
The Modern Guide to
Container Monitoring
and Orchestration

Since the introduction of the concept in 2013, containers

have become the buzz of the IT world. It’s easy to see why:

Application container technology is revolutionizing app

development, bringing previously unimagined flexibility and

efficiency to the development process.

Businesses are embracing containers in droves. According

to Gartner, more than 85% of global enterprises will be

running containerized applications in production by 2025,

up from less than 35% in 2019. Mass adoption makes it

clear that organizations need to adopt a container-based

development approach to stay competitive.

Let’s look at what’s involved with containerization and how

your organization can gain an edge.

2

https://www.splunk.com/en_us/form/gartner-best-practices-for-running-containers-and-kubernetes-in-production.html

3

What is a container?
The easiest way to understand the concept of a container is to

consider its namesake. A physical container is a receptacle used to

hold and transport goods from one location to another.

A software container performs a similar function. It allows you to

package up an application’s code, configuration files, libraries, system

tools and everything else needed to execute that app into a self-

contained unit, so you can move and run it anywhere.

Containers are a key component of a “microservices” approach. This

approach breaks applications down into single-function modules

that are accessed only when they’re needed. A developer can modify

and redeploy a particular service — not the whole application —

whenever changes are required.

4

A VM abstracts hardware to turn a physical server into several

virtual ones. It does so by running on top of a hypervisor, which

itself runs on a physical computer called the “host machine.” The

hypervisor is essentially a coordination system that arbitrates access

to the host machine’s resources — CPU, RAM, etc. — making them

available to the VM or “guest machine.” The apps and everything

required to run them, including libraries and system binaries, are

contained in the guest machine. Each guest machine also includes

a complete operating system of its own. So a server running four

VMs, for example, would have four operating systems in addition to

the hypervisor coordinating them all. That’s a lot of demand on one

machine’s resources, and things can bog down in a hurry, ultimately

limiting how many VMs a single server can operate.

Containers, on the other hand, abstract at the operating system

level. A single host operating system runs on the host (this can be

a physical server, VM or cloud host), and the containers — using a

containerization engine like the Docker Engine — share that OS’s

kernel with other containers, each with its own isolated user space.

There’s much less overhead here than with a virtual machine, and as a

result, containers are far more lightweight and resource-efficient than

VMs — allowing for much greater utilization of server resources.

Why are containers
such a big deal?
Containers remedy an all-too-common problem in operations: getting

software to run reliably and uniformly no matter where it is deployed.

As an app moves from one computing environment to another — from

staging to production, for example — it can run into problems if the

operating system, network topology, security policies or other aspects

of the environment are different. Containers isolate the app from its

environment, abstracting away these environmental differences.

Containers also prevent issues due to different components requiring

different versions of the same shared library or other dependency, by

including all the dependencies within the container.

Prior to containers, virtual machines (VMs) were the primary method

for running many isolated applications on a single server. Like

containers, VMs abstract away a machine’s underlying infrastructure

so that hardware and software changes won’t affect app performance.

But there are significant differences to how each does this.

5

5 benefits
of deploying
containers
A container-based infrastructure offers a host of benefits.

Here are the five biggest.

1. Speed of delivery — Applications installed on a virtual machine

typically take several minutes to launch. Containers don’t have

to wait for an operating system boot, so they can start up in

a fraction of a second. They also run faster since they use

fewer host OS resources, and they only take a few seconds to

create, clone or destroy. All of this has a dramatic impact on the

development process, allowing organizations to more quickly get

software to market, fix bugs and add new features.

2. DevOps-first approach — The speed, small footprint and resource

efficiency of microservice-based containers make them ideal for a

DevOps environment. A microservice-based infrastructure enables

developers to own specific parts of the application end-to-end,

making sure that they can fully understand how it works, optimize

its performance, and troubleshoot any issues more efficiently than

with monolithic applications.

3. Portability — Containers pack up the app and all of its

dependencies. That makes it easy to move and reliably run

containers on Windows, Linux or Mac hardware. Containers can

run on bare metal or on virtual servers, and within public or private

clouds. This also helps avoid vendor lock-in should you need to

move your apps from one public cloud environment to another.

4. Increased scalability — Containers tend to be small because

they don’t require a separate OS the way that VMs do. One

container is typically sized on the order of tens of megabytes,

whereas a single VM can be tens of gigabytes — roughly 1,000

times the size of a container. That efficiency allows you to

store many more containers on a single host operating system,

increasing scalability.

5. Consistency — Because containers retain all dependencies and

configuration internally, they ensure developers are able to work

in a consistent environment regardless of where the containers

are deployed. That means developers won’t have to waste time

troubleshooting environmental differences and can focus on

addressing new app functionality. It also means you can take

the same container from development to production when it’s

time to go live. Finally, because containers are immutable once

created, developers don’t have to worry about configuration

differences across the deployment or other sources of

troubleshooting difficulty.

6

Orchestration 101:
using Kubernetes
To get started with container orchestration, you need specialized

software to deploy, manage and scale containerized applications. One

of the most well-established and popular choices today is Kubernetes,

an open-source automation platform developed by Google and now

managed by the Cloud Native Computing Foundation.

Kubernetes can dramatically enhance the development process by

simplifying container management, automating updates and scaling,

and minimizing downtime so developers can focus on improving and

adding new features to applications. To better understand how, let’s

look at Kubernetes’ basic components and how they work together.

Kubernetes uses multiple layers of abstraction defined within its own

unique language. There are many parts to Kubernetes. This list isn’t

exhaustive, but it provides a simplified look at how hardware and

software is represented in the system.

Nodes: In Kubernetes lingo, any single “worker machine” is a node. It

can be a physical server or virtual machine on a cloud provider such

as AWS or Microsoft Azure. Nodes were originally called “minions,”

which gives you an idea of their purpose. They receive and perform

tasks assigned from the master node and contain all the services

required to manage and assign resources to containers.

Master node: This is the machine that orchestrates all the worker

nodes and is your point of interaction with Kubernetes. All assigned

tasks originate here.

Cluster: A cluster represents a master node and several worker

nodes. Clusters consolidate all of these machines into a single,

powerful unit. Containerized applications are deployed to a cluster,

and the cluster distributes the workload to various nodes, shifting

work around as nodes are added or removed.

Pods: A pod represents a collection of containers packaged together

and deployed to a node. All containers within a pod share a local

network and other resources. They can talk to each other as if

they were on the same machine, but they remain isolated from one

another. At the same time, pods isolate network and storage away

from the underlying container.

A single worker node can contain multiple pods. If a node goes down,

Kubernetes can deploy a replacement pod to a functioning node.

Despite a pod being able to hold many containers, it’s recommended

they wrap up only as many as needed: a main process and its helper

containers, which are called “sidecars.” Pods scale as a unit no matter

what their individual needs are and overstuffed pods can be a drain

on resources.

Deployments: Instead of directly deploying pods to a cluster,

Kubernetes uses an additional abstraction layer called a “deployment.”

A deployment enables you to designate how many replicas of a pod

you want running simultaneously. Once it deploys that number of pods

to a cluster, it will continue to monitor them and automatically recreate

and redeploy a pod if it fails.

Ingress: Kubernetes isolates pods from the outside world, so you

need to open a communication channel to any service you want to

expose. This is another abstraction layer called “ingress.” There are a

few ways to add ingress to a cluster, including adding a LoadBalancer,

NodePort or Ingress controller. Think of this as the internet-facing

web server you may have used in traditional architecture.

7

What challenges
do Kubernetes and
containerization
present for
monitoring?
For all the benefits that containers and orchestration frameworks

bring to organizations, they can also make cloud-based application

management more complex. Some of the challenges they present

include:

• Significant blind spots — Containers are designed to be

disposable. Because of this, they introduce several layers

of abstraction between the application and the underlying

hardware to ensure portability and scalability. This all

contributes to a significant blind spot when it comes to

conventional monitoring. Traditional monitoring tools aren’t

capable of understanding these abstractions.

• Increased volume of data — The easy portability of so many

interdependent components creates an increased need

to maintain telemetry data to ensure observability into the

performance and reliability of the application, container and

orchestration platform. Many microservice architectures are

built to scale up microservices when needed and destroy them

when not. This ephemerality also increases the need to have data

streamed into an observability system. Additional components

added to the system also increase how many things must be

monitored and checked when things go wrong.

• The importance of visualizations — The scale and complexity

introduced by microservices, containers and container

orchestration requires the ability to both visualize the environment

to gain immediate insight into your infrastructure health and to

determine how traffic is flowing within your environment. You also

need to be able to zoom in and view the health and performance of

containers, nodes and pods. The right monitoring solution should

provide this workflow.

• Pacing for DevOps — Containers can be scaled and modified

with lightning speed. This accelerated deployment pace makes

it more challenging for DevOps teams to track how application

performance is impacted across deployments, or even to

understand when new service dependencies are added.

8

How to implement
containers
A good container monitoring solution will enable you to stay on

top of your dynamic container-based environment by unifying

container data with other infrastructure data to provide better

contextualization and root cause analysis. Let’s look at ways you can

provide several layers of monitoring for Docker, the most popular

implementation.

Hosts: The physical and virtual machines in your clusters can be

monitored for availability and performance. Key metrics to track

include memory, CPU usage, swap space used and storage utilization.

This should be a core capability of any container monitoring tool.

Containers: Visibility into your containers in aggregate and

individually is critical. A monitoring tool can provide information on

the number of currently running containers, the containers using the

most memory and the most recently started container. It can also

provide insight into each container’s CPU and memory utilization,

and the health of its network I/O.

Orchestration framework: Kubernetes itself also needs to be

monitored. How many available nodes are there? What’s the health

of the master node? Are there any pods pending reassignment

for long periods? What volume of traffic is moving through your

ingress? You need to be able to answer all of these questions quickly

to continue operating reliable services. Additionally, the nature of

Kubernetes means that pods are scheduled to optimize resource

utilization. This increases efficiency, but also adds unpredictability

about where pods are deployed and run.

Application endpoints: Determining when your service is able to

handle user requests and the performance and latency of these

requests is also vital. Your monitoring solution must also perform

health checks on the application itself and determine latency and

other performance metrics.

9

What features are
necessary to monitor
these applications?
As we’ve discussed, containerization of applications and use of

orchestration frameworks like Kubernetes create many benefits

for modern development and deployment workflows. However,

monitoring these environments and applications is far more

complicated than using legacy tools. A monitoring solution that’s

ready for containers and orchestration workflows must be able to

provide these features.

Collection of key metrics

Pod metrics: Number of desired pods, number of available pods, pods

by phase (failed, pending, running), desired pods per deployment

Resource utilization metrics: Docker Socket-collected metrics

(container and node-level resource metrics, e.g., CPU and memory

usage)

Application metrics: RED metrics (rate, error, duration); application

health; database availability and performance

Consolidation, correlation, and analysis features

Easy deployment: Deployment of collectors must be easy and cloud-

native. Ideally, a helm chart is available. Deployment can be as easy as:

helm repo add splunk-otel-collector-chart https://

signalfx.github.io/splunk-otel-collector-chart

helm repo update

helm install --set splunkAccessToken=’xxx’ --set

clusterName=’sample’ --set splunkRealm=’us0’ --set

otelCollector.enabled=’true’ --generate-name splunk-

otel-collector-chart/splunk-otel-collector

Avoidance of lock-in: OpenTelemetry is the future of monitoring

technology, and instrumentation of your environment must account

for the fact that you may decide to change monitoring or observability

providers. It’s essential that the solution you adopt supports

OpenTelemetry so that you aren’t required to redo instrumentation

work if you move.

Real-time, streaming platform: In a world where downtime can cost

hundreds of thousands of dollars per hour, seconds count. A modern

monitoring and observability platform must be able to provide alerts

and analyze data in real time to minimize MTTD and to make sure

that the conclusions you’re drawing from the data are based on the

current state of the system.

Predictive analytics: Based on AI and ML, predictive analytics

tools can tell you things are about to fail before they fail. Given the

complexity of modern environments, this can prevent issues from

even happening and help you detect potential performance and

availability issues before they impact your customers.

https://signalfx.github.io/splunk-otel-collector-chart
https://signalfx.github.io/splunk-otel-collector-chart

10

Prebuilt dashboards: Getting value from your monitoring system

shouldn’t rely on you needing to fully document your infrastructure.

Automated, built-in dashboards can make it easy to understand the

complex interrelationships between nodes, pods, containers and

applications, and see the status of your environment at a glance:

Automated service maps: Understanding how traffic is flowing through

ingress, containers and applications is extremely complicated in this

new world. Your monitoring tool must be able to figure out the paths

your requests are taking and show you these requests, in addition to

identifying errors and other issues in your environment:

Next steps
Containers are a powerful tool in your development arsenal, but it’s critical to understand

how and how well your container environments are working. Infrastructure monitoring and

application performance monitoring become more essential after deploying containers,

not less. The requirements of a container-ready monitoring solution include being built

to understand containers, easy deployment, a real-time streaming platform, predictive

analytics and an out-of-the-box experience that gives you meaningful data. If you’re ready

for an observability system that does all this and can operate natively with containers,

public clouds, private clouds and self-hosted environments, check out a demo of Splunk

Observability Cloud, or you can start a free trial today. To learn more about observability,

view our website or download our Beginner’s Guide to Observability.

Splunk, Splunk> and Turn Data Into Doing are trademarks and
registered trademarks of Splunk Inc. in the United States and
other countries. All other brand names, product names or
trademarks belong to their respective owners.
© 2021 Splunk Inc. All rights reserved.

21-14769-Splunk-Modern Guide to Container Monitoring and Orchestration-114-EB

https://splunk.com/o11ydemo
https://splunk.com/o11ydemo
https://splunk.com/o11y
https://www.splunk.com/en_us/observability.html
https://www.splunk.com/en_us/form/beginners-guide-to-observability.html

