

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before

the official release of these titles.

Brendan Burns, Joe Beda, Kelsey Hightower, and
Lachlan Evenson

Kubernetes: Up and Running
Dive into the Future of Infrastructure

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

https://tanzu.vmware.com/tanzu

978-1-098-11013-0

Kubernetes: Up and Running
by Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Evenson

Copyright © 2022 Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Evenson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: John Devins
Development Editor: Sarah Gray
Production Editor: Katherine Tozer

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2017: First Edition
August 2019: Second Edition
September 2022: Third Edition

Revision History for the Early Release
2021-10-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492046530 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and VMWare. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492046530
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. Pods. 7
Pods in Kubernetes 8
Thinking with Pods 9
The Pod Manifest 10

Creating a Pod 10
Creating a Pod Manifest 11

Running Pods 12
Listing Pods 12
Pod Details 13
Deleting a Pod 14

Accessing Your Pod 14
Using Port Forwarding 14
Getting More Info with Logs 15
Running Commands in Your Container with exec 15
Copying Files to and from Containers 15

Health Checks 16
Liveness Probe 16
Readiness Probe 18
Types of Health Checks 18

Resource Management 18
Resource Requests: Minimum Required Resources 19
Capping Resource Usage with Limits 20

Persisting Data with Volumes 21
Using Volumes with Pods 21
Different Ways of Using Volumes with Pods 22
Persisting Data Using Remote Disks 23

Putting It All Together 24
Summary 25

v

2. Accessing Kubernetes from Common Programming Languages. 27
The Kubernetes API: A client’s perspective 28

OpenAPI and generated client libraries 28
But what about kubectl x ...? 29

Programming the Kubernetes API 29
Installing the client libraries 30
Authenticating to the Kubernetes API 30
Accessing the Kubernetes API 32
Putting it all together: Listing & Creating Pods in Python, Java and .NET 32
Creating & Patching objects 34
Watching Kubernetes APIs for changes 35
Interacting with Pods 37
Conclusion 40

3. Policy and Governance for Kubernetes Clusters. 41
Why Policy and Governance Matter 42
Admission Flow 43
Policy and Governance with Gatekeeper 43

What is Open Policy Agent? 44
Installing Gatekeeper 44
Configuring policies 47
Understanding Constraint Templates 50
Creating Constraints 51
Audit 52
Mutation 54
Data Replication 56
Metrics 58
Policy Library 58

Summary 58

vi | Table of Contents

CHAPTER 1

Pods

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

In earlier chapters we discussed how you might go about containerizing your applica‐
tion, but in real-world deployments of containerized applications you will often want
to colocate multiple applications into a single atomic unit, scheduled onto a single
machine.

A canonical example of such a deployment is illustrated in Figure 1-1, which consists
of a container serving web requests and a container synchronizing the filesystem with
a remote Git repository.

7

Figure 1-1. An example Pod with two containers and a shared filesystem

At first, it might seem tempting to wrap up both the web server and the Git syn‐
chronizer into a single container. After closer inspection, however, the reasons for the
separation become clear. First, the two different containers have significantly different
requirements in terms of resource usage. Take, for example, memory. Because the
web server is serving user requests, we want to ensure that it is always available and
responsive. On the other hand, the Git synchronizer isn’t really user-facing and has a
“best effort” quality of service.

Suppose that our Git synchronizer has a memory leak. We need to ensure that the Git
synchronizer cannot use up memory that we want to use for our web server, since
this can affect web server performance or even crash the server.

This sort of resource isolation is exactly the sort of thing that containers are designed
to accomplish. By separating the two applications into two separate containers, we
can ensure reliable web server operation.

Of course, the two containers are quite symbiotic; it makes no sense to schedule the
web server on one machine and the Git synchronizer on another. Consequently,
Kubernetes groups multiple containers into a single atomic unit called a Pod. (The
name goes with the whale theme of Docker containers, since a Pod is also a group of
whales.)

Though the concept of such sidecars seemed controversial or con‐
fusing when it was first introduced in Kubernetes, it has subse‐
quently been adopted by a variety of different applications to
deploy their infrastructure. For example, several Service Mesh
implementations use sidecars to inject network management into
an application’s Pod.

Pods in Kubernetes
A Pod represents a collection of application containers and volumes running in the
same execution environment. Pods, not containers, are the smallest deployable arti‐

8 | Chapter 1: Pods

fact in a Kubernetes cluster. This means all of the containers in a Pod always land on
the same machine.

Each container within a Pod runs in its own cgroup, but they share a number of
Linux namespaces.

Applications running in the same Pod share the same IP address and port space (net‐
work namespace), have the same hostname (UTS namespace), and can communicate
using native interprocess communication channels over System V IPC or POSIX
message queues (IPC namespace). However, applications in different Pods are iso‐
lated from each other; they have different IP addresses, different hostnames, and
more. Containers in different Pods running on the same node might as well be on
different servers.

Thinking with Pods
One of the most common questions that occurs in the adoption of Kubernetes is
“What should I put in a Pod?”

Sometimes people see Pods and think, “Aha! A WordPress container and a MySQL
database container should be in the same Pod.” However, this kind of Pod is actually
an example of an anti-pattern for Pod construction. There are two reasons for this.
First, WordPress and its database are not truly symbiotic. If the WordPress container
and the database container land on different machines, they still can work together
quite effectively, since they communicate over a network connection. Secondly, you
don’t necessarily want to scale WordPress and the database as a unit. WordPress itself
is mostly stateless, and thus you may want to scale your WordPress frontends in
response to frontend load by creating more WordPress Pods. Scaling a MySQL data‐
base is much trickier, and you would be much more likely to increase the resources
dedicated to a single MySQL Pod. If you group the WordPress and MySQL containers
together in a single Pod, you are forced to use the same scaling strategy for both con‐
tainers, which doesn’t fit well.

In general, the right question to ask yourself when designing Pods is, “Will these con‐
tainers work correctly if they land on different machines?” If the answer is “no,” a Pod
is the correct grouping for the containers. If the answer is “yes,” multiple Pods is
probably the correct solution. In the example at the beginning of this chapter, the two
containers interact via a local filesystem. It would be impossible for them to operate
correctly if the containers were scheduled on different machines.

In the remaining sections of this chapter, we will describe how to create, introspect,
manage, and delete Pods in Kubernetes.

Thinking with Pods | 9

The Pod Manifest
Pods are described in a Pod manifest. The Pod manifest is just a text-file representa‐
tion of the Kubernetes API object. Kubernetes strongly believes in declarative configu‐
ration. Declarative configuration means that you write down the desired state of the
world in a configuration and then submit that configuration to a service that takes
actions to ensure the desired state becomes the actual state.

Declarative configuration is different from imperative configura‐
tion, where you simply take a series of actions (e.g., apt-get
install foo) to modify the world. Years of production experience
have taught us that maintaining a written record of the system’s
desired state leads to a more manageable, reliable system. Declara‐
tive configuration enables numerous advantages, including code
review for configurations as well as documenting the current state
of the world for distributed teams. Additionally, it is the basis for
all of the self-healing behaviors in Kubernetes that keep applica‐
tions running without user action.

The Kubernetes API server accepts and processes Pod manifests before storing them
in persistent storage (etcd). The scheduler also uses the Kubernetes API to find Pods
that haven’t been scheduled to a node. The scheduler then places the Pods onto nodes
depending on the resources and other constraints expressed in the Pod manifests.
Multiple Pods can be placed on the same machine as long as there are sufficient
resources. However, scheduling multiple replicas of the same application onto the
same machine is worse for reliability, since the machine is a single failure domain.
Consequently, the Kubernetes scheduler tries to ensure that Pods from the same
application are distributed onto different machines for reliability in the presence of
such failures. Once scheduled to a node, Pods don’t move and must be explicitly
destroyed and rescheduled.

Multiple instances of a Pod can be deployed by repeating the workflow described
here. However, ReplicaSets (???) are better suited for running multiple instances of a
Pod. (It turns out they’re also better at running a single Pod, but we’ll get into that
later.)

Creating a Pod
The simplest way to create a Pod is via the imperative kubectl run command. For
example, to run our same kuard server, use:

$ kubectl run kuard --generator=run-pod/v1 \
 --image=gcr.io/kuar-demo/kuard-amd64:blue

You can see the status of this Pod by running:

10 | Chapter 1: Pods

$ kubectl get pods

You may initially see the container as Pending, but eventually you will see it transition
to Running, which means that the Pod and its containers have been successfully
created.

For now, you can delete this Pod by running:

$ kubectl delete pods/kuard

We will now move on to writing a complete Pod manifest by hand.

Creating a Pod Manifest
Pod manifests can be written using YAML or JSON, but YAML is generally preferred
because it is slightly more human-editable and has the ability to add comments. Pod
manifests (and other Kubernetes API objects) should really be treated in the same
way as source code, and things like comments help explain the Pod to new team
members who are looking at them for the first time.

Pod manifests include a couple of key fields and attributes: namely a metadata sec‐
tion for describing the Pod and its labels, a spec section for describing volumes, and a
list of containers that will run in the Pod.

In ??? we deployed kuard using the following Docker command:

$ docker run -d --name kuard \
 --publish 8080:8080 \
 gcr.io/kuar-demo/kuard-amd64:blue

A similar result can be achieved by instead writing Example 1-1 to a file named
kuard-pod.yaml and then using kubectl commands to load that manifest to
Kubernetes.

Example 1-1. kuard-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

The Pod Manifest | 11

Running Pods
In the previous section we created a Pod manifest that can be used to start a Pod run‐
ning kuard. Use the kubectl apply command to launch a single instance of kuard:

$ kubectl apply -f kuard-pod.yaml

The Pod manifest will be submitted to the Kubernetes API server. The Kubernetes
system will then schedule that Pod to run on a healthy node in the cluster, where it
will be monitored by the kubelet daemon process. Don’t worry if you don’t under‐
stand all the moving parts of Kubernetes right now; we’ll get into more details
throughout the book.

Listing Pods
Now that we have a Pod running, let’s go find out some more about it. Using the
kubectl command-line tool, we can list all Pods running in the cluster. For now, this
should only be the single Pod that we created in the previous step:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kuard 1/1 Running 0 44s

You can see the name of the Pod (kuard) that we gave it in the previous YAML file. In
addition to the number of ready containers (1/1), the output also shows the status,
the number of times the Pod was restarted, as well as the age of the Pod.

If you ran this command immediately after the Pod was created, you might see:

NAME READY STATUS RESTARTS AGE
kuard 0/1 Pending 0 1s

The Pending state indicates that the Pod has been submitted but hasn’t been sched‐
uled yet.

If a more significant error occurs (e.g., an attempt to create a Pod with a container
image that doesn’t exist), it will also be listed in the status field.

By default, the kubectl command-line tool tries to be concise in
the information it reports, but you can get more information via
command-line flags. Adding -o wide to any kubectl command
will print out slightly more information (while still trying to keep
the information to a single line). Adding -o json or -o yaml will
print out the complete objects in JSON or YAML, respectively.

12 | Chapter 1: Pods

Pod Details
Sometimes, the single-line view is insufficient because it is too terse. Additionally,
Kubernetes maintains numerous events about Pods that are present in the event
stream, not attached to the Pod object.

To find out more information about a Pod (or any Kubernetes object) you can use the
kubectl describe command. For example, to describe the Pod we previously cre‐
ated, you can run:

$ kubectl describe pods kuard

This outputs a bunch of information about the Pod in different sections. At the top is
basic information about the Pod:

Name: kuard
Namespace: default
Node: node1/10.0.15.185
Start Time: Sun, 02 Jul 2017 15:00:38 -0700
Labels: <none>
Annotations: <none>
Status: Running
IP: 192.168.199.238
Controllers: <none>

Then there is information about the containers running in the Pod:

Containers:
 kuard:
 Container ID: docker://055095…
 Image: gcr.io/kuar-demo/kuard-amd64:blue
 Image ID: docker-pullable://gcr.io/kuar-demo/kuard-amd64@sha256:a580…
 Port: 8080/TCP
 State: Running
 Started: Sun, 02 Jul 2017 15:00:41 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-cg5f5
(ro)

Finally, there are events related to the Pod, such as when it was scheduled, when its
image was pulled, and if/when it had to be restarted because of failing health checks:

Events:
 Seen From SubObjectPath Type Reason Message
 ---- ---- ------------- -------- ------ -------
 50s default-scheduler Normal Scheduled Success…
 49s kubelet, node1 spec.containers{kuard} Normal Pulling pulling…
 47s kubelet, node1 spec.containers{kuard} Normal Pulled Success…
 47s kubelet, node1 spec.containers{kuard} Normal Created Created…
 47s kubelet, node1 spec.containers{kuard} Normal Started Started…

Running Pods | 13

Deleting a Pod
When it is time to delete a Pod, you can delete it either by name:

$ kubectl delete pods/kuard

or using the same file that you used to create it:

$ kubectl delete -f kuard-pod.yaml

When a Pod is deleted, it is not immediately killed. Instead, if you run kubectl get
pods you will see that the Pod is in the Terminating state. All Pods have a termina‐
tion grace period. By default, this is 30 seconds. When a Pod is transitioned to
Terminating it no longer receives new requests. In a serving scenario, the grace
period is important for reliability because it allows the Pod to finish any active
requests that it may be in the middle of processing before it is terminated.

It’s important to note that when you delete a Pod, any data stored in the containers
associated with that Pod will be deleted as well. If you want to persist data across mul‐
tiple instances of a Pod, you need to use PersistentVolumes, described at the end of
this chapter.

Accessing Your Pod
Now that your Pod is running, you’re going to want to access it for a variety of rea‐
sons. You may want to load the web service that is running in the Pod. You may want
to view its logs to debug a problem that you are seeing, or even execute other com‐
mands in the context of the Pod to help debug. The following sections detail various
ways that you can interact with the code and data running inside your Pod.

Using Port Forwarding
Later in the book, we’ll show how to expose a service to the world or other containers
using load balancers—but oftentimes you simply want to access a specific Pod, even if
it’s not serving traffic on the internet.

To achieve this, you can use the port-forwarding support built into the Kubernetes
API and command-line tools.

When you run:

$ kubectl port-forward kuard 8080:8080

a secure tunnel is created from your local machine, through the Kubernetes master, to
the instance of the Pod running on one of the worker nodes.

As long as the port-forward command is still running, you can access the Pod (in
this case the kuard web interface) at http://localhost:8080.

14 | Chapter 1: Pods

http://localhost:8080

Getting More Info with Logs
When your application needs debugging, it’s helpful to be able to dig deeper than
describe to understand what the application is doing. Kubernetes provides two com‐
mands for debugging running containers. The kubectl logs command downloads
the current logs from the running instance:

$ kubectl logs kuard

Adding the -f flag will cause you to continuously stream logs.

The kubectl logs command always tries to get logs from the currently running con‐
tainer. Adding the --previous flag will get logs from a previous instance of the con‐
tainer. This is useful, for example, if your containers are continuously restarting due
to a problem at container startup.

While using kubectl logs is useful for one-off debugging of con‐
tainers in production environments, it’s generally useful to use a log
aggregation service. There are several open source log aggregation
tools, like fluentd and elasticsearch, as well as numerous cloud
logging providers. Log aggregation services provide greater
capacity for storing a longer duration of logs, as well as rich log
searching and filtering capabilities. Finally, they often provide the
ability to aggregate logs from multiple Pods into a single view.

Running Commands in Your Container with exec
Sometimes logs are insufficient, and to truly determine what’s going on you need to
execute commands in the context of the container itself. To do this you can use:

$ kubectl exec kuard date

You can also get an interactive session by adding the -it flags:

$ kubectl exec -it kuard ash

Copying Files to and from Containers
At times you may need to copy files from a remote container to a local machine for
more in-depth exploration. For example, you can use a tool like Wireshark to visual‐
ize tcpdump packet captures. Suppose you had a file called /captures/capture3.txt
inside a container in your Pod. You could securely copy that file to your local
machine by running:

$ kubectl cp <pod-name>:/captures/capture3.txt ./capture3.txt

Accessing Your Pod | 15

Other times you may need to copy files from your local machine into a container.
Let’s say you want to copy $HOME/config.txt to a remote container. In this case, you
can run:

$ kubectl cp $HOME/config.txt <pod-name>:/config.txt

Generally speaking, copying files into a container is an anti-pattern. You really should
treat the contents of a container as immutable. But occasionally it’s the most immedi‐
ate way to stop the bleeding and restore your service to health, since it is quicker than
building, pushing, and rolling out a new image. Once the bleeding is stopped, how‐
ever, it is critically important that you immediately go and do the image build and
rollout, or you are guaranteed to forget the local change that you made to your con‐
tainer and overwrite it in the subsequent regularly scheduled rollout.

Health Checks
When you run your application as a container in Kubernetes, it is automatically kept
alive for you using a process health check. This health check simply ensures that the
main process of your application is always running. If it isn’t, Kubernetes restarts it.

However, in most cases, a simple process check is insufficient. For example, if your
process has deadlocked and is unable to serve requests, a process health check will
still believe that your application is healthy since its process is still running.

To address this, Kubernetes introduced health checks for application liveness.
Liveness health checks run application-specific logic (e.g., loading a web page) to ver‐
ify that the application is not just still running, but is functioning properly. Since
these liveness health checks are application-specific, you have to define them in your
Pod manifest.

Liveness Probe
Once the kuard process is up and running, we need a way to confirm that it is
actually healthy and shouldn’t be restarted. Liveness probes are defined per container,
which means each container inside a Pod is health-checked separately. In
Example 1-2, we add a liveness probe to our kuard container, which runs an HTTP
request against the /healthy path on our container.

Example 1-2. kuard-pod-health.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:

16 | Chapter 1: Pods

 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 livenessProbe:
 httpGet:
 path: /healthy
 port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 periodSeconds: 10
 failureThreshold: 3
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

The preceding Pod manifest uses an httpGet probe to perform an HTTP GET request
against the /healthy endpoint on port 8080 of the kuard container. The probe sets an
initialDelaySeconds of 5, and thus will not be called until 5 seconds after all the
containers in the Pod are created. The probe must respond within the 1-second time‐
out, and the HTTP status code must be equal to or greater than 200 and less than 400
to be considered successful. Kubernetes will call the probe every 10 seconds. If more
than three consecutive probes fail, the container will fail and restart.

You can see this in action by looking at the kuard status page. Create a Pod using this
manifest and then port-forward to that Pod:

$ kubectl apply -f kuard-pod-health.yaml
$ kubectl port-forward kuard 8080:8080

Point your browser to http://localhost:8080. Click the “Liveness Probe” tab. You
should see a table that lists all of the probes that this instance of kuard has received. If
you click the “Fail” link on that page, kuard will start to fail health checks. Wait long
enough and Kubernetes will restart the container. At that point the display will reset
and start over again. Details of the restart can be found with kubectl describe pods
kuard. The “Events” section will have text similar to the following:

Killing container with id docker://2ac946...:pod "kuard_default(9ee84...)"
container "kuard" is unhealthy, it will be killed and re-created.

While the default response to a failed liveness check is to restart the
Pod, the actual behavior is governed by the Pod’s restartPolicy.
There are three options for the restart policy: Always (the default),
OnFailure (restart only on liveness failure or nonzero process exit
code), or Never.

Health Checks | 17

http://localhost:8080

Readiness Probe
Of course, liveness isn’t the only kind of health check we want to perform. Kubernetes
makes a distinction between liveness and readiness. Liveness determines if an applica‐
tion is running properly. Containers that fail liveness checks are restarted. Readiness
describes when a container is ready to serve user requests. Containers that fail readi‐
ness checks are removed from service load balancers. Readiness probes are config‐
ured similarly to liveness probes. We explore Kubernetes services in detail in ???.

Combining the readiness and liveness probes helps ensure only healthy containers
are running within the cluster.

Types of Health Checks
In addition to HTTP checks, Kubernetes also supports tcpSocket health checks that
open a TCP socket; if the connection is successful, the probe succeeds. This style of
probe is useful for non-HTTP applications; for example, databases or other non–
HTTP-based APIs.

Finally, Kubernetes allows exec probes. These execute a script or program in the con‐
text of the container. Following typical convention, if this script returns a zero exit
code, the probe succeeds; otherwise, it fails. exec scripts are often useful for custom
application validation logic that doesn’t fit neatly into an HTTP call.

Resource Management
Most people move into containers and orchestrators like Kubernetes because of the
radical improvements in image packaging and reliable deployment they provide. In
addition to application-oriented primitives that simplify distributed system develop‐
ment, equally important is the ability to increase the overall utilization of the com‐
pute nodes that make up the cluster. The basic cost of operating a machine, either
virtual or physical, is basically constant regardless of whether it is idle or fully loaded.
Consequently, ensuring that these machines are maximally active increases the effi‐
ciency of every dollar spent on infrastructure.

Generally speaking, we measure this efficiency with the utilization metric. Utilization
is defined as the amount of a resource actively being used divided by the amount of a
resource that has been purchased. For example, if you purchase a one-core machine,
and your application uses one-tenth of a core, then your utilization is 10%.

With scheduling systems like Kubernetes managing resource packing, you can drive
your utilization to greater than 50%.

To achieve this, you have to tell Kubernetes about the resources your application
requires, so that Kubernetes can find the optimal packing of containers onto pur‐
chased machines.

18 | Chapter 1: Pods

Kubernetes allows users to specify two different resource metrics. Resource requests
specify the minimum amount of a resource required to run the application. Resource
limits specify the maximum amount of a resource that an application can consume.
Both of these resource definitions are described in greater detail in the following
sections.

Resource Requests: Minimum Required Resources
With Kubernetes, a Pod requests the resources required to run its containers. Kuber‐
netes guarantees that these resources are available to the Pod. The most commonly
requested resources are CPU and memory, but Kubernetes has support for other
resource types as well, such as GPUs and more.

For example, to request that the kuard container lands on a machine with half a CPU
free and gets 128 MB of memory allocated to it, we define the Pod as shown in
Example 1-3.

Example 1-3. kuard-pod-resreq.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 resources:
 requests:
 cpu: "500m"
 memory: "128Mi"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Resources are requested per container, not per Pod. The total
resources requested by the Pod is the sum of all resources reques‐
ted by all containers in the Pod. The reason for this is that in many
cases the different containers have very different CPU require‐
ments. For example, in the web server and data synchronizer Pod,
the web server is user-facing and likely needs a great deal of CPU,
while the data synchronizer can make do with very little.

Resource Management | 19

Request limit details
Requests are used when scheduling Pods to nodes. The Kubernetes scheduler will
ensure that the sum of all requests of all Pods on a node does not exceed the capacity
of the node. Therefore, a Pod is guaranteed to have at least the requested resources
when running on the node. Importantly, “request” specifies a minimum. It does not
specify a maximum cap on the resources a Pod may use. To explore what this means,
let’s look at an example.

Imagine that we have container whose code attempts to use all available CPU cores.
Suppose that we create a Pod with this container that requests 0.5 CPU. Kubernetes
schedules this Pod onto a machine with a total of 2 CPU cores.

As long as it is the only Pod on the machine, it will consume all 2.0 of the available
cores, despite only requesting 0.5 CPU.

If a second Pod with the same container and the same request of 0.5 CPU lands on
the machine, then each Pod will receive 1.0 cores.

If a third identical Pod is scheduled, each Pod will receive 0.66 cores. Finally, if a
fourth identical Pod is scheduled, each Pod will receive the 0.5 core it requested, and
the node will be at capacity.

CPU requests are implemented using the cpu-shares functionality in the Linux
kernel.

Memory requests are handled similarly to CPU, but there is an
important difference. If a container is over its memory request, the
OS can’t just remove memory from the process, because it’s been
allocated. Consequently, when the system runs out of memory, the
kubelet terminates containers whose memory usage is greater
than their requested memory. These containers are automatically
restarted, but with less available memory on the machine for the
container to consume.

Since resource requests guarantee resource availability to a Pod, they are critical to
ensuring that containers have sufficient resources in high-load situations.

Capping Resource Usage with Limits
In addition to setting the resources required by a Pod, which establishes the mini‐
mum resources available to the Pod, you can also set a maximum on a Pod’s resource
usage via resource limits.

In our previous example we created a kuard Pod that requested a minimum of 0.5 of
a core and 128 MB of memory. In the Pod manifest in Example 1-4, we extend this
configuration to add a limit of 1.0 CPU and 256 MB of memory.

20 | Chapter 1: Pods

Example 1-4. kuard-pod-reslim.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 resources:
 requests:
 cpu: "500m"
 memory: "128Mi"
 limits:
 cpu: "1000m"
 memory: "256Mi"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

When you establish limits on a container, the kernel is configured to ensure that con‐
sumption cannot exceed these limits. A container with a CPU limit of 0.5 cores will
only ever get 0.5 cores, even if the CPU is otherwise idle. A container with a memory
limit of 256 MB will not be allowed additional memory (e.g., malloc will fail) if its
memory usage exceeds 256 MB.

Persisting Data with Volumes
When a Pod is deleted or a container restarts, any and all data in the container’s file‐
system is also deleted. This is often a good thing, since you don’t want to leave around
cruft that happened to be written by your stateless web application. In other cases,
having access to persistent disk storage is an important part of a healthy application.
Kubernetes models such persistent storage.

Using Volumes with Pods
To add a volume to a Pod manifest, there are two new stanzas to add to our configu‐
ration. The first is a new spec.volumes section. This array defines all of the volumes
that may be accessed by containers in the Pod manifest. It’s important to note that not
all containers are required to mount all volumes defined in the Pod. The second addi‐
tion is the volumeMounts array in the container definition. This array defines the vol‐
umes that are mounted into a particular container, and the path where each volume
should be mounted. Note that two different containers in a Pod can mount the same
volume at different mount paths.

Persisting Data with Volumes | 21

The manifest in Example 1-5 defines a single new volume named kuard-data, which
the kuard container mounts to the /data path.

Example 1-5. kuard-pod-vol.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 volumes:
 - name: "kuard-data"
 hostPath:
 path: "/var/lib/kuard"
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 volumeMounts:
 - mountPath: "/data"
 name: "kuard-data"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Different Ways of Using Volumes with Pods
There are a variety of ways you can use data in your application. The following are a
few, and the recommended patterns for Kubernetes.

Communication/synchronization
In the first example of a Pod, we saw how two containers used a shared volume to
serve a site while keeping it synchronized to a remote Git location. To achieve this,
the Pod uses an emptyDir volume. Such a volume is scoped to the Pod’s lifespan, but
it can be shared between two containers, forming the basis for communication
between our Git sync and web serving containers.

Cache
An application may use a volume that is valuable for performance, but not required
for correct operation of the application. For example, perhaps the application keeps
prerendered thumbnails of larger images. Of course, they can be reconstructed from
the original images, but that makes serving the thumbnails more expensive. You want
such a cache to survive a container restart due to a health-check failure, and thus
emptyDir works well for the cache use case as well.

22 | Chapter 1: Pods

Persistent data
Sometimes you will use a volume for truly persistent data—data that is independent
of the lifespan of a particular Pod, and should move between nodes in the cluster if a
node fails or a Pod moves to a different machine for some reason. To achieve this,
Kubernetes supports a wide variety of remote network storage volumes, including
widely supported protocols like NFS and iSCSI as well as cloud provider network
storage like Amazon’s Elastic Block Store, Azure’s Files and Disk Storage, as well as
Google’s Persistent Disk.

Mounting the host filesystem
Other applications don’t actually need a persistent volume, but they do need some
access to the underlying host filesystem. For example, they may need access to
the /dev filesystem in order to perform raw block-level access to a device on the sys‐
tem. For these cases, Kubernetes supports the hostPath volume, which can mount
arbitrary locations on the worker node into the container.

The previous example uses the hostPath volume type. The volume created is /var/lib/
kuard on the host.

Persisting Data Using Remote Disks
Oftentimes, you want the data a Pod is using to stay with the Pod, even if it is restar‐
ted on a different host machine.

To achieve this, you can mount a remote network storage volume into your Pod.
When using network-based storage, Kubernetes automatically mounts and unmounts
the appropriate storage whenever a Pod using that volume is scheduled onto a partic‐
ular machine.

There are numerous methods for mounting volumes over the network. Kubernetes
includes support for standard protocols such as NFS and iSCSI as well as cloud pro‐
vider–based storage APIs for the major cloud providers (both public and private). In
many cases, the cloud providers will also create the disk for you if it doesn’t already
exist.

Here is an example of using an NFS server:

...
Rest of pod definition above here
volumes:
 - name: "kuard-data"
 nfs:
 server: my.nfs.server.local
 path: "/exports"

Persisting Data with Volumes | 23

Persistent volumes are a deep topic that has many different details: in particular, the
manner in which persistent volumes, persistent volume claims, and dynamic volume
provisioning work together. There is a more in-depth examination of the subject
in ???.

Putting It All Together
Many applications are stateful, and as such we must preserve any data and ensure
access to the underlying storage volume regardless of what machine the application
runs on. As we saw earlier, this can be achieved using a persistent volume backed by
network-attached storage. We also want to ensure that a healthy instance of the
application is running at all times, which means we want to make sure the container
running kuard is ready before we expose it to clients.

Through a combination of persistent volumes, readiness and liveness probes, and
resource restrictions, Kubernetes provides everything needed to run stateful applica‐
tions reliably. Example 1-6 pulls this all together into one manifest.

Example 1-6. kuard-pod-full.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 volumes:
 - name: "kuard-data"
 nfs:
 server: my.nfs.server.local
 path: "/exports"
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP
 resources:
 requests:
 cpu: "500m"
 memory: "128Mi"
 limits:
 cpu: "1000m"
 memory: "256Mi"
 volumeMounts:
 - mountPath: "/data"
 name: "kuard-data"
 livenessProbe:

24 | Chapter 1: Pods

 httpGet:
 path: /healthy
 port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 periodSeconds: 10
 failureThreshold: 3
 readinessProbe:
 httpGet:
 path: /ready
 port: 8080
 initialDelaySeconds: 30
 timeoutSeconds: 1
 periodSeconds: 10
 failureThreshold: 3

Summary
Pods represent the atomic unit of work in a Kubernetes cluster. Pods are comprised of
one or more containers working together symbiotically. To create a Pod, you write a
Pod manifest and submit it to the Kubernetes API server by using the command-line
tool or (less frequently) by making HTTP and JSON calls to the server directly.

Once you’ve submitted the manifest to the API server, the Kubernetes scheduler finds
a machine where the Pod can fit and schedules the Pod to that machine. Once sched‐
uled, the kubelet daemon on that machine is responsible for creating the containers
that correspond to the Pod, as well as performing any health checks defined in the
Pod manifest.

Once a Pod is scheduled to a node, no rescheduling occurs if that node fails. Addi‐
tionally, to create multiple replicas of the same Pod you have to create and name them
manually. In a later chapter we introduce the ReplicaSet object and show how you can
automate the creation of multiple identical Pods and ensure that they are recreated in
the event of a node machine failure.

Summary | 25

CHAPTER 2

Accessing Kubernetes from Common
Programming Languages

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 18th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Though most of this book is dedicated to using declarative YAML configurations
either directly via kubectl or through tools like Helm, there are situations when it is
necessary to interact with the Kubernetes API directly from a programming language.
For example the authors of the Helm tool itself needed to write that application in a
programming language. More generally this is common if you need to write some
additional tool, like a kubectl plugin, or a more complex piece of code, like a Kuber‐
netes operator.

While much of the Kubernetes ecosystem is written in the Go programming lan‐
guage, and indeed the Go client for Kubernetes has the richest and most extensive cli‐
ent. There are a high quality clients for most common programming languages (and
even some uncommon ones as well). Because there is so much documentation, code
and examples of how to use the Go client already out on the internet, this chapter will

27

cover the basics of interacting with the Kubernetes API server with examples in
Python, Java and C#.

The Kubernetes API: A client’s perspective
At the end of the day, the Kubernetes API server is just an HTTP(S) server and that is
exactly how each client library perceives it. Though each client has a lot of additional
logic that implements the various API calls and serializes to and from JSON. Given
this, you might be tempted to simply use a plain HTTP client to work with the Kuber‐
netes APIs, but the client libraries wrap these various HTTP calls into meaningful
APIs (e.g. readNamespacedPod(...)) that make your code more readable, and mean‐
ingful typed object-models (e.g. Deployment) which facilitate static type-checking and
therefor fewer bugs. Perhaps more importantly, the client libraries also implement
Kubernetes specific capabilities like loading authorization information from a “Kube‐
config” file or from a Pod’s environment. The clients also provide implementations of
the non RESTful parts of the Kubernetes API surface area like port-forward, logs and
watches. We’l describe these advanced capabilities in later sections.

OpenAPI and generated client libraries
The set of resources and functions in the Kubernetes API is huge. There are many
different resources in different api groups and many different operations on each of
these resources. Keeping up with all of these different resources and resource versions
would be a massive (and unmistakeably boring) undertaking if developers had to
hand-author all of these API calls. Especially when considering that clients have to be
hand-written across each of the different programming languages. Instead the clients
take a different approach and the basics of interacting with the Kubernetes API server
are all generated by a computer program that is sort of like a compiler in reverse. The
code generator for the API clients takes a data specification for the Kubernetes API
and uses this specification to generate a client for a specific languag.

The Kubernetes API is expressed in a format known as OpenAPI (or previously as
Swagger) which is the most common schema for representing REST-ful APIs. To give
you a sense of the size of the Kubernetes API, the OpenAPI specification found on
GitHub (https://github.com/kubernetes/kubernetes/blob/master/api/openapi-spec/swag
ger.json) is over four megabytes in size. That’s a pretty big text file! The official Kuber‐
netes client libraries are all generated using the same core code generation logic,
which can be found on GitHub at https://github.com/kubernetes-client/gen. It is
unlikely that you will actually have to generate the client libraries yourself, but none‐
theless it is useful to understand the process by which these libraries are created. In
particular, because most of the client code is generated, updates and fixes can’t be
made directly in the generated client code, since it would be overwritten the next
time the API was generated. Instead, when an error in a client is found, fixes need to

28 | Chapter 2: Accessing Kubernetes from Common Programming Languages

https://github.com/kubernetes/kubernetes/blob/master/api/openapi-spec/swagger.json
https://github.com/kubernetes/kubernetes/blob/master/api/openapi-spec/swagger.json
https://github.com/kubernetes-client/gen

be made to either the OpenAPI specification (if the error is in the specification itself)
or in the code generator (if the error is in the generated code). Although this process
can seem excessively complex, it is the only way that a small number of Kubernetes
client authors can keep up with the breadth of the Kubernetes API.

But what about kubectl x ...?
When you start implementing your own logic for interacting with the Kubernetes
API, it probably won’t be long before you find yourself asking how to do kubectl x.
Most people start with the kubectl tool when they begin learning Kubernetes and
they consequently expect that there is a 1-1 mapping between the capabilities in
kubectl and the Kubernetes API. While it is the case that some commands (e.g.
kubectl get pods) are directly represented in the Kubernetes API. Most of the more
sophisticated features are actually a larger number of API calls with complex logic in
the kubectl tool.

This balance between client side and server side features has been a design trade-off
since the beginning of Kubernetes. Many features that are now present in the API
server began as client side implementions in kubectl. For example, the rollout capa‐
bilities now implemented on the server by the Deployment resource were previously
implemented in the client. Likewise until very recently kubectl apply ... was only
available within the command line tool, but was migrated to the server as the server
side apply capabilities that will be discussed later in this chapter.

Despite the general trajectory towards server side implementations, there are still sig‐
nificant capabilities which remain in the client. For these capabilities, there has been
significant work in some of the clients (e.g. the io.kubernetes.client.exten
ded.kubectl package in the Java client) that attempt to emulate many of the kubectl
capabilities.

If you can’t find the functionality that you are looking for in your client library, a use‐
ful trick is to add the --v=10 flag to your kubectl command which will turn on ver‐
bose logging including all of the HTTP requests and responses sent to the Kubernetes
API server. You can use this logging to reconstruct much of what kubectl is doing. If
you still need to dig deeper, the kubectl source code is also available within the
Kubernetes repository.

Programming the Kubernetes API
Now you have a deeper perspective about how the Kubernetes API works and the cli‐
ent and server interact. In the following sections we’ll go through how to authentica‐
ted to the Kubernetes API server, interact with resources and finally close with
advanced topics from writing operators to interacting with Pods for interactive oper‐
ations.

Programming the Kubernetes API | 29

Installing the client libraries
Before you can start programming with the Kubernetes API you need to find the cli‐
ent libraries. We will be using the official client libraries produced by the Kubernetes
project itself, though there are also a number of high-quality clients developed as
independent projects. The client libraries are all hosted under the kubernetes-
client repository on Github:

• Python
• Java
• Javascript
• .NET

Each of these projects features a compatability matrix to show which versions of the
client work with which versions of the Kubernetes API and also give instructions for
installing the libraries using the package managers (e.g. npm) associated with a partic‐
ular programming language.

Authenticating to the Kubernetes API
The Kubernetes API server wouldn’t be very safe if it allowed anyone in the world to
access it and read or write the resources that it orchestrates. Consequentally the first
step in programming the Kubernetes API is connecting to it and identifying yourself
for authentication. Because the API server is an HTTP server at it’s core, these meth‐
ods of authentication are core HTTP authentication methods. The very first imple‐
mentations of Kubernetes used basic HTTP authentication via a user and password
combination, but this approach has been deprecated in favor of more modern
authentication infrastructure.

If you have been using the kubectl command line tool for your interactions with
Kubernetes, you may not have considered the implementation details of authentica‐
tion. Fortunately the client libraries generally make it easy to connect to the API.
However, a basic understanding of how Kubernetes authentication works is still use‐
ful for debugging when things go wrong.

There are two basic ways that the kubectl tool and clients obtain authentication
information: * From a “kubeconfig” file * From the context of a Pod within the
Kubernetes cluster.

Code that is not running inside a Kubernetes cluster requires a “kubeconfig” file to
provide the necessary information for authentication. By default the client searches
for this file in ${HOME}/.kube/config or the $KUBECONFIG environment variables. If
the KUBECONFIG variable is present it takes precedence over any config located in the
default home location. The kubeconfig file contains all of the information necessary

30 | Chapter 2: Accessing Kubernetes from Common Programming Languages

https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/java
https://github.com/kubernetes-client/javascript
https://github.com/kubernetes-client/csharp

to access the Kubernetes API server. The clients all have easy to use calls to create a
client either from the default locations, or from a Kubeconfig file supplied in the code
itself:

Java
ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);

Python
config.load_kube_config()

.NET
var config = KubernetesClientConfiguration.BuildDefaultConfig();
var client = new Kubernetes(config);

Authentication for many cloud providers occurs via an external
executable which knows how to generate a token for the Kuber‐
netes cluster. This executable is often installed as part of the cloud
providers command line tooling. When you write code to interact
with the Kubernetes API, you need to make sure that this exe‐
cutable is also available in the context where the code is running so
that it can be executed to obtain the token.

Within the context of a Pod in a Kubernetes cluster, the code running in the Pod has
access to a Kubernetes service account which is associated with that Pod. The files
containing the relevant token and certificate authority are placed into the Pod by
Kubernetes as a volume when the Pod is created and within a Kubernetes cluster, the
api server is always available at a fixed DNS name, generally kubernetes. Because all
of the necessary data is present in the Pod a kubeconfig file is unnecessary and the
client can synthesisze it’s configuration from its context. The clients all have easy to
use calls to create such an “in cluster” client:

Java
ApiClient client = ClientBuilder.cluster().build();
Configuration.setDefaultApiClient(client);

Python
config.load_incluster_config()

.NET
var config = KubernetesClientConfiguration.InClusterConfig()
var client = new Kubernetes(config);

Programming the Kubernetes API | 31

The default service account associated with Pods has minimal roles
(RBAC) granted to it. This means that by default the code running
in a Pod can’t do much with the Kubernetes API. If you are getting
authorization errors you may need to adjust the service account to
one that is specific to your code and has access to the necessary
roles in the cluster.

Accessing the Kubernetes API
The most common ways that people interact with the Kubernetes API is via basic
operations like creating, listing and deleting resources. Because all of the clients are
generated from the same OpenAPI specification they all follow the same rough pat‐
tern. Before diving into the code, there are a couple more details of the Kubernetes
API that are necessary to understand.

The first is that in Kubernetes there is a distinction between “namespaced” and “clus‐
ter” level resources. Namespaced resources exist within a Kubernetes namespace, for
example a Pod or Deployment may exist in the kube-system namespace. Cluster-level
resources exist once throughout the entire cluster. The most obvious example of such
a resource is a Namespace, but other cluster-level resources include CustomResour‐
ceDefinitions and ClusterRoleBindings. This distinction is important because it is
preserved in the function calls that you use to access the resources. For example, to
list pods in the default namespace in Python you would write api.list_name
spaced_pods('default'). To list Namespaces you would write api.list_namespa
ces().

The second concept you need to understand is an API group. In Kubernetes all of the
resources are grouped into different sets of APIs. This is largely hidden from users of
the kubectl tool, though you may have seen it within the apiVersion field in a
YAML specification of a Kubernetes object. When programming against the Kuber‐
netes API this grouping becomes important, because often each API group has its
own client for interacting with that set of resources. For example, create a client to
interact with a Deployment resource (which exists in the “apps/v1” API group and
version) you create a new AppsV1Api() object which knows how to interact with all
resources in the apps/v1 API group and version. An example of how to create a client
for an API group is shown in the following section.

Putting it all together: Listing & Creating Pods in Python, Java
and .NET
We’re now ready to actually write some code. First we begin by creating a client
object, then we use that to list the Pods in the “default” namespace, here is code to do
that in Python, Java and .NET.

32 | Chapter 2: Accessing Kubernetes from Common Programming Languages

Python
config.load_kube_config()
api = client.CoreV1Api()
pod_list = api.list_namespaced_pod('default')

Java
ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
CoreV1Api api = new CoreV1Api();
V1PodList list = api.listNamespacedPod("default");

.NET
var config = KubernetesClientConfiguration.BuildDefaultConfig();
var client = new Kubernetes(config);
var list = client.ListNamespacedPod("default");

Once you have figured out how to list, read and delete objects, the next common task
is creating new objects. The API call to create the object is easy enough to figure out
(e.g. create_namespaced_pod in Python), but actually defining the new Pod
resources can be more complicated.

Here’s how you create a Pod in Python, Java and .NET:

Python
container = client.V1Container(
 name="myapp",
 image="my_cool_image:v1",
)

pod = client.V1Pod(
 metadata = client.V1ObjectMeta(
 name="myapp",
),
 spec=client.V1PodSpec(containers=[container]),
)

Java
V1Pod pod =
 new V1PodBuilder()
 .withNewMetadata().withName("myapp").endMetadata()
 .withNewSpec()
 .addNewContainer()
 .withName("myapp")
 .withImage("my_cool_image:v1")
 .endContainer()
 .endSpec()
 .build();

.NET

Programming the Kubernetes API | 33

var pod = new V1Pod()
{
 Metadata = new V1ObjectMeta{ Name = "myapp", },
 Spec = new V1PodSpec
 {
 Containers = new[] { new V1Container() { Name = "myapp", Image =
"my_cool_image:v1", }, },
 }
 };

Creating & Patching objects
One thing that you will notice when you explore the client API for Kubernetes is that
there are seemingly three different ways to manipulate resources, namely create,
replace and patch. All three different verbs represent slightly different semantics for
interacting with resources.

::Create as you can tell from the name creates a new resource, however it will fail if
the resource already exists. ::Replace replaces an existing resource completely,
without looking at the existing resource. When you use replace you have to specify a
complete resource. ::Patch modifies an existing resource leaving untouched parts of
the resource the same as they were. When using patch you use a special patch
resource rather than sending the resource (e.g. the Pod) that you are modifying.

Patching a resource can be complicated. In many cases it is easier
to just replace it. However, in some cases, especially with large
resources, patching the resource can be much more efficient in
terms of network bandwidth and API server processing. Addition‐
ally, multiple different actors can patch different parts of the
resource simultaneously without worrying about write conflicts,
which reduces overhead.

To patch a Kubernetes resource you have to create a Patch object representing the
change that you want to make to the resource. There are three different formats for
this patch supported by Kubernetes: “JSON patch”, “JSON merge patch” and “strategic
merge patch” The first two patch formats are RFC standards used in other places, the
third is a Kubernetes developed patch format. Each of the patch formats has advan‐
tages and disadvantages. In these examples we will use JSON Patch because it is the
simplest to understand.

Here’s how you patch a Deployment to increase the replicas to three:

Java
// JSON-patch format
static String jsonPatch =
 "[{\"op\":\"replace\",\"path\":\"/spec/replicas\",\"value\":3}]";

34 | Chapter 2: Accessing Kubernetes from Common Programming Languages

V1Deployment patched =
 PatchUtils.patch(
 V1Deployment.class,
 () ->
 api.patchNamespacedDeploymentCall(
 "my-deployment",
 "some-namespace",
 new V1Patch(jsonPatchStr),
 null,
 null,
 null,
 null,
 null),
 V1Patch.PATCH_FORMAT_JSON_PATCH,
 api.getApiClient());

Python
deployment.spec.replicas = 3

api_response = api_instance.patch_namespaced_deployment(
 name="my-deployment",
 namespace="some-namespace",
 body=deployment)

.NET
var jsonPatch = @"
[{
 ""op"": ""replace"",
 ""path"": ""/spec/replicas"",
 ""value"": 3
}]";

client.PatchNamespacedPod(new V1Patch(patchStr, V1Patch.PatchType.JsonPatch),
"my-deployment", "some-namespace");

In each of these code samples, the Deployment resource has been patched to set the
number of replicas in the deployment to three.

Watching Kubernetes APIs for changes
Resources in Kubernetes are declarative. They represent the desired state of the sys‐
tem. To make that desired state a reality a program must watch the desired state for
changes and take action to make the current state of the world match the desired
state.

Because of this pattern, one of the most common tasks when programming against
the Kubernetes API is to watch for changes to a resource and then take some action
based on those changes. The easiest way to do this is through polling. Polling simply
calls the list function described above at a constant interval (such as every 60 sec‐

Programming the Kubernetes API | 35

onds) and enumerates all of the resources that the code is interested in. While this
code is easy to write, it has numerous drawbacks for both the client code and the API
server. Polling introduces unnecessary latency, since waiting for the polling cycle to
come around introduces delays for changes that occur just after the previous poll
completed. Additionally, polling causes heavier load on the API server, because it
repeatedly returns resources that haven’t changed. While many simple clients begin
by using polling, to many clients polling the API server can overload it and add
latency.

To solve this problem the Kuberentes API also provides “watch” or event-based
semantics. Using a watch call, you can register interest in specific changes with the
API server and instead of repeatedly polling, the API server will send notifications
whenever a change occurs. In practicle terms, the client performs a hanging GET to
the HTTP API Server. The TCP connection that underlies this HTTP request stays
open for the duration of the watch and the server writes a response to that stream
(but does not close the stream) whenever a change occurs.

From a programmatic perspective, Watch semantics enable event-based program‐
ming, changing a while loop that repeatedly polls into a collection of callbacks. Here
are examples of watching Pods for changes:

Java
 ApiClient client = Config.defaultClient();
 CoreV1Api api = new CoreV1Api();

 Watch<V1Namespace> watch =
 Watch.createWatch(
 client,
 api.listNamespacedPodCall(
 "some-namespace",
 null,
 null,
 null,
 null,
 null,
 Integer.MAX_VALUE,
 null,
 null,
 60,
 Boolean.TRUE);
 new TypeToken<Watch.Response<V1Pod>>() {}.getType());

 try {
 for (Watch.Response<V1Pod> item : watch) {
 System.out.printf("%s : %s%n", item.type, item.object.getMetadata().get
Name());
 }
 } finally {

36 | Chapter 2: Accessing Kubernetes from Common Programming Languages

 watch.close();
 }

Python
config.load_kube_config()
api = client.CoreV1Api()
w = watch.Watch()

for event in w.stream(v1.list_namespaced_pods, "some-namespace"):
 print(event)

.NET
var config = KubernetesClientConfiguration.BuildConfigFromConfigFile();
var client = new Kubernetes(config);

var watch = client.ListNamespacedPodWithHttpMessagesAsync("default", watch:
true);
using (watch.Watch<V1Pod, V1PodList>((type, item) =>
{
 Console.WriteLine(item);
}

In each of these examples, rather than a repetative polling loop, the watch API call
delivers each change to a resource to a callback provided by the user. This both
reduces latency and load on the Kubernetes API server.

Interacting with Pods
The Kubernetes API also provides functions for directly interacting with the applica‐
tions running in a Kubernetes Pod. The kubectl tool provides a number of com‐
mands for interacting with Pods, namely logs, exec and port-forward and it is
possible to use each of these from within custom code as well.

Because the logs, exec and port-forward APIs are non-standard
in a RESTful sense, they require custom logic in the client libraries
and are thus somewhat less consistent between the different clients.
Unfortunately there is no option other than learning the imple‐
mentation for each language.

When getting the logs for a Pod you have to decide if you are going to read the pod
logs to get a snapshot of their current state or if you are going to stream them to
receive new logs as they happen. If you stream the logs (the equivalent of kubectl
logs -f ...) then you create an open connection to the API server and new log
lines are written to this stream as they are written to the pod. If not, you simply
receive the current contents of the logs.

Here’s how you both read and stream the logs:

Programming the Kubernetes API | 37

Java
V1Pod pod = ...; // some code to define or get a Pod here
PodLogs logs = new PodLogs();
InputStream is = logs.streamNamespacedPodLog(pod);

Python
config.load_kube_config()
api = client.CoreV1Api()
log = api_instance.read_namespaced_pod_log(name="my-pod", namespace="some-
namespace")

.NET
IKubernetes client = new Kubernetes(config);
var response = await client.ReadNamespacedPodLogWithHttpMessagesAsync(
 "my-pod", "my-namespace", follow: true);
var stream = response.Body;

Another common task is to execute some command within a Pod and get the output
of running that task. You can use the kubectl exec ... command on the command
line. Under the hood the API that implements this is creating a WebSocket connec‐
tion to the API server. WebSockets enable multiple streams of data (in this case
stdin, stdout & stderr) to co-exist on the same HTTP connection. If you’ve never
had experience with WebSockets before, don’t worry, the details of interacting with
WebSockets are handled by the client libraries.

Here’s how you exec the ls /foo command in a Pod:

Java
ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
Exec exec = new Exec();
final Process proc =
 exec.exec("some-namespace", "my-pod", new String[] {"ls", "/foo"}, true,
true /*tty*/);

Python
cmd = ['ls', '/foo']
response = stream(
 api_instance.connect_get_namespaced_pod_exec,
 "my-pod",
 "some-namespace",
 command=cmd,
 stderr=True,
 stdin=False,
 stdout=True,
 tty=False)

.NET

38 | Chapter 2: Accessing Kubernetes from Common Programming Languages

var config = KubernetesClientConfiguration.BuildConfigFromConfigFile();
IKubernetes client = new Kubernetes(config);
var webSocket =
 await client.WebSocketNamespacedPodExecAsync("my-pod", "some-namespace",
"ls /foo", "my-container-name");
var demux = new StreamDemuxer(webSocket);
demux.Start();
var stream = demux.GetStream(1, 1);

In addition to running commands in a pod, you can also port-forward network con‐
nections from a Pod to code running on the local machine. Like exec, the port for‐
warded traffic goes over a WebSocket. It is up to your code what it does with this port
forwarded socket. You could simply send a single request and receive a response as a
string of bytes, or you could build a complete proxy server (like what kubectl port-
forward does) to serve arbitrary requests through this proxy.

Regardless of what you intend to do with the connection, here’s how you set up port-
forwarding:

Java
PortForward fwd = new PortForward();

List<Integer> ports = new ArrayList<>();
int localPort = 8080;
int targetPort = 8080;
ports.add(targetPort);
final PortForward.PortForwardResult result =
 fwd.forward("some-namespace", "my-pod", ports);

Python
pf = portforward(
 api_instance.connect_get_namespaced_pod_portforward,
 'my-pod', 'some-namespace',
 ports='8080',
)

.NET
var config = KubernetesClientConfiguration.BuildConfigFromConfigFile();
IKubernetes client = new Kubernetes(config);
var webSocket = await client.WebSocketNamespacedPodPortForwardAsync("some-
namespace", "my-pod", new int[] {8080}, "v4.channel.k8s.io");
var demux = new StreamDemuxer(webSocket, StreamType.PortForward);
demux.Start();
var stream = demux.GetStream((byte?)0, (byte?)0);

Each of these examples creates a connection for from port 8080 in a Pod to port 8080
in your program. The code returns the byte-streams necessary communicating across
this port-forwarding channel. You can use these streams for sending and receiving
messages.

Programming the Kubernetes API | 39

Conclusion
The Kubernetes API provides rich and powerful functionality for you to write custom
code. Writing your applications in the language that best suits a task or a persona
shares the power of the orchestration API with as many Kubernetes users as possible.
When you’re ready to move beyond scripting calls to the kubectl executable, the
Kubernetes client libraries provide a way to dive deep into the API to build an opera‐
tor, a monitoring agent, a new user interface or what ever your imagination can
dream up.

40 | Chapter 2: Accessing Kubernetes from Common Programming Languages

CHAPTER 3

Policy and Governance for
Kubernetes Clusters

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 20th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Throughout this book we have introduced many different Kubernetes resource types
each with a specific purpose. It doesn’t take long before the resources on a Kubernetes
cluster go from several, representing a single microservice application, to hundreds
and thousands for a complete distributed application. In the context of a production
cluster it isn’t hard to imagine the challenges associated with managing thousands of
resources.

In this chapter we introduce the concept of policy and governance. Governance gives
cluster administrators the ability to verify and enforce organizational policies for all
resources deployed to a Kubernetes cluster. Typical challenges that you can address
by adopting policy and governance include ensuring all resources utilize current best
practices, are compliant with security policy, or adhere to company conventions.

41

Whatever your case may be, tooling needs to be flexible and scalable so that all
resources defined on a cluster are compliant to defined policy

Why Policy and Governance Matter
There are many different types of policies in Kubernetes, whether it be the NetworkPo
licy resource or even the PodSecurityPolicy resource you don’t have to look far.
NetworkPolicy allows you to specify what network services and endpoints a Pod can
connect to. PodSecurityPolicy enables fine-grained control over the security ele‐
ments of a Pod. Both these types of policy resources configure network or container
runtime. Unlike these policies, you might be looking for ways to enforce policy before
Kubernetes resources are even created. This is the problem policy and governance
solves. At this point, you might be thinking “Isn’t this what Role Based Access Control
does?” however RBAC isn’t granular enough to restrict specific fields within resources
from being set. If you want to learn more about Role Based Access Control, I recom‐
mend you checkout the chapter.

Here are some common examples of policies that clusters administrators may want to
configure:

• All containers MUST only come from a specific container registry
• All Pods MUST be labelled with the department name and contact information
• All Pods MUST have both CPU and memory resource limits set
• All Ingress hostnames must be unique across a cluster
• Service MUST not be made available on the Internet
• Containers MUST not listen on privileged ports

Cluster administrators may also want to audit existing resources on a cluster, perform
dry-run policy evaluations to deploy new policy, or even mutate a resource based on a
set of conditions. For example, applying labels to a Pod if that they aren’t present.
Having a way for cluster administrators to define policy and perform compliance
audits while not interfering with the developers ability to deploy applications to
Kubernetes is key to delivering policy and governance tooling. If the resources devel‐
opers are creating aren’t compliant, you need a system to make sure they get the feed‐
back and remediation they need to bring their work into compliance.

Let’s take a look at how to achieve policy and governance by leveraging core extensi‐
bility components of Kubernetes.

42 | Chapter 3: Policy and Governance for Kubernetes Clusters

Admission Flow
To understand how policy and governance ensures resources are compliant before
they are created your Kubernetes cluster, you must first understand the request flow
through the Kubernetes API server. Figure 3-1 depicts the flow of an API request
through the API server. Here, we’ll focus on Mutation Admission, Validating Admis‐
sion, and Webhooks.

Figure 3-1. API Request flow through the Kuberenetes API

Admission controllers operate inline as an API request flows through the Kubernetes
API server and are used to either mutate or validate the API request resource before
it’s saved to storage. Mutating admission controllers allow the resource to be modified
as apposed to validating admission controllers which do not. There are many differ‐
ent types of admission controllers; however, we are going to be focusing on admission
webhooks which are dynamically configurable. They allow a cluster administrator by
creating either a MutatingWebhookConfiguration or ValidatingWebookConfigura
tion resource to configure an endpoint for the API server to send requests for evalu‐
ation. The admission webhook will respond with an “admit” or “deny” directive as to
whether the API server should save the resource to storage.

Policy and Governance with Gatekeeper
Now that we have defined what policy and governance is let’s dive into how to config‐
ure policies and ensure that Kubernetes resources are compliant. The Kubernetes
project doesn’t provide any controllers that enable policy and governance so we will
focus on a open source ecosystem project called Gatekeeper. Gatekeeper isn’t the only
solution for this, but we’ll focus on it for the purposes of this chapter.

Gatekeeper is a Kubernetes-native policy controller that evaluates resources based on
defined policy and determines whether to admit or deny a Kubernetes resource from
being created, or modified. These evaluations happen server-side as the API request

Admission Flow | 43

https://open-policy-agent.github.io/gatekeeper/website/docs/

flows through the Kubernetes API server which means there is a single point of pro‐
cessing per Kubernetes cluster. Having the policy evaluations processed server-side
means that you can install Gatekeeper on existing Kubernetes clusters without the
need of changing developer tooling, workflows, or continuous delivery pipelines.

Gatekeeper uses custom resource definitions (CRDs) to define a new set of Kuber‐
netes resources specific to configuring Gatekeeper which allows cluster administra‐
tors to use familiar tools like kubectl to operate. In addition, Gatekeeper provides
real-team meaningful feedback to the user on why a resource was denied and how to
remediate. These Gatekeeper specific custom resources can also be stored in source
control and managed using GitOps workflows.

Gatekeeper not only performs resource validation based on policy but it also per‐
forms resource mutation (resource modification based on defined conditions) and
auditing. Gatekeeper is highly configurable and enables a cluster administrator fined
grained control over what resources to evaluate and in which namespaces.

What is Open Policy Agent?
At the core of Gatekeeper is Open Policy Agent, a cloud native open source policy
engine that is extensible and allows policy to be portable across different applications.
Open Policy Agent is responsible for performing all policy evaluations and returning
either an admit or deny. By leveraging Open Policy Agent, Gatekeeper has access to
an ecosystem of policy tooling for example conftest which enables you to write policy
tests and implement them in continuous integration pipelines prior to deployment.

Open Policy Agent uses a native query language called Rego. This means that all poli‐
cies must be written in Rego in order to use Open Policy Agent. A dive deep into
Rego is outside the scope of this book but it’s important to understand that exists at
the core of Gatekeeper.

One of the core tenets of Gatekeeper is to abstract the inner workings of Rego from
the cluster administrator and present a structured API in the form of a Kubernetes
CRD to create and apply policy. By doing this, parameterized policies may be shared
across organizations and the community. The Gatekeeper project maintains an policy
library solely for this purpose. We will cover the policy library later in this chapter.

Installing Gatekeeper
Before we start configuring policies, we need to install Gatekeeper. Gatekeeper com‐
ponents run as Pods in the gatekeeper-system namespace and configures a webhook
admission controller.

44 | Chapter 3: Policy and Governance for Kubernetes Clusters

https://www.openpolicyagent.org/
https://github.com/open-policy-agent/conftest
https://www.openpolicyagent.org/docs/latest/policy-language/

Do not install Gatekeeper on a Kubernetes cluster without first
understanding how to safely create policy and how to disable it.
You should also review the installation YAML prior to installing
Gatekeeper to ensure that you are comfortable with the resources
the installation YAML creates.

You can install Gatekeeper with a simple one line invocation:

$ kubectl apply -f https://raw.githubusercontent.com/open-policy-agent/gate-
keeper/release-3.5/deploy/gatekeeper.yaml
namespace/gatekeeper-system created
resourcequota/gatekeeper-critical-pods created
customresourcedefinition.apiextensions.k8s.io/configs.config.gatekeeper.sh cre-
ated
customresourcedefinition.apiextensions.k8s.io/constraintpodstatuses.status.gate-
keeper.sh created
customresourcedefinition.apiextensions.k8s.io/constrainttemplatepodsta-
tuses.status.gatekeeper.sh created
customresourcedefinition.apiextensions.k8s.io/constrainttem-
plates.templates.gatekeeper.sh created
serviceaccount/gatekeeper-admin created
Warning: policy/v1beta1 PodSecurityPolicy is deprecated in v1.21+, unavailable
in v1.25+
podsecuritypolicy.policy/gatekeeper-admin created
role.rbac.authorization.k8s.io/gatekeeper-manager-role created
clusterrole.rbac.authorization.k8s.io/gatekeeper-manager-role created
rolebinding.rbac.authorization.k8s.io/gatekeeper-manager-rolebinding created
clusterrolebinding.rbac.authorization.k8s.io/gatekeeper-manager-rolebinding cre-
ated
secret/gatekeeper-webhook-server-cert created
service/gatekeeper-webhook-service created
deployment.apps/gatekeeper-audit created
deployment.apps/gatekeeper-controller-manager created
Warning: policy/v1beta1 PodDisruptionBudget is deprecated in v1.21+, unavail-
able in v1.25+; use policy/v1 PodDisruptionBudget
poddisruptionbudget.policy/gatekeeper-controller-manager created
validatingwebhookconfiguration.admissionregistration.k8s.io/gatekeeper-
validating-webhook-configuration created

Gatekeeper installation requires cluster-admin permissions and is
version specific. Please refer to the official documentation for the
latest release of Gatekeeper

Once the installation is complete, confirm that Gatekeeper is up and running:

$ kubectl get pods -n gatekeeper-system
NAME READY STATUS RESTARTS
AGE
gatekeeper-audit-54c9759898-ljwp8 1/1 Running 0

Policy and Governance with Gatekeeper | 45

https://open-policy-agent.github.io/gatekeeper/website/docs/install

1m
gatekeeper-controller-manager-6bcc7f8fb5-4nbkt 1/1 Running 0
1m
gatekeeper-controller-manager-6bcc7f8fb5-d85rn 1/1 Running 0
1m
gatekeeper-controller-manager-6bcc7f8fb5-f8m8j 1/1 Running 0
1m

You can also review how the webhook is configured using the command below:

$ kubectl get validatingwebhookconfiguration -o yaml
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 labels:
 gatekeeper.sh/system: "yes"
 name: gatekeeper-validating-webhook-configuration
webhooks:
- admissionReviewVersions:
 - v1
 - v1beta1
 clientConfig:
 service:
 name: gatekeeper-webhook-service
 namespace: gatekeeper-system
 path: /v1/admit
 failurePolicy: Ignore
 matchPolicy: Exact
 name: validation.gatekeeper.sh
 namespaceSelector:
 matchExpressions:
 - key: admission.gatekeeper.sh/ignore
 operator: DoesNotExist
 rules:
 - apiGroups:
 - '*'
 apiVersions:
 - '*'
 operations:
 - CREATE
 - UPDATE
 resources:
 - '*'
 sideEffects: None
 timeoutSeconds: 3

Under the rules section of the output above we see that all resources are being sent
to the webhook admission controller running as a service named gatekeeper-
webhook-service in the gatekeeper-system namespace. Only resources from name‐
spaces that aren’t labelled admission.gatekeeper.sh/ignore will be considered for
policy evaluation. Finally, the failurePolicy is set to Ignore which means that this is

46 | Chapter 3: Policy and Governance for Kubernetes Clusters

a fail open configuration. In the case that the Gatekeeper service doesn’t respond
within the configured timeout of 3 seconds the request will be admitted.

Configuring policies
Now that we have Gatekeeper installed, we can start configuring policies. We will first
go through a canoncial example and demonstrate how policies are created by the
cluster administrator and then the developer experience when creating compliant and
non-compliant resources. We will then expand on each step to gain a deeper under‐
standing. We’re going to create a sample policy which states that container images can
only come from one specific registry. This example is based on the Gatekeeper policy
library.

In order to configure the policy we first need to create a custom resource called a
constraint template. Constraint templates are Gatekeeper specific and can be thought
of as a policy template. The creation of a constraint template would typically be per‐
formed by a cluster administrator. The constraint template in Example 3-1 takes a list
of container repositories that are allowed to be used by Kubernetes resources.

Example 3-1. allowedrepos-constraint-template.yaml

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: k8sallowedrepos
 annotations:
 description: Requires container images to begin with a repo string from a speci
fied
 list.
spec:
 crd:
 spec:
 names:
 kind: K8sAllowedRepos
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 repos:
 type: array
 items:
 type: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8sallowedrepos

 violation[{"msg": msg}] {
 container := input.review.object.spec.containers[_]

Policy and Governance with Gatekeeper | 47

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/allowedrepos/samples/repo-must-be-openpolicyagent
https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/allowedrepos/samples/repo-must-be-openpolicyagent

 satisfied := [good | repo = input.parameters.repos[_] ; good = starts
with(container.image, repo)]
 not any(satisfied)
 msg := sprintf("container <%v> has an invalid image repo <%v>, allowed
repos are %v", [container.name, container.image, input.parameters.repos])
 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.initContainers[_]
 satisfied := [good | repo = input.parameters.repos[_] ; good = starts
with(container.image, repo)]
 not any(satisfied)
 msg := sprintf("container <%v> has an invalid image repo <%v>, allowed
repos are %v", [container.name, container.image, input.parameters.repos])
 }

Create the constraint template using the following command:

$ kubectl apply -f allowedrepos-constraint-template.yaml
constrainttemplate.templates.gatekeeper.sh/k8sallowedrepos created

Now that we’ve created the constraint template we must create a constraint resource
which instantiates the policy (or puts it into effect). The creation of a constraint
would typically be performed by a cluster administrator. The following constraint in
Example 3-2 allows all containers with the prefix of gcr.io/kuar-demo/ in the
default namespace. The enforcementAction is set to deny which means that any
resources that are non-compliant to this policy will be denied.

Example 3-2. allowedrepos-constraint.yaml

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
 name: repo-is-kuar-demo
spec:
 enforcementAction: deny
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 namespaces:
 - "default"
 parameters:
 repos:
 - "gcr.io/kuar-demo/"

$ kubectl create -f allowedrepos-constraint.yaml
k8sallowedrepos.constraints.gatekeeper.sh/repo-is-kuar-demo created

Now that both the constraint template and the constraint have been created lets create
some Pods to test that the policy is indeed working. Example 3-3 creates a Pod using a

48 | Chapter 3: Policy and Governance for Kubernetes Clusters

container image gcr.io/kuar-demo/kuard-amd64:blue which is compliant to the
constraint we defined in the previous step and will be created without issue. Work‐
load resource creation would typically be performed by the developer responsible for
operating the service or a continuous delivery pipeline.

Example 3-3. compliant-pod.yaml.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kuard
spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:blue
 name: kuard
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

$ kubectl apply -f compliant-pod.yaml
pod/kuard created

Let’s try creating a Pod that is non-compliant to the constraint we defined.
Example 3-4 creates a Pod using a container image nginx which is NOT compliant to
the constraint we defined in the previous step and will be created. Workload resource
creation would typically be performed by the developer or continuous delivery pipe‐
line responsible for operating the service. Note the output below:

Example 3-4. noncompliant-pod.yaml.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nginx-noncompliant
spec:
 containers:
 - name: nginx
 image: nginx

$ kubectl apply -f noncompliant-pod.yaml
Error from server ([repo-is-kuar-demo] container <nginx> has an invalid image
repo <nginx>, allowed repos are ["gcr.io/kuar-demo/"]): error when creating
"noncompliant-pod.yaml": admission webhook "validation.gatekeeper.sh" denied
the request: [repo-is-kuar-demo] container <nginx> has an invalid image repo
<nginx>, allowed repos are ["gcr.io/kuar-demo/"]

Policy and Governance with Gatekeeper | 49

We see an error is returned the user with the details on why the resource was not cre‐
ated and how to remediate. This message is configured by the cluster administrator
via the constraint template.

When a constraint is defined with a scope of Pods and the user cre‐
ates a resource that generates Pod resources such as ReplicaSets
an error will not be returned to the user but rather the controller
trying to create the Pod. In order to see these error message you
must look in the event log for the resource responsible for generat‐
ing the Pods.

Understanding Constraint Templates
Now that we have walked through a canoncial example let’s take a closer look at the
constraint template we used in Example 3-5 which takes a list of container reposito‐
ries that are allowed in Kubernetes resources.

Example 3-5. allowedrepos-constraint-template.yaml

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: k8sallowedrepos
 annotations:
 description: Requires container images to begin with a repo string from a speci
fied
 list.
spec:
 crd:
 spec:
 names:
 kind: K8sAllowedRepos
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 repos:
 type: array
 items:
 type: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8sallowedrepos

 violation[{"msg": msg}] {
 container := input.review.object.spec.containers[_]
 satisfied := [good | repo = input.parameters.repos[_] ; good = starts

50 | Chapter 3: Policy and Governance for Kubernetes Clusters

with(container.image, repo)]
 not any(satisfied)
 msg := sprintf("container <%v> has an invalid image repo <%v>, allowed
repos are %v", [container.name, container.image, input.parameters.repos])
 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.initContainers[_]
 satisfied := [good | repo = input.parameters.repos[_] ; good = starts
with(container.image, repo)]
 not any(satisfied)
 msg := sprintf("container <%v> has an invalid image repo <%v>, allowed
repos are %v", [container.name, container.image, input.parameters.repos])
 }

This constraint template has an apiVersion and kind that are part of the custom
resources only used by Gatekeeper. Under the spec section a name of K8sAllowedRe
pos (keep note of this name as when creating constraints we use this name as the con‐
straint kind) along with a schema that defines array of strings for the cluster
administrator to configure by providing a list of container registries that are allowed.
It also contains the raw Rego policy definition under the target section. This policy
evaluates containers and initContainers to ensure that the container repo name starts
with the values provided by the constraint. The msg section defines the message that
is sent back to the user if the policy is violated.

Creating Constraints
In order to instantiate a policy you must create a constraint that provides the required
parameters to the constraint template. There may be many constraints that match the
kind of a specific constraint template. Let’s take a closer look at the constraint we used
in Example 3-6 which only allows container images that originate from gcr.io/kuar-
demo/

Example 3-6. allowedrepos-constraint.yaml

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
 name: repo-is-kuar-demo
spec:
 enforcementAction: deny
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 namespaces:
 - "default"
 parameters:

Policy and Governance with Gatekeeper | 51

 repos:
 - "gcr.io/kuar-demo/"

You may notice that the constraint is of kind “K8sAllowedRepos” which was defined
as part of the constraint template. There is also an enforcementAction of “deny”
defined. This means that resources that aren’t compliant to this constraint will be
denied. enforcementAction also accepts “dryrun” and “warn” as values. The enforce
mentAction of “dryrun” is used to test policies and verify the impact using the audit
featured in Gatekeeper whereas “warn” sends a warning back to the user with the
associated message but allows them to create or update. The match portion defines
the scope that this constraint should operate on. In this case, all Pods in the default
namespace. Finally, the parameters section is required to satisfy the constraint tem‐
plate (an array of strings). The following demonstrates the user experience when the
enforcementAction is set to “warn”:

$ kubectl apply -f noncompliant-pod.yaml
Warning: [repo-is-kuar-demo] container <nginx> has an invalid image repo
<nginx>, allowed repos are ["gcr.io/kuar-demo/"]
pod/nginx-noncompliant created

Constraints are only enforced on resource CREATE and UPDATE
events. If you already have workloads running on a cluster, they
will not be re-evaluated by Gatekeeper UNTIL a CREATE or
UPDATE event takes place. Here is a real-world example to
demonstrate. You create a policy that only allows containers from a
specific registry. All workloads that are already running on the
cluster will continue to do so. In the event that you scale the work‐
load Deployment from 1 to 2, the ReplicaSet will attempt to create
another Pod. If that Pod doesn’t have a container from an allowed
repository, then it will be denied. It’s important to set the enforce
mentAction to “dryrun” and audit to confirm that any policy viola‐
tions are known before setting the enforcementAction to “deny. .

Audit
Being able to enforce policy upon new resource creation is only one piece of the pol‐
icy and governance story. Policies often change over time, so you can also use Gate‐
keeper to confirm that everything currently deployed is still compliant. Additionally,
you may already have a cluster full of services and wish to install Gatekeeper to bring
these resources into compliance. Gatekeeper ships with audit capabilities which allow
a cluster administrator to get a list of resources that currently exist on a cluster that
are not in compliance with the policy.

In order to demonstrate how audit works lets first update the repo-is-kuar-demo
constraint to have an enforcementAction action of “dryrun”. This will allow a user to

52 | Chapter 3: Policy and Governance for Kubernetes Clusters

create non-compliant resources. We will then determine which resources are not
compliant to the constraint using audit. The constraint below Example 3-7 has the
enforcementAction action set to “dryrun”:

Example 3-7. allowedrepos-constraint-dryrun.yaml

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
 name: repo-is-kuar-demo
spec:
 enforcementAction: dryrun
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 namespaces:
 - "default"
 parameters:
 repos:
 - "gcr.io/kuar-demo/"

Update the constraint by running the following command:

$ kubectl apply -f allowedrepos-constraint-dryrun.yaml
k8sallowedrepos.constraints.gatekeeper.sh/repo-is-kuar-demo configured

Create a non-compliant Pod using the following command:

$ kubectl apply -f noncompliant-pod.yaml
pod/nginx-noncompliant created

To audit the list of resources that are non-compliant for a given constraint you can
run a kubectl get constraint on the specific constraint specifying to output in
YAML format as follows:

$ kubectl get constraint repo-is-kuar-demo -o yaml
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
....
spec:
 enforcementAction: dryrun
 match:
 kinds:
 - apiGroups:
 - ""
 kinds:
 - Pod
 namespaces:
 - default
 parameters:
 repos:

Policy and Governance with Gatekeeper | 53

 - gcr.io/kuar-demo/
status:
 auditTimestamp: "2021-07-14T20:05:38Z"

 totalViolations: 1
 violations:
 - enforcementAction: dryrun
 kind: Pod
 message: container <nginx> has an invalid image repo <nginx>, allowed repos
are
 ["gcr.io/kuar-demo/"]
 name: nginx-noncompliant
 namespace: default

Under the status section we can see the auditTimestamp which is the last time the
audit was run. The totalViolations" lists the number of resources that vio
late this constraint. The +violations section contains a list of violations. We
can see that the nginx-noncompliant Pod is in violation and the message with the
details why. We can also see that this policy has an enforcementAction of “dryrun”.

Using a constraint enforcementAction of “dryrun” along with
audit is a powerful way to confirm that your policy is having the
desired impact. It also creates a workflow to bring resources into
compliance.

Mutation
So far we have covered how you can use constraints to validate if a resource is com‐
pliant. What about using Gatekeeper to modify resources on behalf of the user to
make them compliant? This is handled via the mutation feature in Gatekeeper. Earlier
in this chapter we discussed two different type of admission webhooks, mutating and
validating. By default, Gatekeeper is only deployed as a validating admission web‐
hook by may be configured to operate as a mutating admission webhook.

Mutation features in Gatekeeper are still in alpha state and are
likely to change. We share them to demonstrate the upcoming
capabilities of Gatekeeper and how they may be used to meet your
policy and compliance needs. The installation steps in this chapter
do not cover enabling mutation. Please refer to the Gatekeeper
project for more information on enabling mutation.

Let’s walk through an example to demonstrate the power of mutation. In this example
we will set the imagePullPolicy to “Always” on all Pods. We will assume that Gate‐
keeper is configured correctly to support mutation. The following example in

54 | Chapter 3: Policy and Governance for Kubernetes Clusters

https://open-policy-agent.github.io/gatekeeper/website/docs/mutation

Example 3-8 defines a mutation assignment that matches all Pods except in the “sys‐
tem” namespace and assigns the value of “Always” to imagePullPolicy:

Example 3-8. imagepullpolicyalways-mutation.yaml

apiVersion: mutations.gatekeeper.sh/v1alpha1
kind: Assign
metadata:
 name: demo-image-pull-policy
spec:
 applyTo:
 - groups: [""]
 kinds: ["Pod"]
 versions: ["v1"]
 match:
 scope: Namespaced
 kinds:
 - apiGroups: ["*"]
 kinds: ["Pod"]
 excludedNamespaces: ["system"]
 location: "spec.containers[name:*].imagePullPolicy"
 parameters:
 assign:
 value: Always

Create the mutation assignment:

$ kubectl apply -f imagepullpolicyalways-mutation.yaml
assign.mutations.gatekeeper.sh/demo-image-pull-policy created

Now create a Pod. This Pod doesn’t have imagePullPolicy set. By default this field is
set to “IfNotPresent”. However in this case we expect Gatekeeper to mutate this field
to “Always”.

$ kubectl apply -f compliant-pod.yaml
pod/kuard created

Validate that the imagePullPolicy has been successfully mutated to “Always” by run‐
ning the following:

$ $ kubectl get pods kuard -o=jsonpath="{.spec.containers[0].imagePullPolicy}"

Always

Mutation admission happens prior to validation admission so you
should create constraints that validate the mutations you expect to
be applied to the specific resource.

Delete the Pod using the following command:

Policy and Governance with Gatekeeper | 55

$ kubectl delete -f compliant-pod.yaml
pod/kuard deleted

Delete the mutation assignment using the following command:

$ kubectl delete -f imagepullpolicyalways-mutation.yaml
assign.mutations.gatekeeper.sh/demo-image-pull-policy deleted

In contrast with validation, mutation provides a way to auto-remediate resources that
aren’t complaint on behalf of the cluster administrator. In this section we covered
how to configure mutation assignment which allows you to modify any field in a
resource.

Data Replication
When writing constraints you may want to compare the value of one field to the
value of a field in another resource. A specific example of when you might need to do
this is making sure that ingress hostnames are unique across a cluster. By default,
Gatekeeper can only evaluate fields within the current resource and must be config‐
ured if comparisons across resources are required to fulfill a policy. Gatekeeper can
be configured to cache specific resources into Open Policy Agent so that comparisons
across resources can be made. The following config resource in Example 3-9 config‐
ures Gatekeeper to cache Namespace and Pod resources.

Example 3-9. config-sync.yaml

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
 name: config
 namespace: "gatekeeper-system"
spec:
 sync:
 syncOnly:
 - group: ""
 version: "v1"
 kind: "Namespace"
 - group: ""
 version: "v1"
 kind: "Pod"

You should only cache the specific resources needed to perform a
policy evaluation. Having hundreds or thousands of resources
cached in OPA will require more memory and may also have secu‐
rity implications.

56 | Chapter 3: Policy and Governance for Kubernetes Clusters

The following constraint template in Example 3-10 demonstrates how comparisons
across resources may be made (in this case, unique ingress hostnames) in the Rego
section. Specifically the “data.inventory” is referring to the cache resources as
opposed to “input” which is the resource sent for evaluation from the Kubernetes API
server as part of the admission flow. This example is based on the Gatekeeper policy
library

Example 3-10. uniqueingresshost-constraint-template.yaml

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: k8suniqueingresshost
 annotations:
 description: Requires all Ingress hosts to be unique.
spec:
 crd:
 spec:
 names:
 kind: K8sUniqueIngressHost
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8suniqueingresshost

 identical(obj, review) {
 obj.metadata.namespace == review.object.metadata.namespace
 obj.metadata.name == review.object.metadata.name
 }

 violation[{"msg": msg}] {
 input.review.kind.kind == "Ingress"
 re_match("^(extensions|networking.k8s.io)$", input.review.kind.group)
 host := input.review.object.spec.rules[_].host
 other := data.inventory.namespace[ns][otherapiversion]["Ingress"][name]
 re_match("^(extensions|networking.k8s.io)/.+$", otherapiversion)
 other.spec.rules[_].host == host
 not identical(other, input.review)
 msg := sprintf("ingress host conflicts with an existing ingress <%v>",
[host])
 }

Data replication is a powerful tool that allows you to make comparisons across
Kubernetes resources. We recommend only configuring if you have policies that
require it to function. In addition, scope it only to the resources needed.

Policy and Governance with Gatekeeper | 57

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/uniqueingresshost
https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/uniqueingresshost

Metrics
Gatekeeper emits metrics in Prometheus format to enable continuous monitoring of
resource compliance. Simple metrics regarding the overall health of Gatekeeper are
available for example:

• Number of constraints
• Number of constraint templates
• Number of requests being sent to Gatekeeper

In addition, details on policy compliance and governance are also available:

• The total number of audit violations
• Number of constraints by enforcementAction
• Audit duration

Having the policy and governance process completely automated is
the ideal goal state and as such it’s strongly recommended that you
monitor Gatekeeper from an external monitoring system and setup
alerts based on resource compliance.

Policy Library
One of the core tenets of the Gatekeeper project is to create reuseable policy libraries
that may be shared between organizations. Having the ability to share policies
reduces the boilerplate policy work and allows cluster administrators to focus on
applying policy rather than writing it. The Gatekeeper project has a great policy
library which contains both a general library with the most common policies in addi‐
tion to a pod-security-policy library which models the capabilities of the PodSecuri
tyPolicy API as Gatekeeper policy. The great thing about this library is that it is ever
expanding and is open source so feel free to contribute any policies that you write.

Summary
In this chapter we discussed policy and governance and why it is important as more
and more resources are deployed to Kubernetes. We covered the Gatekeeper project,
a Kubernetes-native policy controller built on Open Policy Agent and how it may be
used to successfully meet your policy and governance requirements. From writing
policies to auditing which resources are in compliance with policy you are now
equipped with the know-how to meet your compliance needs.

58 | Chapter 3: Policy and Governance for Kubernetes Clusters

https://github.com/open-policy-agent/gatekeeper-library
https://github.com/open-policy-agent/gatekeeper-library

About the Authors
Brendan Burns is the cofounder of the Kubernetes open source project. He is also a
Distinguished Engineer at Microsoft on the Azure team.

Joe Beda is the lead engineer for the Google Compute Engine project. He has been at
Google for ~8 years and, besides GCE, Joe has worked on Google Talk, Goog-411 and
Adwords keyword suggestions. Before Google, Joe was an engineer at Microsoft
working on IE and WPF.

Kelsey Hightower has worn every hat possible throughout his career in tech and
enjoys leadership roles focused on making things happen and shipping software. Kel‐
sey is a strong open source advocate focused on building simple tools that make peo‐
ple smile. When he isn’t slinging Go code, you can catch him giving technical
workshops covering everything from programming to system administration.

Lachlan Evenson is a principal program manager on the container compute team at
Microsoft Azure. He’s helped numerous people onboard to Kubernetes through both
hands-on teaching and conference talks.

	Cover
	VMWare
	Copyright
	Table of Contents
	Chapter 1. Pods
	Pods in Kubernetes
	Thinking with Pods
	The Pod Manifest
	Creating a Pod
	Creating a Pod Manifest

	Running Pods
	Listing Pods
	Pod Details
	Deleting a Pod

	Accessing Your Pod
	Using Port Forwarding
	Getting More Info with Logs
	Running Commands in Your Container with exec
	Copying Files to and from Containers

	Health Checks
	Liveness Probe
	Readiness Probe
	Types of Health Checks

	Resource Management
	Resource Requests: Minimum Required Resources
	Capping Resource Usage with Limits

	Persisting Data with Volumes
	Using Volumes with Pods
	Different Ways of Using Volumes with Pods
	Persisting Data Using Remote Disks

	Putting It All Together
	Summary

	Chapter 2. Accessing Kubernetes from Common Programming Languages
	The Kubernetes API: A client’s perspective
	OpenAPI and generated client libraries
	But what about kubectl x ...?

	Programming the Kubernetes API
	Installing the client libraries
	Authenticating to the Kubernetes API
	Accessing the Kubernetes API
	Putting it all together: Listing & Creating Pods in Python, Java and .NET
	Creating & Patching objects
	Watching Kubernetes APIs for changes
	Interacting with Pods
	Conclusion

	Chapter 3. Policy and Governance for Kubernetes Clusters
	Why Policy and Governance Matter
	Admission Flow
	Policy and Governance with Gatekeeper
	What is Open Policy Agent?
	Installing Gatekeeper
	Configuring policies
	Understanding Constraint Templates
	Creating Constraints
	Audit
	Mutation
	Data Replication
	Metrics
	Policy Library

	Summary

	About the Authors

