
W H I T E PA P E R – M A R C H 2 0 1 9

Security in Kubernetes
Considerations and best practices
for securing sensitive workloads

W H I T E PA P E R | 2

Security in Kubernetes

Table of contents

Introduction 3

Control plane authentication and authorization 3

Network access control 4

Restricting pod-to-pod traffic . 4

Network border controls . 4

Limitations . 4

Application-layer access control 4

Sidecars and the service mesh approach . 4

Node and container runtime hardening . 5

Enforcing isolation policies . 5

Patch management and CI/CD deployment pipelines 5

Limiting churn . 6

Overly privileged container builds . 6

Secrets management 6

Identity secrets . 6

Non-identity secrets . 6

Caveats for Kubernetes secrets . 6

Security monitoring and auditing 7

Logging . 7

Network monitoring . 7

Host event monitoring . 7

What to do now 7

W H I T E PA P E R | 3

Security in Kubernetes

Introduction
Best practices in Kubernetes security are rapidly evolving. Many security problems in
early versions of Kubernetes are now resolved by default in recent versions, but like any
complex system, there are still risks you should understand before you trust it with your
production data. This paper summarizes the most important things you should have in
mind when you host sensitive workloads on Kubernetes.

The topics in this paper are meant to help you understand potential risks in your cluster.
The risk in your environment depends on your threat model and the types of applications
you run in your cluster. You will have to consider how best to invest in security controls
and hardening based on the sensitivity of your data, the amount of time and staff you
can dedicate to security, and your industry’s compliance requirements, such as HIPAA,
FISMA, and PCI DSS.

Control plane authentication and authorization
The Kubernetes control plane consists of the Kubernetes API server, the kubelet, and
other core components that cooperate to schedule and run the workloads in your cluster.
Access to the control plane is similar to SSH access or physical access to a machine, and it
should be carefully controlled. The flexibility of the Kubernetes access control system lets
you customize access controls to support your environment’s needs, but that flexibility can
be daunting.

At a minimum, you should enable role-based access control (RBAC) in your cluster. RBAC
is enabled by default in most recent installers and provides a framework for implementing
the principle of least privilege for humans and applications accessing the Kubernetes API.

To get the most benefit from RBAC, you need an appropriate configuration:

• Run each component with the most restrictive permissions that still allow for expected
functionality. Most applications in your cluster will need little or no access to the
Kubernetes API. System components such as an ingress controller or monitoring system
may need more access, but can often be limited to read-only access or access within a
particular namespace. The Kubernetes API audit logs are a useful tool for discovering
which APIs a particular application is using.

• Make sure that trusted components don’t act as pivots that allow less privileged users
to escalate privileges. The Kubernetes Dashboard and Helm tiller daemon are examples
that deserve special attention. Isolate these components with application-level
authentication and authorization or network access controls to prevent unauthorized access.

For human users, consider integrating Kubernetes authentication with your existing
corporate identity system. Kubernetes ships with the ability to authenticate with any
compliant OpenID Connect provider, such as GitHub or Google. You can also extend
Kubernetes authentication and authorization with webhook-based plug-ins to create a
custom identity integration.

You’ll also need to secure access to the infrastructure beneath Kubernetes. This might
include SSH access or cloud provider access control, such as AWS IAM. These systems
are a potential weak point because they circumvent the Kubernetes access control system.
For example, an attacker with SSH access to the Kubernetes etcd host could maliciously
insert pod definitions to run arbitrary code elsewhere on the cluster.

At a minimum, you should enable
role-based access control (RBAC)
in your cluster. RBAC is enabled
by default in most recent installers
and provides a framework for
implementing the principle
of least privilege for humans
and applications accessing the
Kubernetes API.

W H I T E PA P E R | 4

Security in Kubernetes

Network access control
Many existing applications assume that network-level access implies a level of
authorization. Even if your applications include strong application-layer authentication
and authorization, network-level access control provides in-depth defense. It provides
important protection against pre-authorization vulnerabilities, such as the Heartbleed
(CVE-2014-0160) vulnerability in OpenSSL.

Restricting pod-to-pod traffic
Kubernetes provides powerful core data types for specifying network access controls
between pods. Network policy in Kubernetes can limit inbound traffic to a pod based on
the source pod’s namespace and labels, plus the IP address for traffic that originates
outside your cluster. In Kubernetes 1.8, network policy can also limit outbound traffic with
the same set of selectors. A good starting point is to restrict ingress to your application
namespace by default as described in the Kubernetes Network Policy documentation.

The enforcement of network policy relies on your container network interface (CNI)
provider. Not all CNI providers implement these controls. Without them, Kubernetes
fails open—the API happily accepts your network policies, but the policies are not
enforced. If network access controls are important to you, make sure to run a provider,
such as Calico, that implements the controls.

Network border controls
Depending on your environment, you may want to enforce some ingress and egress
controls at the network border in addition to the pod-level controls enforced by
Kubernetes. In particular, in the scenario where an attacker has compromised one of
your applications and exploited your container runtime or kernel, you can’t trust the
node to enforce network access controls.

Limitations
Network access controls have some limitations in dynamic environments such as
Kubernetes. Difficulties include:

• Federating Kubernetes network policy across multiple clusters

• Integrating Kubernetes network-level controls and granular network-level controls
expressed outside of the pod networking layer (for example, in AWS EC2
Security Groups)

If you encounter these issues, consider whether you can use a more coarse-grained
network policy and rely on the application layer for fine-grained access control.

Application-layer access control
One solution to the problem of network-level access controls is strong application-layer
authentication, such as mutual TLS. A cryptographic application identity is powerful
because it allows that identity to be efficiently expressed across network boundaries.

Sidecars and the service mesh approach
Even with application identities provisioned, retrofitting existing applications to implement
mutual TLS can be frustrating, time consuming, and error prone. One solution is to
implement L7 authorization using the sidecar pattern. In this model, each application has
an adjacent proxy daemon that terminates and authenticates inbound connections and
transparently authenticates outbound connections. Kubernetes makes this easy by
allowing multiple containers to run together with a shared localhost network for the pod.
When this pattern is used throughout your cluster, it’s called a service mesh. Istio is an
early implementation of this approach.

One solution to the problem of
network-level access controls
is strong application-layer
authentication, such as mutual
TLS. A cryptographic application
identity is powerful because
it allows that identity to be
efficiently expressed across
network boundaries.

W H I T E PA P E R | 5

Security in Kubernetes

Node and container runtime hardening
You should consider the security of the container-to-host boundary. This is important even
in single-tenant environments because a remote code execution vulnerability, such as
Shellshock (CVE-2014-6271) or the Ruby YAML parsing vulnerability (CVE-2013-0156), can
turn your otherwise trusted workload into a malicious agent. Without proper hardening, it’s
possible for that single remote code execution vulnerability to escalate into a whole-node
or whole-cluster takeover.

Current container runtimes don’t provide the strongest possible sandboxing, but there are
some steps you can take to help mitigate the risk of container escape vulnerabilities:

• Segment your Kubernetes clusters by integrity level—a simple but very effective way to
limit your exposure to container escape vulnerabilities. For example, your dev and test
environments might be hosted in a different cluster than your production environment.

• Invest in painless host and kernel patching. Make sure that you have a way to test new
system updates (for example, a staging environment) and that your applications can
tolerate a rolling upgrade of the cluster without affecting application availability.

Kubernetes shines at orchestrating these upgrades. Once you build confidence in letting
Kubernetes dynamically rebalance application pods, node-level patch management
becomes relatively easy. You can automate a rolling upgrade that gracefully drains
each node and either upgrades it in place or (in an infrastructure-as-a-service [IaaS]
environment) replaces it with a fresh node. Investments in this area also improve your
overall resiliency to node-level outages:

• Run your applications as a non-root user. Root (UID 0) in a Linux container is still the
same user as root on the node. A combination of sandboxing mechanisms restricts what
code running in the container can do, but future Linux kernel vulnerabilities are more
likely to be exploitable by a root user than by a non-privileged user.

• Enable and configure extra Linux security modules, such as SELinux and AppArmor.
These tools let you enforce more restrictive sandboxing on particular containers. They
are valuable in many situations, but building and maintaining appropriate configurations
requires a time investment. They may not be appropriate for every application
or environment.

Enforcing isolation policies
Pod security policies provide a policy-driven mechanism for requiring applications in your
cluster to use container sandboxing in an approved way. For example, you can require
that all pods in a particular namespace run as non-root, do not mount host file systems,
and do not use host networking.

Patch management and CI/CD deployment pipelines
A successful pattern is to have most users interact with the production cluster only
through a deployment pipeline. This pipeline consists of one or more automated systems
that handle building code into a container image, running unit and integration tests, and
other validation steps such as pausing for manual approval. Depending on your needs,
developers could still have direct read-only access to the Kubernetes API or have a way
to escalate into pods during an incident.

A robust application deployment pipeline is also the key to remediating vulnerabilities
in container images. You can use tools like Clair to identify known vulnerabilities in the
libraries and packages you use, but to release patches in a timely manner, you need a
trusted, automated way of rebuilding and testing patched versions of the container.

A successful pattern is to have
most users interact with the
production cluster only through
a deployment pipeline.

W H I T E PA P E R | 6

Security in Kubernetes

Limiting churn
Healthy Kubernetes clusters are dynamic environments. New versions of applications are
deployed, nodes disappear for kernel upgrades, deployments scale up and down, and
(hopefully) the users of your application never notice. Making all this work in practice
requires some diligence, but it’s critical to reaping all the benefits of Kubernetes.

One tool that can help bound the amount of chaos introduced into your cluster is the pod
disruption budget. It’s useful when you have multiple automated systems and want to
ensure they don’t interact in unwanted ways. For example, an application-level bug might
leave some pods of your application temporarily unavailable. A pod disruption budget
could make sure that an automated rolling node upgrade doesn’t terminate the remaining
healthy copies of your application.

Overly privileged container builds
One Docker-specific anti-pattern to avoid in your build pipeline is mounting the host-level
Docker control socket /var/run/docker.sock into a container during a build. Access to this
socket is equivalent to root on the host, which means any running build could compromise
the node. This is doubly true if your build system runs builds prior to manual code review
(a common pattern).

Secrets management
Kubernetes has a core primitive for managing application secrets, appropriately called a
secret. Applications typically need secrets for two key reasons:

1 . They need access to a credential that proves their identity to another system (for
example, a database password or third-party API token) .

2 . They need a cryptographic secret for some intrinsic operation (for example, an HMAC
signing key for issuing signed HTTP cookies) .

Identity secrets
For the first use case, follow the efforts of the Secure Production Identity Framework
For Everyone (SPIFFE) project and the Container Identity working group for a long-term
solution to dynamically provisioning unique application identities. In the near term,
there is not a well-established best practice in this area, but some users have success
integrating with existing certificate provisioning workflows as part of a continuous
integration (CI)/continuous delivery (CD) pipeline. Simple Kubernetes-native solutions,
such as cert-manager, may also work for your use case.

Non-identity secrets
Best practices are still evolving for the second use case, but many users are integrating
with systems such as Vault that perform cryptographic operations in a centralized service.
Make sure you understand the entire chain of attestations involved in authenticating to
a system such as this because they often still depend on Kubernetes secret resources
as one step in the chain. For example, the Vault Kubernetes authorization back-end
authenticates pods by consuming a Kubernetes Service Account token, but that token is
stored as a secret object before it’s injected into the pod. This pattern also requires that
you trust Vault not to replay your token and impersonate the pod to the Kubernetes API.

Caveats for Kubernetes secrets
Unfortunately, Kubernetes secrets come with some caveats. Most importantly, many
commonly used components, such as ingress controllers, currently require permission to
read all secrets in your cluster. Secrets are also not encrypted at rest by default. Alpha
support for encryption is available in Kubernetes 1.7, but is not yet recommended for
production use. One mitigation is to use volume-level encryption (for example, dm-crypt
or cloud provider volume encryption) for your etcd data volumes.

The bedrock of security monitoring
is logging. You should generally
capture application logs, host-
level logs, Kubernetes API
audit logs, and cloud provider
logs (if applicable). There are
well-established patterns for
implementing log aggregation on
common cluster configurations.

W H I T E PA P E R | 7

Security in Kubernetes

Security monitoring and auditing
The right amount and type of security monitoring for your cluster depends largely on the
amount of time and staffing you have to respond to alerts and keep an eye on things. As a
general rule, you shouldn’t spend time building security monitoring systems that you don’t
have the time to maintain and tune. Start with the real-time (alert-based) and periodic
(audit review) analyst or operator workflows you want to enable, and build the monitoring
platform you need to enable those workflows.

Logging
The bedrock of security monitoring is logging. You should generally capture application
logs, host-level logs, Kubernetes API audit logs, and cloud provider logs (if applicable).
There are well-established patterns for implementing log aggregation on common
cluster configurations.

For security audit purposes, consider streaming your logs to an external location with
append-only access from within your cluster. For example, on AWS, you can create an
S3 bucket in an isolated AWS account and give append-only access to your cluster log
aggregator. This ensures your logs cannot be tampered with even in the case of a total
cluster compromise.

Network monitoring
Network-based security monitoring tools, such as a network intrusion detection system
(IDS) and web application firewalls, may work nearly out of the box, but making them work
well takes some effort. The biggest hurdle is that many tools expect IP addresses to be a
useful context for events. To integrate these tools with Kubernetes, consider enriching the
collected events with Kubernetes namespace, pod name, and pod label metadata. This
adds valuable context to the event that you can use for alerting or manual review, and can
make these traditional tools even more powerful in your cluster than in a more traditional
environment. Some monitoring tools can collect Kubernetes metadata already, but you
can also write custom event enrichment code to add this kind of metadata integration to
those that don’t.

Host event monitoring
It’s also possible to run a host-based IDS, such as file integrity monitoring and Linux
system call logging (for example, auditd), directly with Kubernetes, but the results are hard
to manage because the workload running on any particular node varies from hour to hour
as applications deploy and Kubernetes orchestrates pods.

To make sense of host-based events, you’ll again want to consider extending your existing
tools to include Kubernetes pod or container metadata in the context of captured events.
Newer systems such as Sysdig Falco include this context out of the box.

What to do now
How you secure your Kubernetes cluster depends in part on your available resources and
application requirements. Consider each element in the larger security picture and spend
time up front assessing how important it is to your overall needs. At a very high level,
some of our recommendations fit nicely into larger best practices in deployment, such as:

• Automated deployment pipeline and scheduler. This lets you simplify host and
application patch management with rolling upgrades that are integrated into your
overall development cycle.

• Integrated access controls at appropriate levels.

• Integrated logging and monitoring. You log and monitor for performance and
reliability—adding support for security-specific events and pod metadata is nontrivial
but vital. Exactly what to monitor depends on your specific needs.

How you secure your Kubernetes
cluster depends in part on your
available resources and application
requirements. Consider each
element in the larger security
picture and spend time up front
assessing how important it is to
your overall needs.

LEARN MORE ABOUT CLOUD NATIVE
TECHNOLOGY FROM VMWARE

To find out more about how VMware
can help you build, run, and manage
cloud native applications, visit
https://cloud.vmware.com/.

https://cloud.vmware.com/

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www .vmware .com Copyright © 2019 VMware, Inc.
All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies. Item No: 217250aq-vmw-wp-security-kubernetes-uslet 3/19

	Introduction
	Control plane authentication and authorization
	Network access control
	Restricting pod-to-pod traffic
	Network border controls
	Limitations

	Application-layer access control
	Sidecars and the service mesh approach
	Node and container runtime hardening
	Enforcing isolation policies

	Patch management and CI/CD deployment pipelines
	Limiting churn
	Overly privileged container builds

	Secrets management
	Identity secrets
	Non-identity secrets
	Caveats for Kubernetes secrets

	Security monitoring and auditing
	Logging
	Network monitoring
	Host event monitoring

	What to do now

