
Cloud vs. 
Cloud-Native
Understanding the 
Cloud-Native Paradigm Shift
Authored by Jason Bloomberg, President at Intellyx



Despite its buzzword status, cloud-native computing goes well beyond cloud 
computing to redefine how organizations deliver and leverage dynamic software 
at scale.

While the open-source container orchestrator Kubernetes is at the epicenter of the 
cloud-native movement, cloud-native computing takes cloud best practices and 
extends them to the entire IT landscape, well beyond the scope of Kubernetes.

So many aspects of business technology transform when organizations move to 
cloud-native, in fact, that this new approach is a paradigm shift in the true sense 
of the word, as it will change everything about the way organizations create, deploy, 
and leverage software assets at scale.

2

CLOUD VS. CLOUD-NATIVE



The Context for Cloud-Native
It was a mere generation ago that an application was simply a computer 
program – a chuck of source code you’d compile into an executable for 
running on a single computer.

Then along came DLLs. And JavaBeans and Web Services. And now 
microservices. What was once a single binary now consists of multiple 
disparate bits of code, running in virtual machines or containers 
or even made up of nothing but serverless functions – in the cloud or 
on-premises or both.

To make matters worse, these application elements are even more 
ephemeral than before, coming and going on the order of fractions 
of a second to meet ever-changing scalability requirements.

Creating such applications is unquestionably more difficult than writing 
programs in the monolithic app days. Running them – especially in 
scaled out, enterprise environments – is orders of magnitude more 
complex as well.

Fundamental 
requirement 
for better and 
faster software 
is at the heart 
of cloud-native 
computing.

Why go to so much trouble? Why do we need to endure such onerous complexity?

The answer: the business – and our customers 
– demand new capabilities and a new level of 
experience that require a paradigm shift in how 
software meets business needs. 

We’re in the digital era, where software is central 
to most organizations’ value propositions to 
their customer base. Not only does software 
form the backbone of the modern organization, 
it infuses all interactions within a company and 
among its customers.

What one company (or public sector organization) 
does, so too must its competitors. Fast beats slow. 
Dynamic beats static. Customers are fickle. They 
always want more and better.

And delivering on this value – better than the 
competition can – depends upon agile, fast-moving, 
dynamic software. This fundamental requirement 
for better and faster software is at the heart of 
cloud-native computing.

3

CLOUD VS. CLOUD-NATIVE



What is ‘Cloud Native’?
The first thing to understand about cloud-native computing is that it is quite different from cloud 
computing. Cloud computing represented a shift in the way organizations provisioned, managed and 
paid for compute, network, and storage resources – but as the truism says, the cloud is really nothing 
more than someone else’s computer.

Cloud-native computing means bringing cloud-centric best practices to all software and IT generally, 
whether that be in the cloud or on-premises – or both. Cloud-native extends the core best practices of 
the cloud to all of IT.

Cloud-native computing includes everything special about the cloud, and then adds many other 
fundamental capabilities, including how to support ephemeral, elastic software infrastructure at scale. 
However, cloud-native doesn’t actually require the cloud. In fact, it’s possible to be cloud-native and not 
be on the cloud at all, and vice versa.

The key to implementing a cloud-native strategy is to apply coherent management abstractions across 
the entire hybrid IT environment, comprising whatever environments are essential to the organization – 
public cloud, private cloud, on-premises virtualized environments, and legacy.

Cloud-native computing 
means bringing 
cloud-centric best 
practices to all software 
and IT generally, whether 
that be in the cloud or 
on-premises – or both. 

Abstractions provide essential simplicity and 
usability while masking the complexity underneath. 
To implement the abstractions necessary for a 
comprehensive cloud-native approach, it’s essential 
to get a firm handle on such complexity.

One evolving technology trend has become 
instrumental for dealing with this inherent 
complexity underlying cloud-native 
abstractions: containers.

At their most basic level, containers are essentially a 
next-generation approach to virtualization. However, 
instead of the familiar virtual machines (VMs) that 
may take several minutes to spin up, containers may 
only take milliseconds to spin up – and to spin down.

4

CLOUD VS. CLOUD-NATIVE



Containers are inherently ephemeral. Like old 
postcards from people, you can’t remember 
and ticket stubs from games long since played, 
ephemera are objects that no one ever intended to 
keep around for very long. Just so with containers.

Managing this ephemerality in the context of 
delivering cloud-native application functionality 
requires a container orchestration platform, 
which is why the epicenter of the cloud-native 
movement is Kubernetes.

Kubernetes is container orchestration software – 
essentially, plumbing for running enterprise-class 
software in the cloud. Kubernetes has practically 

Kubernetes is container 
orchestration software – 
essentially, plumbing for 
running enterprise-class 
software in the cloud.

exploded onto the enterprise infrastructure scene, 
with a number of open source and vendor-led 
‘flavors’ of Kubernetes in the market.

Red Hat offers OpenShift. Google delivers 
Google Kubernetes Engine (GKE) and Anthos, 
its cloud services platform. Then there’s PKS 
(Pivotal), EKS (Amazon), and AKS (Microsoft), as 
well as several others.

Regardless of the particular flavor, as the leading 
platform technology underlying containers, 
Kubernetes is at the heart of how both enterprises 
and Web-scale companies will run their technology 
for years to come.

5

CLOUD VS. CLOUD-NATIVE



Beyond Kubernetes
There is more to cloud-native computing than simply leveraging Kubernetes, however. Cloud-native 
infrastructure includes a mix of VMs, containers, and serverless functions as appropriate to meet the 
business need.

In fact, cloud-native is more about abstracting complex hybrid IT infrastructures to provide a seamless 
management and deployment experience for both operators and developers. This broad vision for 
cloud-native goes well beyond what Kubernetes alone can provide.

The entire cloud-native computing landscape – Kubernetes and beyond – follows an ‘infrastructure as 
code’ approach, only in this case, the ‘code’ in question represents declarative configuration metadata.

In other words, operators create metadata representations of the behavior of the infrastructure as well as 
the applications that run on them. The infrastructure then implements those representations automatically.

You can think of these metadata representations as business policies that distill the business intent for the 
applications. A change in business intent will result in a change in policy, which will change the behavior 
of the underlying technology.

Simply putting apps in Kubernetes is not the same thing as becoming cloud-native. To achieve the full benefit 
of cloud-native computing, following the full breadth of cloud-native computing principles is essential.

The good news: the 
transition to cloud-native 
computing is not a 
sudden leap. It can easily 
be a gradual process, 
where short-term 
business drivers frame its 
pace and phasing.

6

CLOUD VS. CLOUD-NATIVE



The Cloud-Native Paradigm Shift
Cloud-native computing is more than an approach to implementing software infrastructure at scale. In 
reality, it is a paradigm shift that changes everything we know about how to code, engineer, integrate, 
architect, run, and secure modern applications.

What, then, is a ‘paradigm shift’? We’ve all heard the term, but in many cases, people bandy it about 
haphazardly, relegating it to the status of a marketing buzzword.

Not so in this case. The term dates to the 1962 book The Structure of Scientific Revolutions. In this book, 
physicist and philosopher Thomas Kuhn coined the term ‘paradigm shift’ to mean a relatively abrupt 
transition between two bodies of beliefs, techniques, and values that a scientific community shares.

His focus in this book was on the notion of scientific revolutions, consisting of paradigm shifts between 
one scientific paradigm and another. Over the years, however, the idea of a paradigm shift expanded well 
beyond the cloistered realms of science. 

Today, a paradigm shift is not simply a change in opinion or technique but an overall transition in how an 
entire community approaches a general problem space.

Paradigm shifts can be challenging to get one’s 
head around because so many things change 
from the previous paradigm, seemingly all at 
once. Cloud-native computing is no different.

Cloud-native computing changes the approach to 
coding, software deployment, operations, integration, 
architecture, and security, among others. How we’re 
tackling each of these priorities has fundamentally 
changed from our pre-cloud-native days.

Cloud-native computing also requires a new 
paradigm for governance, as organizations must 
be able to define and enforce regulatory and other 

7

CLOUD VS. CLOUD-NATIVE



business policies without slowing down software 
deployment – a task that was essentially impossible 
before the cloud-native approach to governance.

How we understand and deal with hybrid IT 
also changes under the cloud-native paradigm. 
The previous paradigm treated hybrid IT as a 
heterogeneous mix of environments that led to 
increasingly complex management challenges.

In contrast, the cloud-native approach requires 
a comprehensive, end-to-end control plane that 
empowers the organization to manage a diverse, 
intentional portfolio of IT resources, even as that 
portfolio continues to evolve.

Cloud-native computing 
changes the approach 
to coding, software 
deployment, operations, 
integration, architecture, 
and security, among others

Shifting the Paradigm for Cloud-Native Applications
The fundamental nature of applications also 
transforms within this new paradigm – how to 
architect and build them, deploy them, and gain 
business value from them. 

Cloud-native applications also reflect the complex 
diversity of technology contexts that cloud-native 
computing brings to the table. Such applications may 
have dynamic end-user elements and sophisticated 
microservices-based back-end components running 
on Kubernetes in one or more clouds. 

Any application that supports end-to-end digital 
requirements while delivering the agility that 
enterprises require from their software would 
constitute examples of cloud-native applications.

Such applications, therefore, take full advantage 
of a distributed computing environment – but 
go well beyond the n-tier and service-oriented 
applications that characterize earlier application 
architecture paradigms.

Cloud-native apps are more likely to have ephemeral 
components while also depending on a combination 
of modern event-driven technologies as well as 
RESTful APIs. 

It’s no surprise, therefore, that cloud-native 
applications can be so complex. They have more 
components that are more dynamic and interact 
in more ways than previous generations of 
distributed computing applications.

8

CLOUD VS. CLOUD-NATIVE



Transitioning to Cloud-Native
There’s no question that cloud-native computing is exceptionally complicated. Kubernetes itself is open-source 
and represents an ecosystem of open-source products that only the boldest of organizations would hazard 
to assemble and configure themselves.

Fortunately, dealing with all the open-source bits of code on a do-it-yourself basis is rarely the approach 
most companies take. To address this need, many firms offer various configurations of Kubernetes-as-a-
Service (KaaS), where the vendor handles the underlying infrastructure and much of the configuration.

However, even these KaaS offerings can be difficult to implement in practice, as the organization must 
still architect and build applications that run in a cloud-native environment.

The cloud-native paradigm shift entirely reworks the best practices for architecting applications. Designing, 
deploying, and managing microservices requires a rethink of how software runs and interacts with other 
pieces of software in the environment.

Designing, deploying, and 
managing microservices requires 
a rethink of how software runs 
and interacts with other pieces 
of software in the environment.

9

CLOUD VS. CLOUD-NATIVE



The software lifecycle also transforms in a cloud-native world. Rapid development of dynamic applications 
at scale becomes the primary goal, requiring organizations to adopt modern software development best 
practices, including DevSecOps, CI/CD, GitOps, and to an increasing extent, low-code.

Low-code, in fact, offers several benefits for building cloud-native applications. It can accelerate the work 
of developers, preventing hand-coding from becoming the bottleneck that slows down deployment. 

Low-code also fosters collaboration among different participants in the application development process, 
including developers, business stakeholders, designers, and analysts. 

However, the most important benefit of low-code for building cloud-native applications is how it simplifies 
the process of updating microservices within the context of the overall application. 

Given the complex interrelationships among microservices in the typical cloud-native app, a low-code 
approach can facilitate any required changes while maintaining the appropriate coordination across the 
entire application.

When a vendor like OutSystems provides a low-code cloud-native 
platform, the benefits of low-code combine with those of KaaS. 

From the viewpoint of the organization using the platform, OutSystems 
handles the complex infrastructural challenges behind the scenes, while 
the organization gets the full benefit of low-code as well as cloud-native 
computing – in other words, the best of both worlds.

10

CLOUD VS. CLOUD-NATIVE



The Intellyx Take
As with any paradigm shift, there’s no requirement that organizations adopt cloud-native computing in 
one fell swoop or that one company must adopt it the same way another does.

In reality, cloud-native computing consists of a plethora of individual, interrelated practices and technologies. 
Any cloud-native roadmap must take into account this complexity as it also considers the business priorities 
for the paradigm shift.

It’s no surprise, therefore, that cloud-native adoption is proceeding somewhat chaotically. Some enterprises 
are all-in with the approach, while others are still dipping their collective toes in the water. Others still are 
waiting on the sidelines until the barriers to entry are sufficiently lowered.

Regardless of your organization’s level of cloud-native maturity, there are steps you can take to reduce 
the risk of making such a big move while meeting business requirements along the way. Remember, you 
don’t have to be perfect to win in the marketplace – you only have to be better than the competition.

www.outsystems.com

Copyright © Intellyx LLC. OutSystems and Red Hat are Intellyx customers, and Microsoft is a former Intellyx customer. 
None of the other organizations mentioned in this paper is an Intellyx customer. Intellyx retains final editorial control of 
this paper.

11

CLOUD VS. CLOUD-NATIVE


