
How
Netsparker
Generates
Proof to Avoid
False Positives

TECHNICAL WHITE PAPER: PROOF-BASED SCANNING

How Netsparker Generates Proof to Avoid False Positives | 2

While all vendors claim that their
products are highly accurate, the
truth is that extracting facts from
raw test results is extremely difficult
– and doing this automatically
is even harder.

Automated testing and false
alarms seem to go hand in hand,
especially in cybersecurity.

This document highlights the major technical challenges
in automated application security testing and shows how
Netsparker uses Proof-Based Scanning technology to
cut through the noise and deliver actionable results
with 99.98% accuracy.

How Netsparker Generates Proof to Avoid False Positives | 3

+

+

+

X

X

POS I T I V E

POS I T I V E

Noise in results brings
uncertainty into security testing
There are many sources of uncertainty in automated security testing that
can lead to a large proportion of false positives in results. These negate
many of the efficiency gains from automation because every result, while
obtained automatically, still needs manual verification. Scanners that don’t
have a way of confirming vulnerabilities also need to err on the side of
caution and risk more false positives to avoid losing real issues in the noise.

How Netsparker Generates Proof to Avoid False Positives | 4

 Insufficient
 context
Awareness of the execution context is probably the
most important advantage that human testers have over
automated tools. The same behavior or response may
be perfectly valid in one place but dangerous in another,
even within the same application. Without context, an
automated DAST tool may have difficulty deciding whether
to report a vulnerability (and risk a false positive) or
ignore the issue (and risk missing a true vulnerability).

Netsparker deals with this by obtaining as much
context as possible from the user through its extensive
configuration and customization options. Users can
create finely-tuned scan profiles and policies to adapt
scanner behavior to the specific application. This includes
the ability to exclude certain parts of the application
from the scan and configure automated authentication to
ensure that scans on restricted pages return valid results.

 Implementation-dependent
 behaviors
Standards and specifications are one thing but actual
implementations are quite another. This can pose a serious
challenge for less advanced DAST tools that assume
only compliant or otherwise expected behavior in their
checks. Implementation-specific behaviors might then
be misinterpreted, leading to inaccurate results.

One common example is varying application reactions
to attempts to access the protected .htaccess file on
Apache web servers. For instance, some may return a
typical 404 Not Found code, while others might return
403 Forbidden and others still 200 OK but with an error
message. Netsparker deals with this by checking for an
actual file at the specified location rather than relying
on the HTTP status code alone. To avoid false positives
related to missing or inaccessible pages, Netsparker also
uses automatic error page detection that is independent
of status codes.

While these only cover a handful of
examples, they should give you some
idea of the innumerable details and
subtleties that an effective vulnerability
scanner must take into account.

 Reliance on finding
 patterns in responses
The simplest way to perform web application security
testing is to send requests that include specific strings
and then search server responses for those strings. In
automated tools, this might involve regular expressions
and other forms of pattern-matching, but the idea is the
same: the scanner is looking for a specific value or pattern
in the response. While this naive approach may work for
simple cases, it will generate many false alarms because
any legitimate responses that happen to match the same
pattern will also be treated as a sign of vulnerability.

To avoid this pitfall, Netsparker relies on identifying
transformations rather than literal values. For example,
a test payload for code injection may cause a vulnerable
application to perform a calculation and return the result
rather than the original payload. This provides proof
that the value is not an accidental match but the effect
of a genuine vulnerability. Where needed and possible,
Netsparker combines such tests with the use of its
dedicated infrastructure to identify and conclusively
confirm out-of-band and second-order vulnerabilities.

 Inconsistent
 response times
When attempting time-based attacks, less sophisticated
tools may assume fixed response thresholds. For example,
the scanner might be targeting a time-based SQL injection
vulnerability and checking if certain queries cause the
server to pause execution for 5 seconds. If the server
happens to be under heavy load or is experiencing
connectivity issues, server reactions to the test attacks
might be delayed for longer than 5 seconds even if no
vulnerability exists, causing a basic scanner to report
a false positive.

Netsparker avoids false alarms in such cases by
dynamically calculating and adjusting the threshold
based on actual server performance to account for
current load and other fluctuations. This allows the
scanner to clearly distinguish between delays caused
by sluggish performance and those triggered by the
test payload. Again, Netsparker’s dedicated response
tracking infrastructure is used to reliably detect
time-based and other out-of-band vulnerabilities
without the scanner having to wait for each result.

Let’s look at some common sources of uncertainty
in dynamic application security testing (DAST) and
see how Netsparker specifically deals with them.

How Netsparker Generates Proof to Avoid False Positives | 5

Eliminating
noise with
Proof-Based
Scanning
As websites and applications get ever more
complex, dynamic, and interconnected,
the number of potential attack surfaces
increases. DAST tools have to reconcile
the need to identify as many attack vectors
as possible with the challenge of deciding
which results indicate real issues and which
are noise. Vendors can (and do) develop
tools that can find and probe the vast
majority of attack surfaces in a modern
application, but without verification, each
result is at best an educated guess. Here is
how Netsparker eliminates this uncertainty.

Proof where it matters most
Proof-Based Scanning was built around the
fundamental insight that the only way to be
completely sure a vulnerability is exploitable
is to exploit it. While a simple enough concept,
performing automated attacks in a safe way and
providing proof they were successful required years
of security research and application development.
Netsparker uses a complete embedded web browser
engine not only to parse and crawl any application
that a modern browser can render but also to
simulate and analyze real-life browser interactions –
including attack attempts. This allows the scanner
to detect successful attacks and automatically
confirm the underlying vulnerabilities with no
risk of false positives.

Proof-Based Scanning
was built around the
fundamental insight
that the only way
to be completely
sure a vulnerability
is exploitable is
to safely exploit it.

Netsparker comes with a vast set of configurable
attack patterns to mimic the actions of advanced
real-life attackers, incorporating accumulated
cases from over a decade of continuous research.
While it is not technically possible to safely
exploit every single vulnerability identified by
the scanner, Netsparker focuses on direct-impact
vulnerabilities* that, if they made it into a production
site or application, could be directly exploited by
malicious actors. Accompanied by detailed technical
information and remediation guidance, these
vulnerability reports allow you to make informed
decisions and quickly react to critical issues.

*Direct-impact vulnerabilities are weaknesses that can be exploited remotely
without special prerequisites and have direct consequences for security.

How Netsparker Generates Proof to Avoid False Positives | 6

For many of the most serious vulnerabilities that
can directly lead to a system compromise or data
breach, Netsparker safely extracts a sample of
data from the target system and includes this in its
report as a proof of exploit (PoE). This is not only
the strongest possible proof that the issue is real
but also an indication of the potential impact if the
vulnerability is exploited. After all, if Netsparker is
able to automatically inject and execute a harmless
query or command, a determined attacker sending
a malicious payload could do some serious damage.

Netsparker can generate proofs of exploit
for the following vulnerability types:

 • SQL injection
 • Boolean SQL injection
 • Blind SQL injection
 • Remote file inclusion (RFI)
 • Command injection
 • Blind command injection
 • XML external entity injection (XXE)
 • Remote code evaluation
 • Local file inclusion (LFI)
 • Server-side template injection (SSTI)
 • Remote code execution (RCE)
 • Injection via local file inclusion

Proof of exploit to show you can get breached

All the proofs of exploit generated during a single scan session are gathered under the Proofs node in Netsparker’s Knowledge Base.

To see how this works, let’s take SQL injection.
Having identified a potential injection point,
Netsparker crafts a proof extraction payload and
attempts to inject it into the vulnerable application.

If this succeeds, the application will respond
with data returned by the database in response
to the injected query. This will typically include
not only the database server name and version
but also internal information, like the name and
system user of the database queried by the
application. These are safe queries executed
against system tables, but again – imagine the
havoc a determined attacker could wreak by
injecting malicious queries in the same way.

Beyond proving basic SQL injection, Netsparker
can also deliver PoE for more advanced variants.
For boolean SQL injection, the scanner generates
a whole series of payloads to inject queries that
allow it to extract the same proof (for example,
the database user name) but going letter by letter
rather than all at once. The same approach is used
for time-based blind SQL injection, except here the
letters are inferred based on differences in database
response times. Netsparker’s own out-of-band
infrastructure is used to make sure that all responses
are included in the results.

How Netsparker Generates Proof to Avoid False Positives | 7

Proof of concept to demonstrate the attack
While extracting sample data is only possible for
some types of vulnerabilities, Netsparker also
provides confirmation and proof for many other
issues, most notably various variants of cross-site
scripting (XSS). Whenever the scanner detects a
vulnerability that can be safely exploited, it generates
and executes test payloads within the vulnerable
application context. When successful, these attacks
prove that the vulnerability is real, so the payload
is reported as a proof of concept (PoC). Seeing
the actual attack payload is especially useful for
reproducing and fixing the underlying issue.

Many scanners on the market advertise an attack
replay capability for XSS. They often provide a
link to show how the vulnerability could potentially
be exploited, in effect tasking the user with
manually verifying the issue. With Netsparker,
there is no “potentially” – a confirmation and
PoC is only reported if the attack has already been
successfully executed in the embedded browser
environment. This minimizes the risk of false
positives caused by scanners mistaking valid
responses for vulnerable behaviors and works
for many types of vulnerabilities, including issues
where the proof had to be exfiltrated out-of-band.

If it is possible to directly replay the attack in-band and
without special context, a proof URL is provided for
convenience (in addition to the original payload).

For maximum accuracy, Netsparker’s proof-
generating payloads don’t perform simple string
echos (which could yield occasional false matches)
but more complex operations that will only return
the expected result if the attack point is indeed
vulnerable. For example, when investigating an
XSS vulnerability, Netsparker will attempt to execute
a confirmation payload that includes a randomly-
chosen arithmetic operation. DOM simulation is
used to check if the payload triggers the expected
interfaces to deliver the correct result of the
calculation. For DOM-based XSS, Netsparker
goes one step further and reports stack traces
from its internal DOM simulation to both confirm
the vulnerability and provide developers with
detailed debugging information that helps them
quickly find and eliminate the root cause.

If Netsparker is unable to automatically
confirm a vulnerability, it provides a certainty
score to indicate its confidence in the result.
Even if you don’t get a 100% confirmation,
most high-confidence issues are still going
to be genuine. For example, the scanner
might successfully exploit a vulnerability
in a multi-stage attack but be unable to
perform the final confirmation stage.

How Netsparker Generates Proof to Avoid False Positives | 8

Actionable results to support remediation
Being able to fully trust the Confirmed stamp in Netsparker vulnerability reports completely
changes the dynamics of web application security. Even so, there is still a way to go between
getting the report and deploying an effective fix, which is the ultimate goal of your security
testing process. To provide maximum support for issue remediation, Netsparker delivers a
wealth of additional information in its vulnerability reports. This is especially important in
fully automated workflows where developers get their security-related tickets directly from
the DAST tool. Each report includes all the information needed to understand and fix the
underlying issue, including:

Extra depth from IAST: When the additional
interactive application security testing (IAST)
component is deployed in the application
testing environment, Netsparker can provide
more detailed information about vulnerabilities.
Depending on the application language, this
can include a server-side stack trace or even
the specific line of code. The IAST module can
also find and prove additional vulnerabilities
that the scanner alone might not be able to
see or confirm.

Attack payloads and proof URLs: Knowing
exactly what payloads can trigger vulnerable
behaviors is a huge time-saver for developers.
Combined with information such as the request
type and targeted parameters, seeing the
payload makes it easier to find the right code

fragment and understand why it is vulnerable.
If IAST is used, this insight can even extend
to seeing the actual query that is sent to
the database in SQL injection attacks.

Remediation guidance: Developers are not
security engineers and can’t be expected to
know every type of vulnerability along with the
current best practices for fixing it. Because
confirmed Netsparker vulnerability reports don’t
need manual verification, they are specifically
designed to go directly to developers. Each
report includes all the information needed
to understand and fix the underlying issue,
complete with the potential impact if exploited
by attackers, specific remediation steps,
and links to external reference resources.

Proving the accuracy of
Proof-Based Scanning
All security testing products claim to be highly accurate, but verifying these claims is
extremely difficult, as each result would ultimately need to be checked by a security
engineer. Industry benchmarks executed on a common set of known vulnerable test sites
can give some idea about the capabilities of a tool but only limited information about its
real-life effectiveness. Simply comparing data points such as false positive ratios can also
lead to dubious conclusions – a scanner might have zero false positives not because it’s
so accurate but because it didn’t find anything. The only honest and objective way to
measure the accuracy of vulnerability reporting is to ask the people for whom every
false positive means extra work: the security engineers themselves.

How Netsparker Generates Proof to Avoid False Positives | 9

Getting data about false
positives from Netsparker users
Even the best test cases can’t always keep up with the sheer variety of real-life customer
applications. To continuously improve the security checks available in Netsparker, we provide
users with a way to indicate that, in their opinion, the scanner has made a mistake. Every
Netsparker vulnerability report therefore includes a False Positive button that allows users
to manually flag that result as a false alarm.

Since 2015, we have been logging statistical data about the type and number of vulnerabilities
found by the cloud-based on-demand scanner, complete with false positive flags set by the
users. Our security researchers and developers use this feedback to refine the product by
identifying real-life edge cases and incorporating them into the security checks. For the
purpose of this white paper, we have performed a long-term analysis of these user reports
to get an idea of how often Netsparker has falsely marked a vulnerability as confirmed.

Invicti security researchers went through all user reports of false positives across over half
a million unique vulnerabilities reported by Netsparker Enterprise on-demand during the
last 5 years and manually investigated every single class of vulnerabilities where such flags
appeared. As it turned out, the original Netsparker confirmation was correct in the vast
majority of cases. For the remainder, that is for every type of vulnerability that really was
a false positive (for whatever reason), the relevant security check was updated and tested
to make sure that this type of issue will be reported correctly in the future.

The only honest and objective way to measure
the accuracy of vulnerability reporting is to ask
the people for whom every false positive means
extra work: the security engineers themselves

How Netsparker Generates Proof to Avoid False Positives | 10

The results are in:
99.98% accuracy and counting
The first round of analysis was the manual verification of user-reported false positives.
Already at this stage, the historical accuracy of automatic vulnerability confirmation
across several years of data turned out to be 99.88%, meaning that only 0.12% of confirmed
vulnerabilities were indeed false positives. After security checks were improved to incorporate
these few cases, the data was analyzed again to determine the current accuracy level. The
accuracy of Netsparker’s Proof-Based Scanning currently stands at slightly over 99.98%
– meaning that when Netsparker marks a vulnerability as confirmed, you can be 99.98%
sure that the issue is real, exploitable, and not a false positive.

Put another way, for every 10,000
vulnerabilities that are automatically
confirmed by Netsparker, you will
get fewer than 2 false alarms – and
the scanning technology is under
constant development for even higher
accuracy. This is all based on historic
results generated by testing real-life
web applications across thousands
of organizations, not fine-tuned
synthetic benchmarks or tests on
well-known example sites. So when
you see the familiar Confirmed stamp
on a vulnerability that Netsparker has
found in your application, you can be
confident that the issue is real and
assign it directly to developers with
no manual verification.

When Netsparker
marks a vulnerability
as confirmed, you
can be 99.98% sure
that the issue is real,
exploitable, and not
a false positive.

CONFIRMED

How Netsparker Generates Proof to Avoid False Positives | 11

Bringing exploitable issues
into sharp focus
Proof-Based Scanning focuses on providing confirmation where it matters most: for
vulnerabilities that are directly exploitable by attackers and can have serious consequences
if targeted in production. This is where the proof-based approach does double duty, on the
one hand ensuring trustworthy results and on the other demonstrating that if an automated
tool can get through, so can malicious actors.

To put a specific number on this, our analysts worked on the same historical data and
calculated that Netsparker provides accurate automatic confirmation for 94.74% of all
direct-impact vulnerabilities that it detects. In other words, if you have a vulnerability
that could get you hacked right now, Netsparker will find it, report it, and in close
to 95% of cases safely exploit it for confirmation. This covers the vast majority of
weaknesses that could lead to an immediate data breach or system compromise.

This level of confidence in vulnerability
scan results completely changes the
dynamics of web application security.
Instead of probabilities, you can now
work with clear and indisputable facts:
here is a vulnerability that an automated
scanner managed to exploit, so fix it
now before real attackers find it. If the
application is still in development, you
know what security holes must be plugged
before it can go into production. You
finally have solid data to support your
security decisions.

Cut the
noise to get
the facts
Proof-Based Scanning brings a no-nonsense
approach to application security testing.
Instead of flooding users with uncertain
results and burdening them with verification,
Netsparker uses every trick in the book
to minimize uncertainty at each stage of
the testing process and then deliver solid
proof wherever possible. This elevates
vulnerability scanning from its traditional
role as an aid to manual testing to the
rank of a standalone solution that you can
automate with complete confidence. Now
your security engineers can finally focus
on issues that really need their expertise.

About Invicti Security

Invicti Security is changing the way web applications are secured by organizations across the world.
Invicti’s two products, Netsparker and Acunetix, prevent costly data breaches and other security incidents by
identifying web vulnerabilities from the early stages of application development through production. Netsparker
is the leading enterprise DAST + IAST solution and the first to deliver automatic verification of vulnerabilities with
its proprietary Proof-Based Scanning technology, enabling unparalleled scalability for even the largest organizations.
Known for its ease of use, speed, and accuracy, Acunetix enables even small businesses to leverage best-in-class
web application security tools, and was the first-ever automated web application security scanner to feature both
DAST and IAST. Invicti is headquartered in Austin, Texas, and serves organizations all around the world.

About Netsparker

Netsparker by Invicti helps prevent costly data breaches and other security incidents by identifying web
vulnerabilities from the early stages of application development through production. Netsparker is the leading
enterprise application security testing solution that combines dynamic and interactive testing and the first to
deliver automatic verification of vulnerabilities with its proprietary Proof-Based Scanning technology, enabling
unparalleled scalability for even the largest organizations.

© 2021 Invictiwww.netsparker.com

http://www.netsparker.com
https://twitter.com/netsparker?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.facebook.com/netsparker/
https://www.linkedin.com/company/netsparker/

