scaling	based	on	load	or	traffic,	as	it	
does	not	track	either.	Rather,	this	would	require	its	replica	count	to	be	adjusted	by	an	
external auto-scaler�

A replication controller is a core Kubernetes object called ReplicationController� 
The following is an example ReplicationController	definition:

(1) The number of copies of the pod to run. (2) The label selector of the pod to run. (3) A template for the pod 
the controller creates. (4) Labels on the pod should include those from the label selector. (5) The maximum 
name length after expanding any parameters is 63 characters.

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1  (1)
 selector:    (2)
  name: frontend
 template:    (3)
  metadata:
   labels:  (4)
    name: frontend (5)
  spec:
   containers:
    - image: openshift/hello-openshift
     name: helloworld
     ports:
    - containerPort: 8080
     protocol: TCP
   restartPolicy: Always

14Getting Started with Azure Red Hat OpenShift

https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/


Replica Set

Similar to a replication controller,	a	replica	set	ensures	that	a	specified	number	of	
pod replicas are running at any given time� The difference between a replica set and 
a replication controller is that a replica set supports set-based selector requirements 
whereas a replication controller only supports equality-based selector requirements�

Only use replica sets if you require custom update orchestration or do not require 
updates	at	all,	otherwise,	use	Deployments.	Replica	sets	can	be	used	independently,	
but	are	used	by	deployments	to	orchestrate	pod	creation,	deletion,	and	updates.	
Deployments	manage	their	replica	sets	automatically,	provide	declarative	updates	
to	pods,	and	do	not	have	to	manually	manage	the	replica	sets	that	they	create.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
  tier: frontend
spec:
 replicas: 3
 selector: (1)
  matchLabels: (2)
   tier: frontend
  matchExpressions: (3)
  - {key: tier, operator: In, values: [frontend]}
 template:
  metadata:
   labels:
    tier: frontend
  spec:
   containers:
   - image: openshift/hello-openshift
    name : helloworld
    ports:
    - containerPort: 8080
     protocol: TCP
   restartPolicy: Always

(1) A label query over a set of resources. The result of matchLabels and matchExpressions are logically 
conjoined. (2) Equality-based selector to specify resources with labels that match the selector. (3) Set-based 
selector to filter keys. This selects all resources with key equal to tier and value equal to frontend.

15Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/deployments.html#replication-controllers


Jobs

A	job	is	similar	to	a	replication	controller,	in	that	its	purpose	is	to	create	pods	for	
specific	reasons.	The	difference	is	that	replication	controllers	are	designed	for	pods	
that	will	be	continuously	running,	whereas	jobs	are	for	one-time	pods.	A	job	tracks	
any	successful	completions	and	when	the	specified	amount	of	completions	have	been	
reached,	the	job	itself	is	completed.

The	following	example	computes	π	to	2000	places,	prints	it	out,	then	completes:

apiVersion: extensions/v1
kind: Job
metadata:
 name: pi
spec:
 selector:
  matchLabels:
   app: pi
 template:
  metadata:
   name: pi
   labels:
   app: pi
 spec:
  containers:
  - name: pi
   image: perl
   command: [“perl”, “-Mbignum=bpi”, “-wle”, 
      “print bpi(2000)”]
 restartPolicy: Never

See the Jobs topic for more information on how to use jobs�

16Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/jobs.html#dev-guide-jobs


Deployments and Deployment Configurations

Building	on	replication	controllers,	Azure	Red	Hat	OpenShift	adds	expanded	
support for the software development and deployment lifecycle with the concept 
of	deployments.	In	the	simplest	case,	a	deployment	just	creates	a	new	replication	
controller	and	lets	it	start	up	pods.	However,	Azure	Red	Hat	OpenShift	deployments	
also provide the ability to transition from an existing deployment of an image to a new 
one	and	also	define	hooks	to	be	run	before	or	after	creating	the	replication	controller.

The Azure Red Hat OpenShift DeploymentConfig	object	defines	the	following	details	of	
a deployment:

1� The elements of a ReplicationController	definition.
2� Triggers for creating a new deployment automatically�
3� The strategy for transitioning between deployments�
4� Life cycle hooks�

Each	time	a	deployment	is	triggered,	whether	manually	or	automatically,	a	deployer	
pod	manages	the	deployment	(including	scaling	down	the	old	replication	controller,	
scaling	up	the	new	one,	and	running	hooks).	The	deployment	pod	remains	for	an	
indefinite	amount	of	time	after	it	completes	the	deployment	in	order	to	retain	its	
logs	of	the	deployment.	When	a	deployment	is	superseded	by	another,	the	previous	
replication controller is retained to enable easy rollback if needed�

For	detailed	instructions	on	how	to	create	and	interact	with	deployments, 
refer to Deployments�

17Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/basic_deployment_operations.html#dev-guide-basic-deployment-operations


Here is an example DeploymentConfig	definition	with	some	omissions	and	callouts:

apiVersion: v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
  name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange (1)
 - imageChangeParams:
   automatic: true
   containerNames:
   - helloworld
   from:
    kind: ImageStreamTag
    name: hello-openshift:latest
  type: ImageChange (2)
 strategy:
  type: Rolling (3)

(1) A ConfigChange trigger causes a new deployment to be created any time the replication controller 
template changes. (2) An ImageChange trigger causes a new deployment to be created each time a new 
version of the backing image is available in the named image stream. (3) The default Rolling strategy makes 
a downtime-free transition between deployments.

18Getting Started with Azure Red Hat OpenShift



Routes

An	Azure	Red	Hat	OpenShift	route	exposes	a	service	at	a	host	name,	such	as	www.
example.com,	so	that	external	clients	can	reach	it	by	name.

DNS	resolution	for	a	host	name	is	handled	separately	from	routing.	Your	administrator	
may	have	configured	a	DNS	wildcard	entry	that	will	resolve	to	the	Azure	Red	Hat	
OpenShift node that is running the Azure Red Hat OpenShift router� If you are using a 
different host name you may need to modify its DNS records independently to resolve 
to the node that is running the router�

Each	route	consists	of	a	name	(limited	to	63	characters),	a	service	selector,	and	an	
optional	security	configuration.

Templates

A template describes a set of objects that can be parameterized and processed to 
produce a list of objects for creation by Azure Red Hat OpenShift� A template can 
be	processed	to	create	anything	you	have	permission	to	create	within	a	project,	for	
example	services,	build	configurations,	and	deployment	configurations.	A	template	
may	also	define	a	set	of	labels	to	apply	to	every	object	defined	in	the	template.

You	can	create	a	list	of	objects	from	a	template	using	the	CLI	or,	if	a	template	has	been	
uploaded	to	your	project	or	the	global	template	library,	using	the	web	console.	For	a	
curated	set	of	templates,	see	the	OpenShift	Image	Streams	and	Templates	library.

19Getting Started with Azure Red Hat OpenShift



Running containers in production with Kubernetes requires additional tools and 
resources,	such	as	an	image	registry,	storage	management,	networking	solutions,	and	
logging	and	monitoring	tools,	all	of	which	must	be	versioned	and	tested	together.	
Building container-based applications requires even more integration work with 
middleware,	frameworks,	databases,	and	CI/CD	tools.	Azure	Red	Hat	OpenShift	extends	
Kubernetes	and	combines	all	this	into	a	single	platform,	bringing	ease	of	operations	to	
IT teams while giving application teams what they need to execute�

Azure	Red	Hat	OpenShift	is	jointly	engineered,	operated,	and	supported	by	Red	
Hat and Microsoft to provide an integrated support experience� There are no 
virtual	machines	to	operate,	and	no	patching	is	required.	Master,	infrastructure	and	
application	nodes	are	patched,	updated,	and	monitored	on	your	behalf	by	Red	Hat	
and	Microsoft.	Your	Azure	Red	Hat	OpenShift	clusters	are	deployed	into	your	Azure	
subscription and are included on your Azure bill�

You	can	choose	your	own	registry,	networking,	storage,	and	CI/CD	solutions,	or	use	the	
built-in	solutions	for	automated	source	code	management,	container	and	application	
builds,	deployments,	scaling,	health	management,	and	more.	Azure	Red	Hat	OpenShift	
provides an integrated sign-on experience through Azure Active Directory�

In	just	minutes,	deploy	Red	Hat	OpenShift	clusters	on	Azure	for:
•	 Enterprise	grade	operations,	security	and	compliance	with	an	integrated	

support experience�

• Empowering developers to innovate with productivity through built-in CI/CD 
pipelines,	then	easily	connect	your	applications	to	hundreds	of	Azure	services	
such	as	MySQL,	PostgreSQL,	Redis,	Azure	Cosmos	DB,	and	more.

• Scalability on your terms where you can start a highly available cluster with 
four	application	nodes	in	a	few	minutes,	then	scale	as	your	application	demand	
changes;	plus,	get	your	choice	of	standard,	high-memory,	or	high-CPU	
application nodes�

With Azure Red 
Hat OpenShift, you 
can deploy fully 
managed Red Hat 
OpenShift clusters 
without worrying 
about building 
and managing the 
infrastructure to 
run it.

20Getting Started with Azure Red Hat OpenShift

AZURE RED HAT 
OPENSHIFT



Azure	Red	Hat	OpenShift	has	a	microservices-based	architecture	of	smaller,	decoupled	
units	that	work	together.	It	runs	on	top	of	a	Kubernetes	cluster,	with	data	about	the	
objects	stored	in	etcd,	a	reliable	clustered	key-value	store.	Those	services	are	broken	
down by function:

•	 REST	APIs,	which	expose	each	of	the	core objects�

•	 Controllers,	which	read	those	APIs,	apply	changes	to	other	objects, 
and report status or write back to the object�

Users make calls to the REST API to change the state of the system� Controllers use 
the	REST	API	to	read	the	user’s	desired	state,	and	then	try	to	bring	the	other	parts	of	
the	system	into	sync.	For	example,	when	a	user	requests	a	build	they	create	a	“build”	
object.	The	build	controller	sees	that	a	new	build	has	been	created,	and	runs	a	process	
on	the	cluster	to	perform	that	build.	When	the	build	completes,	the	controller	updates	
the build object via the REST API and the user sees that their build is complete�

Architecture

21Getting Started with Azure Red Hat OpenShift



To	make	this	possible,	controllers	leverage	a	reliable	stream	of	changes	to	the	system	
to sync their view of the system with what users are doing� This event stream pushes 
changes from etcd to the REST API and then to the controllers as soon as changes 
occur,	so	changes	can	ripple	out	through	the	system	very	quickly	and	efficiently.	
However,	since	failures	can	occur	at	any	time,	the	controllers	must	also	be	able	to	get	
the	latest	state	of	the	system	at	startup,	and	confirm	that	everything	is	in	the	right	
state.	This	resynchronization	is	important,	because	it	means	that	even	if	something	
goes	wrong,	the	operator	can	restart	the	affected	components	and	the	system	double	
checks everything before continuing� The system should eventually converge to the 
user’s	intent,	since	the	controllers	can	always	bring	the	system	into	sync.

Within	Azure	Red	Hat	OpenShift,	Kubernetes	manages	containerized	applications	
across	a	set	of	containers	or	hosts	and	provides	mechanisms	for	deployment,	
maintenance,	and	application-scaling.	The	container	runtime	packages,	instantiates,	
and runs containerized applications� A Kubernetes cluster consists of one or more 
masters and a set of nodes�

Master, infrastructure and application nodes

The	master	nodes	are	hosts	that	contain	the	control	plane	components,	including	
the	API	server,	controller	manager	server,	and	etcd.	The	masters	manage	nodes	in	its	
Kubernetes cluster and schedules pods to run on those nodes�

A node provides the runtime environments for containers� Each node in a Kubernetes 
cluster has the required services to be managed by the master� Nodes also have the 
required	services	to	run	pods,	including	the	container	runtime,	a	kubelet,	and	a	service	
proxy�

Each	node	also	runs	a	simple	network	proxy	that	reflects	the	services	defined	in	the	API	
on that node� This allows the node to do simple TCP and UDP stream forwarding across 
a set of back ends�

Azure Red Hat OpenShift creates nodes that run on Azure Virtual Machines that are 
connected to Azure Premium SSD disks for storage�

22Getting Started with Azure Red Hat OpenShift



Container registry

Azure Red Hat OpenShift provides an integrated container image registry called 
OpenShift	Container	Registry	(OCR)	that	adds	the	ability	to	automatically	provision	
new image repositories on demand� This provides users with a built-in location for 
their application builds to push the resulting images�

Whenever	a	new	image	is	pushed	to	OCR,	the	registry	notifies	Azure	Red	Hat	
OpenShift	about	the	new	image,	passing	along	all	the	information	about	it,	such	
as	the	namespace,	name,	and	image	metadata.	Different	pieces	of	Azure	Red	Hat	
OpenShift	react	to	new	images,	creating	new	builds	and	deployments.

Azure Red Hat OpenShift can also utilize any server implementing the container 
image	registry	API	as	a	source	of	images,	including	the	Docker	Hub	and	Azure	
Container Registry�

23Getting Started with Azure Red Hat OpenShift



As	a	managed	service,	Microsoft	and	Red	Hat:
• Manage and monitor all the underlying virtual machines and infrastructure
• Manage environment patches
• Secure the cluster

So	that	you	can	focus	on	what	matters	most,	developing	great	applications.

The Azure Red Hat OpenShift and Kubernetes APIs authenticate users who present 
credentials	via	Azure	Active	Directory	(Azure	AD)	integration,	and	then	authorize	them	
based on their role�

The	authentication	layer	identifies	the	user	associated	with	requests	to	the	Azure	Red	
Hat OpenShift API� The authorization layer then uses information about the requesting 
user to determine if the request should be allowed�

Authorization	is	handled	in	the	Azure	Red	Hat	OpenShift	policy	engine,	which	defines	
actions like “create pod” or “list services” and groups them into roles in a policy 
document.	Roles	are	bound	to	users	or	groups	by	the	user	or	group	identifier.	When	a	
user	or	service	account	attempts	an	action,	the	policy	engine	checks	for	one	or	more	
of	the	roles	assigned	to	the	user	(e.g.,	customer	administrator	or	administrator	of	the	
current	project)	before	allowing	it	to	continue.

The	relationships	between	cluster	roles,	local	roles,	cluster	role	bindings,	local	role	
bindings,	users,	groups	and	service	accounts	are	illustrated	below.

Management

Security

PROJECT

CLUSTER ROLE 
BINDING
User 3 can cluster 
admin in all projects

CLUSTER ROLE
(Cluster Admin)

Rule Rule

User 3

LOCAL ROLE 
BINDING
Group 1 can view 
in project

CLUSTER ROLE
(View)

Rule Rule

Group 1

LOCAL ROLE 
BINDING
User 1 can view 
in project

CLUSTER ROLE
(Edit)

Rule Rule

User 1

LOCAL ROLE 
BINDING
User 2 can admin 
in project

CLUSTER ROLE
(Admin)

Rule Rule

User 2Service	Account	(Bot)

LOCAL ROLE 
BINDING
Bot can interact with 
specific resources

LOCAL ROLE
(Bot)

Rule Rule

24Getting Started with Azure Red Hat OpenShift



Support Azure Red Hat OpenShift is unique in the way support is managed� Microsoft and Red 
Hat	Site	Reliability	Engineers	(SREs)	work	together	ensuring	the	smooth	operation	of	
the service�

Customers	request	support	in	the	Azure	portal,	and	the	requests	are	triaged	and	
addressed by Microsoft and Red Hat engineers to quickly address customer support 
requests,	whether	those	are	at	the	Azure	platform	level	or	at	the	OpenShift	level.

25Getting Started with Azure Red Hat OpenShift



Install the Azure CLI

You’ll	need	to	run	Azure	CLI	commands	to	provision	the	cluster.	The	Azure	CLI	is	a	
command-line tool providing a great experience for managing Azure resources� The 
CLI	is	designed	to	make	scripting	easy,	query	data,	support 
long-running	operations,	and	more.

Azure Red Hat OpenShift requires version 2�0�65 or higher of the Azure CLI� 
If	you’ve	already	installed the Azure CLI,	you	can	check	which	version	you	have 
by running:

az --version

The	first	line	of	output	will	have	the	CLI	version,	for	example	azure-cli	(2.0.65).

Alternatively,	you	can	use	the	Azure Cloud Shell.	When	using	the	Azure	Cloud	Shell,	be	
sure to select the Bash environment�

Sign in to Azure

If	you’re	running	the	Azure	CLI	locally,	open	a	Bash	command	shell	and	run	az	login	to	
sign in to Azure�

az login

If	you	have	access	to	multiple	subscriptions,	run	az	account	set	-s	{subscription	ID}	
replacing	{subscription	ID}	with	the	subscription	you	want	to	use.

Install the Azure 
CLI and sign in to 
Azure

26Getting Started with Azure Red Hat OpenShift

SETTING UP THE CLUSTER, 
NETWORKING AND SECURITY

https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/azure/cloud-shell/overview


Create an Azure 
Active Directory 
tenant for your 
cluster

Microsoft Azure Red Hat OpenShift requires an Azure	Active	Directory	(Azure	AD) 
tenant in which to create your cluster� A tenant is a dedicated instance of Azure AD 
that an organization or app developer receives when they create a relationship with 
Microsoft	by	signing	up	for	Azure,	Microsoft	Intune,	or	Microsoft	365.	Each	Azure	AD	
tenant is distinct and separate from other Azure AD tenants and has its own work and 
school identities and app registrations�

If	you	don’t	already	have	an	Azure	AD	tenant,	follow	these	instructions	to	create	one,	
otherwise,	you	can	skip	to	creating the administrator user and administrator security 
group�

1� Sign in to the Azure portal using the account you wish to associate  with your 
Azure Red Hat OpenShift cluster�

2� Open the Azure Active Directory blade	to	create	a	new	tenant	(also	known	as	a	
new Azure Active Directory).

3� Provide an Organization name�
4� Provide an Initial domain name� This will have onmicrosoft�com appended to it� 

You	can	reuse	the	value	for	Organization name here�
5� Choose a country or region where the tenant will be created�
6� Click Create�
7.	 After	your	Azure	AD	tenant	is	created,	select	the	Click	here	to	manage	your	

new	directory	link.	Your	new	tenant	name	should	be	displayed	in 
the upper-right of the Azure portal:

8� Make note of the tenant ID so you can later specify where to create your Azure 
Red	Hat	OpenShift	cluster.	In	the	portal,	you	should	now	see	the	Azure	Active	
Directory overview blade for your new tenant� Select Properties and copy the 
value for your Directory ID� We will refer to this value as {tenant id} in the 
Create an Azure Red Hat OpenShift cluster section�

27Getting Started with Azure Red Hat OpenShift

https://docs.microsoft.com/azure/active-directory/develop/quickstart-create-new-tenant
https://portal.azure.com/
https://portal.azure.com/#create/Microsoft.AzureActiveDirectory


Create the 
administrator user 
and administrator 
security group

Microsoft Azure Red Hat OpenShift needs permissions to perform tasks on behalf 
of	your	cluster.	If	your	organization	doesn’t	already	have	an	Azure	Active	Directory	
(Azure	AD)	user,	Azure	AD	security	group,	or	an	Azure	AD	app	registration	to	use	as	
the	service	principal,	follow	these	instructions	to	create	them.

Create a new Azure Active Directory user

In the Azure portal,	ensure	that	your	tenant	appears	under	your	user	name	in	the	top	
right of the portal:

If	the	wrong	tenant	is	displayed,	click	your	user	name	in	the	top	right,	then	click	
Switch	Directory,	and	select	the	correct	tenant	from	the	All	Directories	list.	Create	a	
new Azure Active Directory global administrator user to sign in to your Azure Red 
Hat OpenShift cluster�

1� Go to the Users-All users blade�
2.	 Click	+New	user	to	open	the	User	pane.
3� Enter a Name for this user�
4.	 Create	a	User	name	based	on	the	name	of	the	tenant	you	created, 

with �onmicrosoft�com appended at the end� 
For	example,	yourUserName@yourTenantName.onmicrosoft.com. 
Write	down	this	user	name.	You’ll	need	it	to	sign	into	your	cluster.

5.	 Click	Directory	role	to	open	the	directory	role	pane,	and	select	Global	
administrator and then click Ok at the bottom of the pane�

6.	 In	the	User	pane,	click	Show	Password	and	record	the	temporary	password.	
After	you	sign	in	the	first	time,	you’ll	be	prompted	to	reset	it.

7.	 At	the	bottom	of	the	pane,	click	Create	to	create	the	user.

28Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_AAD_IAM/UsersManagementMenuBlade/AllUsers


Create a new Azure Active Directory security group

To	grant	cluster	admin	access,	memberships	in	an	Azure	AD	security	group	are	synced	
into	the	OpenShift	group	“osa-customer-admins”.	If	not	specified,	no	cluster	admin	
access will be granted�

1� Open the Azure Active Directory groups blade�
2.	 Click	+New	Group.
3� Provide a group name and description�
4� Set Group type to Security�
5� Set Membership type to Assigned� Add the Azure AD user that you created in 

the earlier step to this security group�
6� Click Members to open the Select members pane�
7.	 In	the	members	list,	select	the	Azure	AD	user	that	you	created	above.
8.	 At	the	bottom	of	the	portal,	click	on	Select	and	then	Create	to	create	the	

security group� Write down the Group ID value�
9.	 When	the	group	is	created,	you	will	see	it	in	the	list	of	all	groups.	Click	on	the	

new group�
10.	 On	the	page	that	appears,	copy	down	the	Object	ID.	We	will	refer	to	this	value	

as {group id} in the Create an Azure Red Hat OpenShift cluster section�

29Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/#blade/Microsoft_AAD_IAM/GroupsManagementMenuBlade/AllGroups


If	your	organization	doesn’t	already	have	an	Azure	Active	Directory 
(Azure	AD)	app	registration	to	use	as	a	service	principal,	follow	these	instructions	to	
create one�

1� Open the App registrations blade	and	click	+New	registration.
2.	 In	the	Register	an	application	pane,	enter	a	name	for	your	application	

registration�
3� Ensure that under Supported account types that Accounts in this 

organizational directory only is selected� This is the most secure choice�
4� We will add a redirect URI later once we know the URI of the cluster� Click the 

Register button to create the Azure AD application registration�
5.	 On	the	page	that	appears,	copy	down	the	Application	(client)	ID.	We	will	refer	

to this value as {app id} in the Create an Azure Red Hat OpenShift cluster 
section�

Create an Azure 
Active Directory app 
registration for
authentication

30Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/RegisteredAppsPreview


Create a client secret

Generate a client secret for authenticating your app to Azure Active Directory�
1.	 In	the	Manage	section	of	the	app	registrations	page,	click	Certificates	

& secrets�
2.	 On	the	Certificates	&	secrets	pane,	click	+New	client	secret.	The	Add	a	client	

secret pane appears�
3� Provide a Description�
4.	 Set	Expires	to	the	duration	you	prefer,	for	example	In	2	Years.
5� Click Add and the key value will appear in the Client secrets section of 

the page�
6� Copy down the key value� We will refer to this value as {secret} in the Create an 

Azure Red Hat OpenShift cluster section�

31Getting Started with Azure Red Hat OpenShift



Add API permissions

1� In the Manage section click API permissions�
2� Click Add permission and select Azure Active Directory Graph then 

Delegated permissions�
3� Expand User on the list below and make sure User�Read is enabled�
4� Scroll up and select Application permissions�
5� Expand Directory on the list below and enable Directory�ReadAll
6� Click Add permissions to accept the changes�
7� The API permissions panel should now show both User.Read and 

Directory.ReadAll� Please note the warning in Admin consent required column 
next to Directory.ReadAll�

8� If you are the Azure Subscription Administrator,	click	Grant	admin	consent	for	
Subscription Name below� If you are not the Azure Subscription Administrator,	
request the consent from your administrator�

32Getting Started with Azure Red Hat OpenShift



Applications	registered	in	an	Azure	Active	Directory	(Azure	AD)	tenant	are,	by	default,	
available to all users of the tenant who authenticate successfully� Azure AD allows 
tenant	administrators	and	developers	to	restrict	an	app	to	a	specific	set	of	users	or	
security groups in the tenant�

Update the app to enable user assignment

1� Go to the Azure portal and sign-in as a Global Administrator�
2.	 On	the	top	bar,	select	the	signed-in	account.
3.	 Under	Directory,	select	the	Azure	AD	tenant	where	the	app	will	be	registered.
4.	 In	the	navigation	on	the	left,	select	Azure	Active	Directory.	If	Azure	Active	

Directory	is	not	available	in	the	navigation	pane,	then	follow	these	steps:
 a� Select All services at the top of the main left-hand navigation menu�
	 b.	 Type	in	Azure	Active	Directory	in	the	filter	search	box	and	then	select	the	

 Azure Active Directory item from the result�
5.	 In	the	Azure	Active	Directory	pane,	select	Enterprise	Applications	from	the	

Azure Active Directory left-hand navigation menu�
6� Select All Applications to view a list of all your applications� If you do not 

see	the	application	you	want,	use	the	various	filters	at	the	top	of	the	All	
applications list to restrict the list or scroll down the list to locate your 
application�

7� Select the application you want to assign a user or security group to from 
the list�

8.	 In	the	application’s	Overview	page,	select	Properties	from	the	application’s	
left-hand navigation menu�

9.	 Locate	the	setting	User	assignment	required?	and	set	it	to	Yes.	When	this	
option	is	set	to	Yes,	then	users	must	first	be	assigned	to	this	application	before	
being able to access it�

10.	 Select	Save	to	save	this	configuration	change.

Restrict the cluster 
access to assigned 
users and assign 
user access

33Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/


Assign users and groups to the app

Once	you’ve	configured	your	app	to	enable	user	assignment,	you	can	go	ahead	and	
assign users and groups to the app�

1.	 Select	the	Users	and	groups	pane	in	the	application’s	left-hand	
navigation menu�

2.	 At	the	top	of	the	Users	and	groups	list,	select	the	Add	user	button	to	open	the	
Add Assignment pane�

3� Select the Users selector from the Add Assignment pane� A list of users and 
security groups will be shown along with a textbox to search and locate a 
certain user or group� This screen allows you to select multiple users and 
groups in one go�

4.	 Once	you	are	done	selecting	the	users	and	groups,	press	the	Select	button	on	
bottom to move to the next part�

5.	 Press	the	Assign	button	on	the	bottom	to	finish	the	assignments	of	users	and	
groups to the app�

6.	 Confirm	that	the	users	and	groups	you	added	are	showing	up	in	the	updated	
Users and groups list�

34Getting Started with Azure Red Hat OpenShift



Register providers and features

The	Microsoft.ContainerService	AROGA	feature,	Microsoft.Solutions	,	Microsoft.
Compute	,	Microsoft.Storage	,	Microsoft.KeyVault,	and	Microsoft.Network	providers	
must	be	registered	to	your	subscription	manually	before	deploying	your	first	Azure	Red	
Hat OpenShift cluster�

To	register	these	providers	and	features	manually,	use	the	following	instructions	from	
a	Bash	shell	if	you’ve	installed	the	CLI,	or	from	the	Azure	Cloud	Shell	(Bash)	session	in	
your Azure portal:

1.	 If	you	have	multiple	Azure	subscriptions,	specify	the	relevant	subscription	ID:
 az account set --subscription <SUBSCRIPTION ID>

2� Register the Microsoft�ContainerService AROGA feature:
 az feature register --namespace Microsoft.ContainerService -n

 AROGA

3� Register the Microsoft�Storage provider:
 az provider register -n Microsoft.Storage --wait

4� Register the Microsoft�Compute provider:
 az provider register -n Microsoft.Compute --wait

5� Register the Microsoft�Solutions provider:
 az provider register -n Microsoft.Solutions --wait

6� Register the Microsoft�Network provider:
 az provider register -n Microsoft.Network --wait

7� Register the Microsoft�KeyVault provider:
 az provider register -n Microsoft.KeyVault --wait

8� Refresh the registration of the Microsoft�ContainerService resource provider:
 az provider register -n Microsoft.ContainerService --wait

Create the cluster 
and connect it to 
your existing Virtual
Network

35Getting Started with Azure Red Hat OpenShift



Retrieve the peering Virtual Network details

If	you	don’t	need	to	connect	the	virtual	network	(VNET)	of	the	cluster	you	create	to	an	
existing	VNET	via	peering,	skip	this	step.

If	peering	to	a	network	outside	the	default	subscription	then	in	that	subscription,	you	
will	also	need	to	register	the	provider	Microsoft.ContainerService.	To	do	this,	run	the	
below	command	in	that	subscription.	Else,	if	the	VNET	you	are	peering	is	located	in	the	
same	subscription,	you	can	skip	the	registering	step.

az provider register -n Microsoft.ContainerService --wait

First,	get	the	identifier	of	the	existing	VNET.	The	identifier	will	be	of	the	form:
/subscriptions/{subscription	id}/resourceGroups/{resource	group	of 
VNET}/providers/Microsoft.Network/virtualNetworks/{VNET	name}.

If	you	don’t	know	the	network	name	or	the	resource	group	the	existing	VNET	belongs	
to,	go	to	the	Virtual networks blade and click on your virtual network� The Virtual 
network page appears and will list the name of the network and the resource group it 
belongs to�

Retrieve the Virtual Network ID variable using the following CLI command in a Bash 
shell.	You’ll	refer	to	its	value	as	{peering vnet id}�

az network vnet show -n {VNET name} -g {VNET resource group} --query

id -o tsv

Create the resource group

Create the resource group for the cluster� Specify the resource group name and 
location�

az group create --name {resource group name} --location {location}

36Getting Started with Azure Red Hat OpenShift

https://ms.portal.azure.com/#blade/HubsExtension/BrowseResourceBlade/resourceType/Microsoft.Network%2FvirtualNetworks


Create the cluster

You’re	now	ready	to	create	a	cluster.	The	following	will	create	the	cluster	in	the	
specified	Azure	AD	tenant,	specify	the	Azure	AD	app	object	and	secret	to	use	as	a	
security	principal,	and	the	security	group	that	contains	the	members	that	have	admin	
access to the cluster�

Make sure to replace the {app id}, {secret}, {tenant id}, {group id}	and	{peering	vnet	
id}	with	the	values	you	made	note	of	before.

az openshift create --resource-group {resource group name} --name

{cluster name} --location {location} --aad-client-app-id {app id}

--aad-client-app-secret {secret} --aad-tenant-id {tenant id}

--customer-admin-group-id {group id} --vnet-peer {peering vnet id}

After	a	few	minutes,	az	openshift	create	will	complete.

Update your app registration redirect URI

To	be	able	to	login	to	the	cluster,	you’ll	need	to	update	the	app	registration	you	created	
in the Create an Azure Active Directory app registration for authentication step with 
the sign in URL of your cluster� This will enable Azure Active Directory authentication to 
properly	redirect	back	to	your	cluster’s	web	console	after	successful	authentication.

Get the sign in URL for your cluster

az openshift show -n {cluster name} -g {resource group name} --query

“publicHostname” -o tsv

You	should	get	back	something	like	openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io.	
The sign in URL for your cluster will be https:// followed by the publicHostName value�

For example: https://openshift�xxxxxxxxxxxxxxxxxxxx�eastus�azmosa�io� 
You	will	use	this	URI	in	the	next	step	as	part	of	the	app	registration	redirect	URI.
Now	that	you	have	the	sign	in	URL	for	the	cluster,	set	the	app	registration 
redirect UI:

1� Open the App registrations blade�
2� Click on your app registration object�
3� Click on Add a redirect URI�
4.	 Ensure	that	TYPE	is	Web	and	set	the	REDIRECT	URI	using	the	following	pattern:	

https://<public host name>/oauth2callback/Azure%20AD� 
For example:

 https://openshift�xxxxxxxxxxxxxxxxxxxx�eastus�azmosa�io/oauth2callback/  
Azure%20AD

5� Click Save�

37Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/RegisteredAppsPreview


From	a	Bash	shell	if	you’ve	installed	the	CLI,	or	from	the	Azure	Cloud	Shell	(Bash)	
session	in	your	Azure	portal,	retrieve	your	cluster	sign	in	URL	by	running:

az openshift show -n {cluster name} -g {resource group name} --query

“publicHostname” -o tsv

You	should	get	back	something	like	openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io.	
The sign in URL for your cluster will be https:// followed by the publicHostName value� 
For example: https://openshift�xxxxxxxxxxxxxxxxxxxx�eastus�azmosa�io�

Open	this	URL	in	your	browser,	you’ll	be	asked	to	login	with	Azure	Active	Directory.	Use	
the username and password for the user you created�

After	logging	in,	you	should	be	able	to	see	the	Azure	Red	Hat	OpenShift	Web	Console.

Via the Web UI

38Getting Started with Azure Red Hat OpenShift

ACCESSING THE 
CLUSTER



Downloading the OpenShift CLI

You’ll	need	to	download	the	latest	OpenShift	CLI	(oc) client tools release for OpenShift 
3�11�

From	a	Bash	shell	if	you’ve	installed	the	CLI,	or	from	the	Azure	Cloud	Shell	(Bash)	
session	in	your	Azure	portal,	download	the	latest	release,	extract	it	into	the	openshift	
directory,	then	make	it	available	on	your	PATH.

wget

https://github.com/openshift/origin/releases/download/v3.11.0/openshif

t-origin-client-tools-v3.11.0-0cbc58b-linux-64bit.tar.gz

mkdir openshift

tar -zxvf

openshift-origin-client-tools-v3.11.0-0cbc58b-linux-64bit.tar.gz -C

openshift --strip-components=1

echo ‘export PATH=$PATH:~/openshift’ >> ~/.bashrc && source ~/.bashrc

Running the OpenShift CLI and logging into your cluster

To	authenticate	against	your	cluster,	you’ll	need	to	retrieve	the	login	command	
and	token	from	the	Web	Console.	Once	you’re	logged	into	the	Web	Console,	click	
on	the	username	on	the	top	right,	then	click	Copy	login	command,	which	will	look	
something like oc login https://openshift�xxxxxxxxxxxxxxxxxxxx�eastus�azmosa�io 
--token=[authentication token]

Via OpenShift CLI
(oc)

From	a	Bash	shell	if	you’ve	installed	the	CLI,	or	from	the	Azure	Cloud	Shell	(Bash)	
session	in	your	Azure	portal,	paste	that	login	command	and	you	should	be	able	to	
connect to your cluster�

39Getting Started with Azure Red Hat OpenShift

https://github.com/openshift/origin/releases/tag/v3.11.0


In	this	chapter,	you	will	be	deploying	a	ratings	application	on	Azure	Red	Hat	OpenShift.	
The	application	consists	of	a	frontend	container	and	an	API	container,	both	written	in	
NodeJS.	The	API	reads/writes	data	to	a	MongoDB.

You	can	find	the	application	source	code	in	the	links	below.

Component Link
A public facing API rating-api GitHub repo
A public facing web frontend rating-web GitHub repo

GET /healthz

Application 
Overview

NODE JS
ratings-web

NODE JS
ratings-api

MONGODB
mongoDB

40Getting Started with Azure Red Hat OpenShift

CREATING A MULTI-CONTAINER 
RATINGS APPLICATION

https://github.com/microsoft/rating-api
https://github.com/microsoft/rating-web


Connect and authenticate against the cluster

Follow the steps in accessing the cluster section to download the OpenShift CLI and 
authenticate against the cluster�

Create the project

A project allows a community of users to organize and manage their content in 
isolation from other communities�

oc new-project workshop

Azure Red Hat OpenShift provides a container image and template to make creating a 
new	MongoDB	database	service	easy.	The	template	provides	parameter	fields	to	define	
all	the	mandatory	environment	variables	(user,	password,	database	name,	etc)	with	
predefined	defaults	including	auto-generation	of	password	values.	It	will	also	define	
both	a	deployment	configuration	and	a	service.

Create MongoDB from template

There are two templates available:
• mongodb-ephemeral is for development/testing purposes only because 

it uses ephemeral storage for the database content� This means that if the 
database	pod	is	restarted	for	any	reason,	such	as	the	pod	being	moved	to	
another	node	or	the	deployment	configuration	being	updated	and	triggering	
a	redeploy,	all	data	will	be	lost.

• mongodb-persistent uses a persistent volume store for the database data 
which means the data will survive a pod restart� Using persistent volumes 
requires	a	persistent	volume	pool	be	defined	in	the	Azure	Red	Hat	OpenShift	
deployment�

You	can	retrieve	a	list	of	templates	using	the	command	below.	The	templates	are	
preinstalled in the openshift namespace�

oc get templates -n openshift

Connect to the 
cluster and create 
a project

Deploy MongoDB

41Getting Started with Azure Red Hat OpenShift



Create	a	MongoDB	deployment	using	the	mongodb-persistent	template.	You’re	
passing	in	the	values	to	be	replaced	(username,	password	and	database)	which	
generates	a	YAML/JSON	file.	You	then	pipe	it	to	the	oc	create	command.

oc process openshift//mongodb-persistent \

 -p MONGODB_USER=ratingsuser \

 -p MONGODB_PASSWORD=ratingspassword \

 -p MONGODB_DATABASE=ratingsdb \

 -p MONGODB_ADMIN_PASSWORD=ratingspassword | oc create -f -

If	you	now	head	back	to	the	web	console,	you	should	see	a	new	deployment	for	
MongoDB�

Verify the MongoDB pod was created successfully

Run the oc status command to view the status of the new application and verify if the 
deployment of the mongoDB template was successful�

oc status

42Getting Started with Azure Red Hat OpenShift



Retrieve the MongoDB service hostname

The service will be accessible at the following hostname: mongodb�workshop�svc�
cluster�local which is formed of [service name]�[project name]�svc�cluster�local� 
This resolves only within the cluster�

You	can	also	retrieve	this	from	the	web	console.	You’ll	need	this	hostname	to	configure	
the rating-api�

The	rating-api	is	a	NodeJS	application	that	connects	to	m\MongoDB	to	retrieve	and	
rate	items.	Below	are	some	of	the	details	that	you’ll	need	to	deploy	this.

• rating-api on GitHub: https://github�com/microsoft/rating-api
• The container exposes port 8080
•	 MongoDB	connection	is	configured	using	an	environment	variable	called	

MONGODB_URI

Use the OpenShift CLI to deploy the rating-api

Note	that	to	be	able	to	setup	CI/CD	webhooks,	you’ll	need	to	fork	the	application	into	
your	personal	GitHub	repository	first.	After	that,	you’re	going	to	be	using	source-to-
image	(S2I) as a build strategy�

Create a new application in the project by pointing to your GitHub fork of the rating-
api app�

oc new-app https://github.com/<your GitHub username>/rating-api

--strategy=source

Deploy the 
ratings-api 
service

43Getting Started with Azure Red Hat OpenShift

https://github.com/microsoft/rating-api


OpenShift	should	now	pull	the	source	code,	detect	that	this	is	a	NodeJS	application	
then use S2I to build a container image and push it to the built-in container registry�
OpenShift is also going to deploy the application using a deployment	config and 
create a service�

Configure the required environment variables

The	rating-api	application	expects	to	find	the	MongoDB	connection	information	
in an environment variable called MONGODB_URI� This URI should look like
mongodb://[username]:[password]@[endpoint]:27017/ratingsdb.	You’ll	need	to	replace	
the [username] and [password] with the ones you used when creating the database� 
You’ll	also	need	to	replace	the	[endpoint] with the hostname acquired in the previous 
section�

You	can	accomplish	this	task	using	the	OpenShift	CLI	or	using	the	Web	Console,	for	
this	one	you’ll	edit	the	deployment	configuration	for	the	rating-api	application	on	
the Web Console to add the environment variable� Make sure to hit Save when done�

44Getting Started with Azure Red Hat OpenShift



The	rating-web	is	a	NodeJS	application	that	connects	to	the	rating-api.	Below	are	some	
of	the	details	that	you’ll	need	to	deploy	this.

• rating-web on GitHub
• The container exposes port 8080
•	 The	web	app	connects	to	the	API	over	the	internal	cluster	DNS,	using	a	proxy	

through an environment variable named API

Notice	the	fully	qualified	domain	name	(FQDN)	is	comprised	of	the	application	name	
and	project	name	by	default.	The	remainder	of	the	FQDN,	the	subdomain,	is	your	
Azure	Red	Hat	OpenShift	cluster	specific	apps	subdomain.

Expose the service�

 oc expose svc/rating-web

Find out the created route hostname

 oc get route rating-web

You	should	get	a	response	similar	to	the	below.

Deploy the 
ratings-web 
frontend using 
S2I strategy

Create a route for 
the ratings-web 
frontend

45Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#ratingsweb
http://aroworkshop.io/#expose-the-rating-web-service-using-a-route


You	can	scale	the	number	of	application	nodes	in	the	cluster	using	the	Azure	CLI.
Run the below on the Azure Cloud Shell to scale your cluster to 5 application nodes� 
Replace <cluster name> and <resource group name> with your applicable values� 
After	a	few	minutes,	az openshift scale	will	complete	successfully	and	return	a	JSON	
document containing the scaled cluster details�

az openshift scale --name <cluster name> --resource-group <resource

 group name> --compute-count 5

After	the	cluster	has	scaled	successfully.	You	can	run	the	following	command	to	verify	
the number of application nodes�

az openshift show --name <cluster name> --resource-group <resource

 group name> --query “agentPoolProfiles”[0]

Following	is	a	sample	output.	You	can	notice	that	the	value	of	count	for	
agentPoolProfiles	has	been	scaled	to	5.

{

 “count”: 5,

 “name”: “compute”,

 “osType”: “Linux”,

 “role”: “compute”,

 “subnetCidr”: “10.0.0.0/24”,

 “vmSize”: “Standard_D4s_v3”

}

Scaling the 
application and 
the cluster

46Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#scaling


Now	that	you	have	the	application	working,	it	is	time	to	apply	some	security	hardening.	
You’ll	use	network	policies	to	restrict	communication	to	the	rating-api.

Switch to the Cluster Console

Switch to the Cluster Console page� Switch to project workshop� Click Create 
Network Policy�

Create Network Policy

You	will	create	a	policy	that	applies	to	any	pod	matching	the	app=rating-api	label. 
The policy will allow ingress only from pods matching the app=rating-web label�

Use	the	YAML	below	in	the	editor,	and	make	sure	you’re	targeting	the	workshop 
project�

Controlling 
networking using 
networking 
policies

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: api-allow-from-web
 namespace: workshop
spec:
 podSelector:
  matchLabels:
   app: rating-api
 ingress:
  - from:
   - podSelector:
    matchLabels:
     app: rating-web

47Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#networkpolicy


Click Create�

48Getting Started with Azure Red Hat OpenShift



OSToy is a simple Node�js application that we will deploy to Azure Red Hat OpenShift� 
It is used to help us explore the functionality of Kubernetes� This application has a user 
interface which you can:

•	 write	messages	to	the	log	(stdout	/	stderr)
• intentionally crash the application to view self-healing
• toggle a liveness probe and monitor OpenShift behavior
•	 read	config	maps,	secrets,	and	env	variables
•	 if	connected	to	shared	storage,	read	and	write	files
•	 check	network	connectivity,	intra-cluster	DNS,	and	intra-communication	

with an included microservice

Application 
Overview

ostoy-microservice-svcostoy-frontend-svc

Persistent 
Volume 
Claim

PERSISTENT 
VOLUME

OpenShift Project
configmap

OSTOY-MICROSERVICEOSTOY-FRONTENDROUTE

secret

49Getting Started with Azure Red Hat OpenShift

USING AN APP TO BECOME 
FAMILIAR WITH OPENSHIFT 
AND KUBERNETES

http://aroworkshop.io/#lab2-appoverview


Retrieve login command

If	not	logged	in	via	the	CLI,	click	on	the	dropdown	arrow	next	to	your	name	in	the	top-
right and select Copy Login Command�

Then	go	to	your	terminal	and	paste	that	command	and	press	enter.	You	will	see	a	
similar	confirmation	message	if	you	successfully	logged	in.

$ oc login https://openshift.abcd1234.eastus.azmosa.io

 --token=hUXXXXXX

Logged into “https://openshift.abcd1234.eastus.azmosa.io:443” as

 “okashi” using the token provided.

You	have	access	to	the	following	projects	and	can	switch	between	them	with	‘oc	
project	<projectname>’:

 aro-demo

* aro-shifty

 ...

Create new project

Create a new project called “OSToy” in your cluster�

Use the following command

 oc new-project ostoy

You	should	receive	the	following	response:

 $ oc new-project ostoy

 Now using project “ostoy” on server

 “https://openshift.abcd1234.eastus.azmosa.io:443”.

Deploy the OSToy 
application

50Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-app-deployment


You	can	add	applications	to	this	project	with	the	‘new-app’	command.	For	example,	try:

 oc new-app

 centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby�

You	can	also	create	this	new	project	using	the	web	UI	by	selecting	“Application	
Console”	at	the	top	and	then	clicking	the	“+Create	Project”	button	on	the	right.

Download YAML configuration

Download the Kubernetes deployment object yamls from the following locations to 
your	Azure	Cloud	Shell,	in	a	directory	of	your	choosing	( just	remember	where	you	
placed	them	for	the	next	step).

Feel free to open them up and take a look at what we will be deploying� For simplicity 
of this lab we have placed all the Kubernetes objects we are deploying in one “all-
in-one”	yaml	file.	Though	in	reality	there	are	benefits	to	separating	these	out	into	
individual	yaml	files.

ostoy-fe-deployment�yaml
ostoy-microservice-deployment�yaml

Deploy backend microservice

The	microservice	application	serves	internal	web	requests	and	returns	a	JSON	object	
containing the current hostname and a randomly generated color string�

In	your	command	line,	deploy	the	microservice	using	the	following	command:

 oc apply -f ostoy-microservice-deployment.yaml

You	should	see	the	following	response:

$ oc apply -f ostoy-microservice-deployment.yaml

deployment.apps/ostoy-microservice created

service/ostoy-microservice-svc created

51Getting Started with Azure Red Hat OpenShift



Deploy the front-end service

The frontend deployment contains the node�js frontend for our application along with 
a few other Kubernetes objects to illustrate examples�

If you open the ostoy-fe-deployment.yaml	you	will	see	we	are	defining:
• Persistent Volume Claim
• Deployment Object
• Service
• Route
•	 Configmaps
• Secrets

In your command line deploy the frontend along with creating all objects mentioned 
above by entering:

 oc apply -f ostoy-fe-deployment.yaml

You	should	see	all	objects	created	successfully

$ oc apply -f ostoy-fe-deployment.yaml

persistentvolumeclaim/ostoy-pvc created

deployment.apps/ostoy-frontend created

service/ostoy-frontend-svc created

route.route.openshift.io/ostoy-route created

configmap/ostoy-configmap-env created

secret/ostoy-secret-env created

configmap/ostoy-configmap-files created

secret/ostoy-secret created

52Getting Started with Azure Red Hat OpenShift



Get route

Get the route so that we can access the application via oc get route

You	should	see	the	following	response:

Copy ostoy-route-ostoy.apps.abcd1234.eastus.azmosa.io above and paste it into your 
browser	and	press	enter.	You	should	see	the	homepage	of	our	application.

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
ostoy-route ostoy-route-ostoy.apps.abcd1234.eastus.azmosa.is ostoy-frontend-svc <all>  None

53Getting Started with Azure Red Hat OpenShift



Assuming you can access the application via the Route provided and are still logged 
into	the	CLI	(please	go	back	to	part	2	if	you	need	to	do	any	of	those),	we’ll	start	to	use	
this	application.	As	stated	earlier,	this	application	will	allow	you	to	“push	the	buttons”	
of OpenShift and see how it works�

Click on the Home menu item and then click in the message box for “Log Message
(stdout)”	and	write	any	message	you	want	to	output	to	the	stdout	stream.	You	can	try	
“All is well!”� Then click “Send Message”�

Click	in	the	message	box	for	“Log	Message	(stderr)”	and	write	any	message	you	
want	to	output	to	the	stderr	stream.	You	can	try	“Oh no! Error!”� Then click 
“Send Message”�

Go to the CLI and enter the following command to retrieve the name of your frontend 
pod which we will use to view the pod logs:

$ oc get pods -o name

pod/ostoy-frontend-679cb85695-5cn7x

pod/ostoy-microservice-86b4c6f559-p594d

So the pod name in this case is ostoy-frontend-679cb85695-5cn7x� Then run oc logs
ostoy-frontend-679cb85695-5cn7x and you should see your messages: 

$ oc logs ostoy-frontend-679cb85695-5cn7x

[...]

ostoy-frontend-679cb85695-5cn7x: server starting on port 8080

Redirecting to /home

stdout: All is well!

stderr: Oh no! Error!

You	should	see	both	the	stdout and stderr messages�

Explore Logging

54Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-logging


It would be best to prepare by splitting your screen between the OpenShift Web UI 
and the OSToy application so that you can see the results of our actions immediately�

If	your	screen	is	too	small	or	that	just	won’t	work,	then	open	the	OSToy	application	in
another tab so you can quickly switch to the OpenShift Web Console once you click 
the button� To get to this deployment in the OpenShift Web Console go to:

Applications > Deployments > click the number in the “Last Version” column for the
“ostoy-frontend” row

Health Checks

55Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-heathcheck


Go	to	the	OSToy	app,	click	on	Home	in	the	left	menu,	and	enter	a	message	in	the
“Crash	Pod”	tile	(ie:	“This	is	goodbye!”)	and	press	the	“Crash	Pod”	button.	This	will
cause the pod to crash and Kubernetes should restart the pod� After you press the
button you will see:

Quickly	switch	to	the	Deployment	screen.	You	will	see	that	the	pod	is	red,	meaning	it	
is down but should quickly come back up and show blue�

You	can	also	check	in	the	pod	events	and	further	verify	that	the	container	has	crashed	
and been restarted�

56Getting Started with Azure Red Hat OpenShift



Keep the page from the pod events still open from step 4� Then in the OSToy app 
click	on	the	“Toggle	Health”	button,	in	the	“Toggle	Health	Status”	tile.	You	will	see	the	
“Current	Health”	switch	to	“I’m	not	feeling	all	that	well”.

This will cause the app to stop responding with a “200 HTTP code”� After 3 such
consecutive	failures	(“A”),	Kubernetes	will	kill	the	pod	(“B”)	and	restart	it	(“C”).	Quickly
switch back to the pod events tab and you will see that the liveness probe failed and 
the pod as being restarted�

57Getting Started with Azure Red Hat OpenShift



Inside	the	OpenShift	web	UI	click	on	Storage	in	the	left	menu.	You	will	then	see	a	list	
of all persistent volume claims that our application has made� In this case there is just 
one	called	“ostoy-pvc”.	You	will	also	see	other	pertinent	information	such	as	whether	
it	is	bound	or	not,	size,	access	mode	and	age.

In	this	case	the	mode	is	RWO	(Read-Write-Once)	which	means	that	the	volume	can	
only	be	mounted	to	one	node,	but	the	pod(s)	can	both	read	and	write	to	that	volume.	
The default in Azure Red Hat OpenShift is for Persistent Volumes to be backed by 
Azure	Disk,	but	it	is	possible	to	chose	Azure	Files	so	that	you	can	use	the	RWX	(Read-
Write-Many)	access	mode.	(See here for more info on access modes)

In the OSToy app click on Persistent Storage in the left menu� In the “Filename” area 
enter	a	filename	for	the	file	you	will	create.	(ie:	“test-pv.txt”)

Underneath	that,	in	the	“File	Contents”	box,	enter	text	to	be	stored	in	the	file.	(ie:	
“Azure	Red	Hat	OpenShift	is	the	greatest	thing	since	sliced	bread!”	or	“test”	:)	). 
Then	click	“Create	file”.

You	will	then	see	the	file	you	created	appear	above	under	“Existing	files”.	Click	on	the	
file	and	you	will	see	the	filename	and	the	contents	you	entered.

Persistent Storage

58Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/aro/architecture/additional_concepts/storage.html#pv-access-modes
http://aroworkshop.io/#lab2-storage


We now want to kill the pod and ensure that the new pod that spins up will be able 
to	see	the	file	we	created.	Exactly	like	we	did	in	the	previous	section.	Click	on	Home 
in the left menu�

Click	on	the	“Crash	pod”	button.	(You	can	enter	a	message	if	you’d	like).

Click on Persistent Storage in the left menu

You	will	see	the	file	you	created	is	still	there	and	you	can	open	it	to	view	its	contents	
to	confirm.

Now	let’s	confirm	that	it’s	actually	there	by	using	the	CLI	and	checking	if	it	is	
available	to	the	container.	If	you	remember,	we	mounted	the	directory	/var/demo-
files	to	our	PVC.	So	get	the	name	of	your	frontend	pod

 oc get pods

then get an SSH session into the container

 oc rsh <podname>

then

 cd /var/demo-files

if	you	enter	ls	you	can	see	all	the	files	you	created.	Next,	let’s	open	the	file	we	
created and see the contents

 cat test-pv.txt

59Getting Started with Azure Red Hat OpenShift



You	should	see	the	text	you	entered	in	the	UI.

$ oc get pods

NAME READY STATUS RESTARTS AGE

ostoy-frontend-5fc8d486dc-wsw24 1/1 Running 0 18m

ostoy-microservice-6cf764974f-hx4qm 1/1 Running 0 18m

$ oc rsh ostoy-frontend-5fc8d486dc-wsw24

/ $ cd /var/demo_files/

/var/demo_files $ ls

lost+found test-pv.txt

/var/demo_files $ cat test-pv.txt

Azure Red Hat OpenShift is the greatest thing since sliced bread!

Then	exit	the	SSH	session	by	typing	exit.	You	will	then	be	in	your	CLI.

60Getting Started with Azure Red Hat OpenShift



In	this	section	we’ll	take	a	look	at	how	OSToy	can	be	configured	using	ConfigMaps,
Secrets,	and	Environment Variables.	This	section	won’t	go	into	details	explaining	
each	(the	links	above	are	for	that),	but	will	show	you	how	they	are	exposed	to	the	
application�

Configuration using ConfigMaps

ConfigMaps	allow	you	to	decouple	configuration	artifacts	from	container	image	
content to keep containerized applications portable�

Click on Config Maps in the left menu�

This	will	display	the	contents	of	the	configmap	available	to	the	OSToy	application.	
We	defined	this	in	the	ostoy-fe-deployment.yaml	here:

Configuration - 
ConfigMaps, 
Secrets, 
Environment 
Variables

kind: ConfigMap
apiVersion: v1
metadata:
 name: ostoy-configmap-files
data:
 config.json: ‘{ “default”: “123” }’

61Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html
https://docs.openshift.com/container-platform/3.11/dev_guide/secrets.html
https://docs.openshift.com/container-platform/3.11/dev_guide/environment_variables.html


In	this	section	we’ll	see	how	OSToy	uses	intra-cluster	networking	to	separate	functions	
by using microservices and visualize the scaling of pods�

Let’s	review	how	this	application	is	set	up…

As	can	be	seen	in	the	image	above,	we	have	defined	at	least	2	separate	pods,	each	
with	its	own	service.	One	is	the	frontend	web	application	(with	a	service	and	a	publicly	
accessible	route)	and	the	other	is	the	backend	microservice	with	a	service	object	
created	so	that	the	frontend	pod	can	communicate	with	the	microservice	(across	the	
pods	if	more	than	one).	Therefore	this	microservice	is	not	accessible	from	outside	
this	cluster,	nor	from	other	namespaces/projects	(due	to	Azure	Red	Hat	OpenShift’s	
network	policy,	ovs-networkpolicy).	The	sole	purpose	of	this	microservice	is	to	serve	
internal	web	requests	and	return	a	JSON	object	containing	the	current	hostname	and	
a randomly generated color string� This color string is used to display a box with that 
color	displayed	in	the	tile	(titled	“Intra-cluster	Communication”).

Networking and 
Scaling

62Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-network


Networking

Click	on	Networking	in	the	left	menu.	Review	the	networking	configuration.

The right tile titled “Hostname Lookup” illustrates how the service name created for a 
pod can be used to translate into an internal ClusterIP address� Enter the name of the 
microservice following the format of my-svc.my-namespace.svc.cluster.local which we 
created in our ostoy-microservice.yaml which can be seen here:

In this case we will enter: ostoy-microservice-svc.ostoy.svc.cluster.local
We will see an IP address returned� In our example it is 172.30.165.246� This is the 
intra-cluster IP address; only accessible from within the cluster�

Scaling

OpenShift allows one to scale up/down the number of pods for each part of an 
application as needed� This can be accomplished via changing our replicaset/
deployment	definition	(declarative),	by	the	command	line	(imperative),	or	via	the	web	
UI	(imperative).	In	our	deployment	definition	(part	of	our	ostoy-fe-deployment.yaml)	
we stated that we only want one pod for our microservice to start with� This means 
that the Kubernetes Replication Controller will always strive to keep one pod alive�

apiVersion: v1
kind: Service
metadata:
 name: ostoy-microservice-svc
 labels:
  app: ostoy-microservice
spec:
 type: ClusterIP
 ports:
  - port: 8080
   targetPort: 8080
   protocol: TCP
 selector:
  app: ostoy-microservice

63Getting Started with Azure Red Hat OpenShift



When your development and operations teams spend most of their working hours 
dealing	with	provisioning,	setup,	maintenance,	and	overseeing	your	clusters	and	CI/CD	
pipeline,	they’re	not	able	to	dedicate	their	valuable	time	towards	what	they	are	best	at	
– keeping your apps at the cutting edge�

As	we	have	learned	from	this	guide,	Azure	Red	Hat	OpenShift	lets	you	deploy	fully	
managed Red Hat OpenShift clusters without worrying about building or managing 
the	infrastructure	required	to	run	it.	We’ve	seen	that	running	Kubernetes	alone	comes	
with	a	few	caveats,	mainly	in	relation	with	the	extra	hands-on	attention	required	with	
tasks that could be automated with Azure Red Hat OpenShift�

When	you’re	deciding	which	cluster	management	strategy	to	choose	for	your	
organization,	consider	the	pros	and	cons	that	you’ll	be	getting	with	a	Kubernetes	
type	of	platform	versus	Azure	Red	Hat	OpenShift,	which	is	built	on	the	Kubernetes	
framework	and	offers	you	a	bundle	of	extra	out-of-the-box	benefits.

To	learn	more	about	your	Azure	Red	Hat	OpenShift,	visit	the	product page or check 
out our documentation	section.	You	can	also	go	through	a	hands-on workshop,	and	
register to watch a webinar at your convenience�

Running Kubernetes 
alone may still allow 
you to achieve the 
level of cluster 
management you 
are looking for, 
but it comes with 
a price.

64Getting Started with Azure Red Hat OpenShift

CONCLUSION

https://azure.microsoft.com/en-us/services/openshift/
https://docs.microsoft.com/en-us/azure/openshift/intro-openshift
https://aroworkshop.io/



	Preface
	Who this book
is for
	What this book
covers

	WHAT CAN AZURE
DO FOR YOU?
	INTRODUCTION TO RED HAT OPENSHIFT
	Red Hat OpenShift
Overview
	Business Value
	What do you get with OpenShift as opposed to Kubernetes?
	Concepts of
OpenShift

	AZURE RED HAT
OPENSHIFT
	Architecture
	Management
	Security
	Support

	SETTING UP THE CLUSTER,
	NETWORKING AND SECURITY
	Install the Azure CLI and sign in to Azure
	Create an Azure Active Directory tenant for your cluster
	Create the administrator user and administrator security group
	Create an Azure Active Directory app registration for
	authentication
	Restrict the cluster access to assigned users and assign
user access
	Create the cluster and connect it to your existing Virtual
	Network

	Accessing the
cluster
	Via the Web UI
	Via OpenShift CLI

	Creating a multi-container ratings application
	Application
Overview
	Connect to the cluster and create a project
	Deploy MongoDB
	Deploy the ratings-api
service
	Deploy the ratings-web frontend using
S2I strategy
	Create a route for the ratings-web frontend
	Scaling the application and the cluster
	Controlling networking using networking policies

	Using an app to become
familiar with OpenShift
and Kubernetes
	Application
Overview
	Deploy the OSToy application
	Explore Logging
	Health Checks
	Persistent Storage
	Configuration - ConfigMaps,
Secrets,
Environment
Variables
	Networking and Scaling

	Conclusion

