
White Paper: December 2021

FinOps for Kubernetes:
Unpacking Container
Cost Allocation
and Optimization

White Paper | 2

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Table of contents
Before you read this paper . 3

Executive summary . 3

Looking at Kubernetes costs from a FinOps angle . 4

Relevant terms and concepts 4

Inform: How container and Kubernetes costs are generated 6

How container cost allocation is different 6

Container features bring up cost complexity 7

Why is it harder to bill and report on Kubernetes costs? 7

Tracking shared cluster and off-cluster resource costs together 8

Cost allocation practices and policy examples to govern container spending 9

Container classes within Kubernetes 9

What are customers looking for? 10

Taking a deeper look at specific containerization costs 11

Consistent labeling and namespace strategy to improve allocation 11

Going beyond the core cluster costs 12

Addressing static and runtime container costs 13

How LiveRamp addressed containerization costs on GKE 14

Considerations for container savings in production 15

Optimize: Build in cost efficiencies for your Kubernetes environment 15

Pod/container rightsizing 16

Node rightsizing 16

Autoscaling adjustments 17

Discount types 17

Start your FinOps team with a strong foundation 18

Operate: Build policies and practices to manage Kubernetes costs 18

Tooling option to manage container costs 19

Empower and incentivize developers to track their Kubernetes utilization 20

Overcome Kubernetes cost management challenges with FinOps best practices .20

Acknowledgements . 21

Join the FinOps community 21

White Paper | 3

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Before you read this paper
You should understand the basics of how cloud computing works, know the key
services of your cloud providers, including their common use cases, and have
a basic understanding of billing and pricing models . Being able to describe the
basic value proposition of running in the cloud and understand the core concept
of using a pay-as-you-go consumption model are also necessary .

You’ll also need to have a base level of knowledge of at least one of the three
main public cloud providers: Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP) . For AWS, we recommend AWS Business
Professional training or, even better, the AWS Cloud Practitioner certification .
For Google, check out the Google Cloud Platform Fundamentals course . For
Azure, try the Azure Fundamentals learning path . Each can usually
be completed in a full-day workshop .

Executive summary
As containers and container orchestrators are becoming a popular choice for
many teams, it’s vital to understand the fundamental impact of these containerized
workloads on FinOps practices . Shared resources, such as containers, create
challenges with cost allocation, cost visibility and resource optimization .

In the containerized world, traditional FinOps cost allocation (e .g ., mapping costs
of resources back to teams or projects one to one) doesn’t work . You can’t
simply allocate the cost of a resource to a tag or label because resources may
be running multiple containers, with each supporting a different application .
They also may be attached to different cost centers around the organization .

Whether you’re part of a team with an established FinOps practice
or are building up the discipline, everyone can relate to the challenges
of mapping cloud utilization cost to their drivers one to one . Then there are
containers and Kubernetes . All of a sudden, those foundational cloud finance
management practices need to be tweaked a bit . Have no fear, though—
the same FinOps principles and practices can help your teams track
containerization spending accurately .

We created this white paper to cover key questions, challenges and
considerations that any FinOps team should understand before tackling
containerization in the cloud . If you’re already using containerized services,
then use this white paper to double-check that your teams are operating with
strong, modern FinOps best practices .

White Paper | 4

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

This white paper will go over general container terms and concepts . It will also
explore and address Kubernetes and container costs from the lens of three
FinOps core practices:

• Inform – Understand how the public cloud providers charge for their
Kubernetes services . Learn why performing chargeback and cost allocation
in environments with Kubernetes is challenging .

• Optimize – Look for ways to continuously optimize your Kubernetes clusters
and pods .

• Operate – Determine your approach to container cost allocation and build
policies to govern container spending . Integrate tooling to help manage
container costs alongside traditional cloud spending .

Looking at Kubernetes costs from a FinOps angle
When you look at the challenges that containerization poses for FinOps—
cost visibility, cost showback/chargeback and cost optimization—you quickly
realize that you’re encountering the same difficulties you faced as you moved
into the cloud .

Containers represent another layer of virtualization on top of cloud virtualization,
which creates a new wrinkle of complexity when it comes to tracking its costs .
We’ll be using fundamental FinOps practices to solve these challenges .

This white paper will walk through container and Kubernetes FinOps challenges
into the same inform, optimize and operate lifecycle that you would apply
to the broader cloud FinOps .

Relevant terms and concepts
Let’s quickly run through the basics for anyone not familiar with containers
or Kubernetes before we go further . It will also be helpful to create a common
understanding of these components throughout this white paper .

Note: While there are many similarities between Amazon Elastic Container
Service (ECS) and Kubernetes, there are different terms used within each .
For simplicity—besides when talking about Kubernetes specifically—we refer
to “containers” and “server instances” where Kubernetes would refer to “pods”
and “nodes .”

Containers are, quite simply, a way to package software . All of the requirements
and settings are baked into a deployable image . Container orchestration tools
such as Kubernetes help engineers deploy containers to servers in a manageable
and maintainable way .

White Paper | 5

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

There are a few key terms we will use throughout:

• Image – A template of a container with the software that needs to be run .

• Container – An instance of a container image . You can have multiple copies
of the same image running at the same time .

• Server instance/node – A cloud server; for example, an Amazon Elastic Cloud
Compute (EC2) instance or a virtual machine (VM) .

• Pod – This is a Kubernetes concept . A pod consists of a group of containers
and treats them as a single block of resources that can be scheduled
and scaled on the cluster .

• Container orchestration – An orchestrator manages the cluster of server
instances and maintains the lifecycle of containers/pods . Part of the container
orchestrator is the scheduler, which schedules a container/pod to run
on a server instance . Examples include Kubernetes or Amazon ECS .

• Cluster – A group of server instances, managed by container orchestration .

• Namespace – Another Kubernetes concept, a namespace is a virtual cluster
where pods/containers can be deployed separately from other namespaces .

• Pod labels – Key/value pairs that can identify attributes of objects that are
meaningful and relevant to users but do not directly imply semantics to the core
system . Each object can have a set of key/value labels defined . Each key must
be unique for a given object . These can be helpful when you want to group
more than one namespace, for example .

White Paper | 6

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Figure 1: Basic view of a Kubernetes cluster .

Inform: How container and Kubernetes costs
are generated
Your first focus should be to generate reporting that determines the cost
of individual containers on the clusters that teams are operating . This is
a foundational step toward building visibility into your container spending .

How container cost allocation is different
Cloud service providers will charge your teams for every server instance that
makes up a cluster . These charges are incurred when containers are deployed
into a cluster, as they consume some amount of the cluster’s resource capacity .
The moment a process is run, a charge is incurred . It’s similar to when you
provision a server with your cloud service provider . You pay for that server
resource, whether you use it or not .

1 . FinOps Foundation .

Dev and Staging Cluster

Node0 Node1

Pod

Pod

Pod

Pod

Node2 Node3

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Namespace

DevTeam1

Staging

DevTeam2

A Kubernetes cluster (see Figure 1)
consists of a number of nodes (server
instances) that run containers inside
pods. Each pod can be made up of
a varying number of containers.
The nodes themselves support
namespaces used to isolate groups
of pods.1

White Paper | 7

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

To allocate the individual costs of a container that runs on a cluster, you’ll need
some way to determine how much of the underlying server the individual
container consumed . You also need to understand the satellite costs of a running
cluster . These include management nodes, data stores used to track cluster states,
software licensing, backups and potential disaster recovery costs . These costs
are all part of running clusters and must be taken into account in your cost
allocation strategy .

Container features bring up cost complexity
What users enjoy about orchestration services is that they can greatly simplify:

• Scheduling how your teams spin up containers based on
utilization requirements

• Managing network scaling and connection at various granularities

• Autoscaling and automating node creation and deletion to adapt
to your changing workloads

You can run Kubernetes on VM services provided by all major cloud providers,
or use their native offerings to manage Kubernetes clusters .

Examples include:

• AWS – Amazon Elastic Kubernetes Service (EKS)

• Google Cloud – Google Kubernetes Engine (GKE)

• Microsoft Azure – Azure Kubernetes Service (AKS)

• IBM Cloud – IBM Cloud Kubernetes Service

• Oracle Cloud Infrastructure – Oracle Container Engine for Kubernetes

• Alibaba Cloud – Alibaba Cloud Container Service for Kubernetes (ACK)

Every provider will offer their own levels of support and service, including
helping your teams migrate to the cloud . All of these services are like other
cloud services: pay as you go . Though pay-as-you-go cloud billing can
be convenient, the ability of a cluster to run multiple projects from multiple
teams can make cloud financial management and cost allocation a challenge .

The traditional approach to billing for managed Kubernetes services is to charge
per cluster per hour, plus the additional underlying resources that the cluster
consumes . This makes container cost management especially challenging
because you can’t simply look at your cloud bill and see which resources
are being consumed by a container cluster .

Why is it harder to bill and report on Kubernetes costs?
Allocating costs in a container environment surfaces additional challenges that
are unique from traditional cloud environments . In a traditional cloud environment,
FinOps practitioners can tag non-container resources one to one, allowing
reporting tools to easily map services to cost centers . Assigning accountability
for those apps is simply a mapping exercise of app vendor tags to a team .

White Paper | 8

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

With Kubernetes, one-to-one mappings of tags to teams don’t cover some
of the complex use cases that container utilization can create . Most Kubernetes
clusters are shared services with applications run by any number of teams .
This means there’s no direct cost to a specific container; a series of them come
together to generate costs per cluster of work . There is no easy way to map
cloud charges to specific container usage .

Figure 2: A high-level look at how containerized services can be labeled and mapped .2

Containers are deployed in Kubernetes clusters, which consume cloud resources
(such as compute) just as any other tenant would . The challenge lies in the fact
that, within each cluster, you generally have multiple teams consuming portions
of those underlying resources .

Additionally, containerized environments are much more dynamic than
non-containerized ones, with the average lifespan of a container being one day
in comparison to a typically much longer utilization time for a VM . Given the
dynamic nature of the Kubernetes scheduler, workloads can be rescheduled
across instance type, zone or even region . This makes cost management even
more complex as you must keep up with the rapid pace of change .

Tracking shared cluster and off-cluster resource costs together
The reality is that both models—your container costs from your shared clusters
and from your cluster resources—need to be considered, tagged and properly
allocated . Teams using Kubernetes will also have non-Kubernetes resources
and need a cost model that can take both into account . Aligning your tag strategy
with your Kubernetes labeling strategy is critical for complete allocation .

So, how do we unravel this complexity and improve how we manage container
costs? First, let’s quickly review how our teams are billed for Kubernetes usage .

2 . KubeCon + CloudNativeCon Europe . “FinOps Summit: Cost Visibility and Optimization in Kubernetes .”
Debo Aderibigbe . August 2020 .

Workload A

Workload B

Workload C

Cost
Management

Dev
Tools

Business Developers

C
or

es

E
g

re
ss

M
em

or
y

D
is

k

Lo
ad

 B
al

an
ci

ng

https://www.datadoghq.com/container-report/

White Paper | 9

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Figure 3: Applications with shared infrastructure and services (Kubernetes) .3

Cost allocation practices and policy examples to govern
container spending
With cloud financial management, predictability is king . Experienced FinOps
practitioners will keep costs within budget and minimize surprises . Teams that
are used to data center costs know that they are fixed and recurring .
The transition to cloud services changes this expectation, and containerization
further complicates things .

Container classes within Kubernetes
Cluster orchestration solutions such as Kubernetes allow you to set
different resource guarantees on the scheduled containers called quality
of service (QoS) classes .

Guaranteed resource allocation
For critical service containers, you might use guaranteed resource allocation
to ensure that a set amount of vCPU and memory is available to the pod at all
times . You can think of guaranteed resource allocation as reserved capacity .
The size and shape of the container do not change .

Burstable resource allocation
Spikey workloads can benefit from having access to more resources only
when required, letting the pod use more resources than initially requested when
the capacity is available on the underlying server instance . Burstable resource
allocation is more like the burstable server instances offered by some cloud
service providers (T-series from AWS and f1-series from GCP), which give you
a base level of performance but allow the pod to burst when needed .

3 . KubeCon + CloudNativeCon Europe . “FinOps Summit: Cost Visibility and Optimization in Kubernetes .”
Casey Doran . August 2020 .

App #1 App #2 App #3

RDS
Tag = #1

RDS
Tag = #2

RDS
Tag = #2

ES
Tag = #3

BigQuery
Tag = #1

BigQuery
Tag = #2

SQL
Tag = #3

Waste

Container

Shared
Kubernetes
Cluster

Off-Cluster
Resources

White Paper | 10

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Best effort resource allocation
Additionally, development/test containers can use best-effort resource allocation,
which allows the pod to run while there is excess capacity, but stops it when there
isn’t . This class is similar to preemptible VMs in GCP or spot instances in AWS .

When the container orchestrator allocates a mix of pods with different
resource allocation guarantees onto each server instance, you get higher
server instance utilization . You can allocate a base amount of resources
to fixed resource pods, along with some burstable pods that may use up
to the remainder of the server resources, and some best effort pods
to use up any spare capacity that becomes available .

Now that we’ve covered some basics, the next part of this section will start
to explore some tactics to begin container cost allocation . We’ll cover:

• Creating better understanding between dev, ops and finance to work toward
a more predictable budget

• Using tools to automate away human error and use containerization services
with more cloud financial accuracy

• Using resource- or application-defined aggregation; stopping individual teams
from creating many unique projects and instead encourage the use of defined
and dedicated clusters

• Assigning teams to namespaces to help provide accurate means to charge
back container costs to respective projects and teams

• Taking cloud service tagging to the next level with container cluster labels

What are customers looking for?

Figure 4: A look at how complicated cost allocation for containers can be .4

4 . KubeCon + CloudNativeCon Europe . “FinOps Summit: Cost Visibility and Optimization in Kubernetes .”
Debo Aderibigbe . August 2020 .

Billing Hierarchy

Resources

Namespaces

Labels

Invoice Audits

Cost Allocation

Forecasts

Cost Control/Budgets

Cost Optimization

Scenario Modeling

Quota/Caps

Org, Folder, Project

Cores
RAM
GPU, TPU
Load Balancers
Persistent Disk
Custom Machines
Network Egress

(i.e., Default and/or Development)

Team/Dept (i.e., DevOps)
Cost Center (i.e., Finance)
Application Name (i.e., KMS App)
Environment (i.e., Prod or Staging)
Version # (i.e., Version 1.0)
Subcomponent (i.e., Front-End Controller)

Customers want
costs in these
types of
cost containers

Google Cloud

White Paper | 11

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

In any FinOps or cloud financial management strategy, flexibly understanding
costs can drive more accountability . The goal is to help users see their container
cost drivers by both services used and container workload . Combining these
two layers helps teams determine their total cost of ownership .

Taking a deeper look at specific containerization costs
One method, recommended by Debo Aderibigbe, a Google Cloud billing
product manager, is to break down costs by:

• Billing hierarchy – Organizations, folders, projects, normalizing them with cross-
cloud concepts: linked accounts, tags, kSubscriptions, and so on

• Resources – Compute cores, RAM, GPU, TPU, load balancers, persistent disk,
custom machines, and network egress

• Namespaces – Labeling specific, isolated containers

• Labels – Teams, cost centers, app names, environment and more

With a deep labeling and tagging of all of these cost drivers, users can improve
the accuracy of how they invoice teams, audit costs, allocate costs, optimize
overrun costs, model budgeting scenarios, or fit workload costs within quotas
or under budget caps .

Consistent labeling and namespace strategy to improve allocation
Once you’ve implemented a consistent and robust labeling and namespace
strategy, you can start to consider how you will allocate cluster costs .
Unless you’re using GKE, you can’t easily see which groups are driving costs
within a cluster .

A common methodology will be to look at the proportional resources consumed
by each group (label, namespace, and so on) and use that to allocate the cluster
costs to those groups . For example, if you have four namespaces in a cluster
and each consumes 25 percent of the cluster resources, you could decide
to allocate 25 percent of the total cluster costs back to each of those namespaces .

In the real world, any environment will never be this simple or straightforward .
One additional layer of complexity is answering the question of how you
are determining cluster resource utilization . Will you base it off CPU,
memory or a combination of the two? Do you want to consider requests
or actual consumption?

White Paper | 12

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

There are pros and cons to each of these approaches, as outlined in
the following table .

Resource Requests Actual Usage

Advantages Allocate all costs

Incentivize teams to only
provision what they need

There are tools to help
(e .g ., Vertical Pod Autoscaler)

Each team/app only pays
for what they use

Challenges Some organizations are
not using resource
requests fields yet

May also incentivize
under-specifying
requirements

Who pays for the rest
(idle time/cycles)?

What do we do about
overprovisioning?

Can incentivize teams to
provision more just in case,
and not pay for it

Can set unrealistic goal
of 100 percent utilization

Going beyond the core cluster costs
When allocating the costs out to the consumers of the cluster, it’s important
to consider not only the cost of the compute nodes the container operated upon
but also the satellite costs of operating the cluster .

Management/cluster operational costs
Costs charged by the cloud service provider for managing the cluster or costs
incurred by running self-managed container orchestrator nodes should
be considered . Edge services such as web application firewall, load balancers,
and so on also contribute to the overall cost of running a workload on a cluster .

Storage costs
Containers consume storage even if this is treated as ephemeral by the services
running inside the container . Outside of the container, however, keep in mind
that the host OS on the nodes and any backup or data retrieval storage that
is used in operating a production cluster can be allocated back to the workloads
running on the cluster .

Licensing
Licensing costs are always a fun topic if you are running licensed operating
systems for the host node . License costs may be included in the charge by your
cloud service provider . However, if you operate these using bring your own
license (BYOL), the license cost will need to be allocated from the external spend .
Alongside the host operating system, consider any software packages running
on the host OS that incurs a license fee . The workload itself running inside the
container may also be using licensed software that may need to be allocated .

White Paper | 13

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Observability
Often, metrics and logs are sent from the cluster to a service that your teams
are able to visualize, monitor and alert upon . This data is sent either to services
operated by the cloud service provider or even third-party software-as-a-service
(SaaS) solutions such as Splunk Cloud, Sumo Logic, Datadog and SignalFx .

Security
The major cloud service providers now have very extensive security-related
services to assist in maintaining a secure cloud environment . Enabling these
security features does not often come for free, and these additional costs may
need to be allocated to your teams .

Tempting as it may be to include every individual dollar from all of these sources
in your cost allocation strategy, as with everything FinOps, we recommend you
start simple and grow your practice over time (crawl, walk, run) . It can become
overwhelming to implement all of these cost allocation items at once . As you
develop a process to allocate costs and the understanding of the allocation around
your organization, the divide and conquer approach will be more likely to succeed .

Addressing static and runtime container costs
Containerization costs are also broken up into two primary types: static
and runtime costs .

Static costs
For static costs, you need to consider the creation of the solution within the
container to ensure the quality of the solution to the project as well as how it affects
the CPU, network and storage when deployed . Static container costs can be
further defined by stateless and stateful containers . Stateless examples include:

• Web servers with static resources: Apache, Nginx, IIS

• Application servers, stateless applications: Tomcat, nodeJS, JBoss,
Symphony, .NET

• Microservices: Spring Boot, Play, Quarkus

• Tools: Maven, Gradle, scripts, tests

Application servers with stateful applications
There is often a need to store user sessions in an application . Two approaches
to handling this case are to use a load balancer with session affinity to ensure
the user always goes to the same container instance, or use an external session
persistence mechanism that all container instances share .

There are also some components that provide native clustering, such as portals
or persistence layer caches . It’s usually best to let the native software manage
synchronization and states between instances . Having the instances on the same
overlay network allows them to communicate with each other in a fast, secure way .

White Paper | 14

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Databases
Databases usually need to persist data on a file system . The best practice is to only
containerize the database engine while keeping its data on the container host itself .
This can be done using a host volume; for example, $ docker run -dit -v /var/
myapp/data:/var/lib/postgresql/data postgres .

Kubernetes can also be used as an alternative to managed database services .
For example, a cluster dedicated to MongoDB or Elasticsearch can deliver
something similar to a fully managed service for a fraction of the cost .

Applications with shared file systems
Content management systems (CMS) use file systems to store documents, such
as PDFs, pictures, Word files, and so on . This can also be done using a host
volume that is often mounted to a shared file system, so several instances
of the CMS can access the files simultaneously .

Runtime costs
Runtime costs by most are assumed to be static for containers . How you run your
containers will affect your bottom line . Examples of these costs from cloud service
providers include:

• Bandwidth is often overlooked or underappreciated in estimating cloud
computing charges .

• Leaving a containerized application deployed that you forgot about is a surefire
way to get a surprising bill . Once you put applications or data into the cloud,
they continue to cost you money, month after month, until such time as you
remove them . It’s very easy to put something in the cloud and forget about it .

• Compute charges are not based on usage .

• Polling data in the cloud is a costly activity and incurs transaction fees .
Very soon, the costs could add up based on the quantity of polling .

• Unintended traffic in the form of denial-of-service (DoS) attacks or spiders could
increase traffic in unexpected ways . The best way to deal with such unintended
charges is to audit the security of the application and provide measures
of controls, such as CAPTCHAs .

• Regularly monitor the health and billing of your applications . Regularly review
whether what’s in the cloud still needs to be in the cloud . Regularly monitor the
amount of load on your applications . Adjust the size
of your deployments to match load .

How LiveRamp addressed containerization costs on GKE
Sasha Kipervarg, former head of global cloud operations at LiveRamp, shared
that the LiveRamp team migrated on-premises services to Google Cloud Platform,
scaling up container services (and costs), which caught the eye of the finance team .
They completed a successful technical migration, but budgets were overrun
a month later . They needed a way to explain what happened .

White Paper | 15

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

At that time, LiveRamp was missing the cultural shift to FinOps, and developers
didn’t understand their new responsibilities were to cloud finances . To increase
this understanding, container-focused FinOps principles helped rationalize cloud
cost and operational decisions in different ways . They had to overcome challenges
that came up due to every team having their own accounts and setups .

After much FinOps-focused work, new policies were built in, such as enforced
namespacing for large clusters and better tagging and labeling to improve
accuracy of allocation, both key FinOps practices . It also helps to find tooling
that suits your team’s needs in managing cloud financial management,
such as CloudHealth® and native tools .

Considerations for container savings in production
Containerized deployments can realize up to 90 percent in discounts compared
to on-demand prices for running stateless and fault-tolerant applications .
Containers that will be ephemeral and stateless adhere to a graceful startup
and graceful shutdown .

With these qualities, serverless deployments become more attractive due
to the fact that these deployments are only charged when running . Another way
to think about it is that you’re charged nothing while in a dormant state .
Just deploying the contents to a serverless API is not enough as you must obtain
equal functionality with performance . The cold start becomes your nemesis .

However, new boundaries are opening up that allow universal batch serverless
loads to run on cloud providers, such as Apache Beam . Once enabled,
many new areas from IT will be able to participate in the savings, following
sophisticated data-parallel processing pipelines that enable execution across
 a diversity of cloud provider engines, or runners .

Optimize: Build in cost efficiencies for your
Kubernetes environment
Like the inform phase, the optimize phase in the container world is a direct
adaptation of your original FinOps practices built for cloud platforms,
but applied with the complexities of containers in mind .

One can argue that containerization solves the rightsizing problem . Having more
workloads running on the same server instance appears more cost-effective .
But as you’ve seen so far, it’s a complex task to measure which teams or projects
generate these costs, or whether or not you’re getting savings from your clusters .

Let’s take a look at how your FinOps practices have to evolve to be successful .

Once you’ve successfully charged back your Kubernetes costs, the next step
is to look for ways to optimize your Kubernetes environments to reduce costs .
There are several steps in which FinOps practitioners can partner with DevOps
teams to ensure that Kubernetes costs don’t accelerate out of control .

White Paper | 16

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Pod/container rightsizing
Ensure that your containers are asking for an appropriate amount of resources .
Because asking for too little means your application is not able to perform,
often there is some buffer between the requests or limits configured
for a container and what it really needs .

When this buffer is larger than necessary, there is opportunity for cost savings .
The Vertical Pod Autoscaler (VPA) is an example of an open source project
that will help you by automatically adjusting the requests and limits configuration
based on how much a container is seen to use, thereby saving you resources
and cost while reducing overhead .

The Horizontal Pod Autoscaler (HPA) is meant to scale out and in, rather than
up and down, for the workloads . Caution here is to make sure the VPA and HPA
policies don’t interfere with each other .

Binning and packing density settings are important and should be reviewed when
designing your clusters for optimal performance and cost savings . Having the
ability to match the right quantity of pods and namespaces per instance family
for your app is a good way to build a reference model that ensures proper
capacity, availability, overhead and economics .

Another thing to look out for is making sure ingress controller settings for ensuring
proper traffic shaping and load management to containers are being leveraged .

Node rightsizing
Next is the choice of worker node type for the cluster . This becomes a type of bin
packing problem except with all the complexities of the various platform choices .

It often is just simply making incremental improvements . For example, when you
notice that your nodes always have excess memory, it can make sense to switch
to a node type that is the same but offers slightly less memory . In practice,
however, this can be more complex . If you have workloads that often consume
more than they requested, you need to distinguish the difference between those
cases where it was needed and where it was only consumed because it was
available but wasn’t critically needed .

Consider using instance weighting scores while you are producing an allowlist
of instance size/types that are a good fit to run . The instance weighting will
be useful when you are relying on diversified allocation strategies in a spot
market where pricing may be the same, and will help ensure the right value
for your code is going to be provisioned based on weight values .

White Paper | 17

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Autoscaling adjustments
Something that makes Kubernetes especially powerful is the wealth of autoscaling
options and the ability to respond dynamically to different conditions, such as
increased or decreased demand .

This can take some architecting and iterative adjustments to get right for your
application, and there is room for waste along the way . However, the more tightly
your horizontal pod autoscaling (when we need more/fewer pods) and cluster
autoscaling (when do we need more/fewer nodes) are configured, the less waste
and unnecessary cost to run your application .

Discount types
Most cloud environments offer discount options that can offer significant savings,
so long as the terms work for you and your application .

Spot/low priority/preemptible worker nodes
These go by different names but typically provide a discount for workloads
that may disappear on short notice . This allows cloud providers a way to incentivize
filling all capacity pockets while being able to adjust for incoming workloads
of priority that will pay on-demand rates .

The declarative nature of Kubernetes makes it more conducive to taking
advantage of spot discounts as interruptions in the worker node fleet will be
noticed and replaced . Still, some applications may not be tolerant of these
interruptions . Applications that may fit this profile include data-intensive
workloads that may run in batches or are not as time sensitive, such as machine
learning training .

Commitment discounts
These also go by several names and mechanisms, such as Reserved Instances,
Savings Plans, Committed Use Discounts, Subscription Discounts, and so on,
but all typically offer a discount to users in exchange for a long-term commitment
to spend with that cloud provider . These commonly cover compute resources .
For users who expect to have consistent usage for a year or more on a given
cloud (and in some cases for a given workload type), this is an option to lower
your cluster costs .

The ability to enable a purchase method mix and declare the split percentage
of on-demand, committed, and spot variable pricing is a great way to automate
that into a cost-efficiency blueprint (for example, 10 percent committed
use for control plane, 90 percent spot for workers/replicas for non-prod,
50/50 for prod, and so on) .

Producing the pre-built helm charts or launch plans ahead of time and publishing
for reusability, with all the various optimizations included, ensures the wisdom can
be put into practice with minimal experience and friction .

White Paper | 18

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Kubeless, or serverless containers, is an emerging option where the cloud
provider is providing a higher order service that is consumed and may solve skills
shortages by the customer in operating and administering Kubernetes clusters .
Others have looked to Kubeless solutions on FPGA type instances where results
are dramatically faster, much lower cost, and without the OS and container drag
along of what is needed to log, patch, monitor and maintain an OS and
Kubernetes cluster .

Start your FinOps team with a strong foundation
Before adding practices and policies to better track containerization costs,
ensure that your teams have strong cloud financial management fundamentals .

Work with your finance team and overall cloud center of excellence to get aligned
and have strong answers to following questions (provided courtesy of Jonathan
Morin, senior product manager, CloudHealth, VMware):

• Do you have established reporting capabilities and key performance indicators
(KPIs) across the infrastructure?

• Do your teams consistently run checks to ensure cloud financial governance
and policies and being followed (understanding how to use namespaces,
tagging untagged resources, using semantic tags to relate to projects/teams,
automating tag correction to reduce errors)?

• How well do your teams provision only what they need? Can they explain what
those costs are based on and report on them accurately?

• Who pays for shared, common services?

• Do your teams actively and frequently identify opportunities to optimize cloud
resource utilization, and are they empowered to do so?

Answering these questions not only requires implementing key FinOps best
practices (so catch up on those first), but they might also require cloud cost
management solutions to help teams see the same utilization and cost reporting,
and act together to increase efficiency .

Operate: Build policies and practices to manage
Kubernetes costs
Now that Kubernetes costs can be accurately allocated, and ways to optimize those
costs are known, it’s time to build a sustainable practice to enforce FinOps-focused
policies and exercises . For example, scheduling development containers to be
turned on and off around business hours, finding and removing idle containers,
and maintaining container labels/tags by enforcement are just some of the
practices to teach and empower teams to utilize .

https://inaccel.medium.com/fpgas-goes-serverless-on-kubernetes-55c1d39c5e30

White Paper | 19

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Tooling option to manage container costs
Most companies on the path toward mastering FinOps for cloud services,
including container costs, often take one of three paths . Whether it’s building
in-house tooling to DIY their way to success, using native tooling provided by
a cloud service provider, or using a cloud financial management platform, every
choice has its pros and cons .

DIY tracking of container costs
If your teams have the talent and resources to do so, creating a DIY approach
to tracking cloud financial data, including container costs, can be a way
to make sense of this spending . Companies at massive scale are doing this
today, including Spotify, which runs its own set of cloud management tools via
backstage .io . This also might make sense if your teams are in early stages
of cloud utilization and generate billing data that can be managed this way .

Using native tooling to track costs
Using native tooling, often in conjunction with internal tools, can be another path
toward FinOps success . As long as there is a means to access and digest cloud
cost data to generate chargeback and reporting that makes sense to your
business, you will likely be in good shape . Unfortunately, if your teams are
running a multi-cloud infrastructure, you’ll likely have to use each respective tool
provided by each platform . You might also need another data visualization
or analysis tool to aggregate all of this cross-cloud financial data into one view .

Using a cloud financial management platform
When you get to a certain scale, manual efforts can cause more pain than good
and it’s time to use native tooling or a dedicated cloud financial management
platform . This takes away manual human error and leaves allocation work
(assuming everything is tagged and named accurately) to the tooling .

This can improve visibility into shared Kubernetes clusters and their costs .
It can also improve how costs are allocated by teams or projects . Cloud financial
management platforms often have features that support multi-cloud billing data
as well .

When evaluating the right cloud financial management platform for your
business, a good starting place is to look at the FinOps Certified Platforms
at the FinOps Foundation .

White Paper | 20

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

Empower and incentivize developers to track their
Kubernetes utilization
With a well-tagged and labeled infrastructure, this should provide the foundation
for dev and FinOps teammates to build their own custom reporting to track
utilization data . Whether it’s assisted via an API from native tools or cloud
financial management tools, empowering teams to create and manage their own
monitoring can help quite a bit .

Most likely, your developers are already tracking key infrastructure metrics
that help people monitor service uptime and performance in real time .
Augmenting these existing metrics with cost data can enable them to
incorporate this information in their decision-making process without major
workflow changes .

Beyond costs that track spending and utilization, empower developers to further
make their Kubernetes setups even more efficient by leveraging tools that are
already part of their existing workflows . Oftentimes, this means embracing
container-focused open source tools . Application management tools such as
Helm, monitoring solutions such as Prometheus, container workflow engines such
as Argo, and service mesh solutions such as Linkerd can really help engineer teams
get actionable visibility for their Kubernetes clusters in near-real time .

Overcome Kubernetes cost management challenges
with FinOps best practices
FinOps practitioners know that the cloud only gets more complicated from here,
and that having strong cloud financial management practices eases how we
report on and allocate costs .

This white paper outlined some strong foundational steps to start increasing
the accuracy of how your teams report on container costs . Within this paper,
we covered:

• Inform – How the public cloud providers charge for their Kubernetes services .
We reviewed why performing chargeback and cost allocation in environments
with Kubernetes is challenging .

• Optimize – How to continuously look for ways to optimize your Kubernetes
clusters and pods, and a few tactics to test .

• Operate – A few approaches to container cost allocation and building policies
to govern container spending, and how to integrate tooling to help manage
container costs alongside traditional cloud spending . We also reviewed different
types of tooling that can help your teams build cloud finance policies, tracking
and governance .

White Paper | 21

FinOps for Kubernetes: Unpacking Container Cost Allocation and Optimization

As more users adopt and put containers and Kubernetes to work, new best
practices form around tracking utilization and finance data . This means our
FinOps lens on containers is constantly changing and evolving .

To learn more about how we can help you with your cloud financial management
for containers and Kubernetes, get in touch with the CloudHealth team
and request a free trial .

Acknowledgements
This white paper was originally published by the FinOps Foundation .

Join the FinOps community
You can get a deeper dive into unwinding container cost and utilization data by
joining the FinOps Foundation community . Members are constantly discussing
container and Kubernetes best practices, and sharing new tips and tricks .

The FinOps Foundation extends its thanks to its community members and guest
contributors for all their help with this project . The more our community gets
together to tackle cloud cost optimization, the more we all collectively learn .

We’d like to highlight the following people for going above and beyond on this
white paper: Debo Aderibigbe of Google Cloud Platform; Casey Doran of Apptio
Cloudability; Jonathan Morin, Mike Giacommetti and Rachel Dines, VMware; Sasha
Kipervarg of Ternary; Webb Brown of KubeCost; J .R . Storment, Mike Fuller,
Peter Treese and Matt Leonard of Google Cloud Platform; and to Chris
Aniszczyk for suggesting the collaboration with CNCF .

https://www.cloudhealthtech.com/
https://go.cloudhealthtech.com/free-trial-signup
https://www.finops.org/projects/calculating-container-costs/
https://www.finops.org/membership/

Copyright © 2021 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies. VMware products are covered by one or more patents listed at vmware.com/go/patents.
Item No: 1006361aq-wp-finops-for-kubernetes-uslet-final 12/21

	Before you read this paper
	Executive summary
	Looking at Kubernetes costs from a FinOps angle
	Relevant terms and concepts

	Inform: How container and Kubernetes costs
are generated
	How container cost allocation is different
	Container features bring up cost complexity
	Why is it harder to bill and report on Kubernetes costs?
	Tracking shared cluster and off-cluster resource costs together
	Cost allocation practices and policy examples to govern
container spending
	Container classes within Kubernetes
	What are customers looking for?
	Taking a deeper look at specific containerization costs
	Consistent labeling and namespace strategy to improve allocation
	Going beyond the core cluster costs
	Addressing static and runtime container costs
	How LiveRamp addressed containerization costs on GKE
	Considerations for container savings in production

	Optimize: Build in cost efficiencies for your
Kubernetes environment
	Pod/container rightsizing
	Node rightsizing
	Autoscaling adjustments
	Discount types
	Start your FinOps team with a strong foundation

	Operate: Build policies and practices to manage Kubernetes costs
	Tooling option to manage container costs
	Empower and incentivize developers to track their
Kubernetes utilization

	Overcome Kubernetes cost management challenges with FinOps best practices
	Acknowledgements
	Join the FinOps community

