
REPORT

Radically
Collaborative
Patterns for
Software Makers
A Mini-Encyclopedia

Matt K. Parker

Compliments of

Build software
a smarter way
Jumpstart app development in an iterative, results-driven way. We
help you deliver great apps with proven practices and simple tools.
You'll have working software in days, thanks to an approach that
starts small and scales fast. Build new apps your customers love
and update the ones they already rely on.

https://tanzu.vmware.com/labs

Modernize your existing apps
Build innovative new products
Collaborate in a culture of continuous learning

Matt K. Parker

Radically Collaborative
Patterns for Software

Makers
A Mini-Encyclopedia

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-06329-2

[LSI]

Radically Collaborative Patterns for Software Makers
by Matt K. Parker

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Developmental Editor: Melissa Potter
Production Editor: Nan Barber
Copyeditor: Octal Publishing, LLC

Proofreader: Justin Billing
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition
2020-03-05: First Release
2020-04-13: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Radically Collabo‐
rative Patterns for Software Makers, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and VMware. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Radically Collaborative Patterns for Software Makers. 1
Introduction 1
Autonomy of Space 4
Balanced Teams 5
Collaborative Story Acceptance 7
Collocation 8
Communal Breakfast 9
Continuous Integration/Continuous Deployment 10
Discovery and Framing 12
Facilitation 14
Free Snacks 34
Information Radiator 35
Iteration Planning Meeting 36
Outsider-In 38
Pair Programming 39
Play Space 44
Promiscuous Pairing 45
Relative Complexity Estimates 45
Rotation 48
Retrospective 49
Team Standup 51
Test-Driven Development 53
Top of Backlog 59
User-Driven Architectures 60
User Stories 67
Value-Stream Map 69
Velocity 71

iii

Volatility 72
Workspace Standup 73
Conclusion 75

iv | Table of Contents

Radically Collaborative Patterns
for Software Makers

A Mini-Encyclopedia

Introduction
This is a little collection of patterns for making software with others.
(The word “pattern” in this book simply means a repeatable way of
working that makes sense in some, but not necessarily all, situa‐
tions). These patterns have been observed in organizations that indi‐
vidually subscribe to different and supposedly competing
methodologies for making software. Some claim to follow Scrum,
whereas others subscribe to Extreme Programming (XP). Some are
SAFe certified; others eschewed certifications in general. Because
they all tend to disagree with one another about what label to use to
describe their “way” of making software—and because they all
believe their way is the right way—I’ve simply referred to them col‐
lectively as Radically Collaborative organizations, or RC organiza‐
tions for short. Perhaps if they begin to adopt this more general,
more open way of labeling themselves, they will begin to open
themselves up to one another’s ideas.

Keep in mind that this book is not an exhaustive list of patterns. RC
organizations exhibit many more ways of making software than will
be found in this book. Also keep in mind that this book is not a
manual. The short essays presented here will not teach you how to
practice any given pattern; that is far beyond the scope of this book,
and perhaps any one book. This book is simply an attempt to intro‐
duce you to some of the most successful patterns seen within RC
organizations—and to help you understand how radical these pat‐
terns really are.

It’s impossible to describe any one pattern in this book without
referring to other patterns in this book. That’s because the patterns

1

are differentiated but integrated; they all flow into one another, and
sometimes it’s not clear where one pattern ends and another begins.
When the description of one pattern references another pattern in
the book, that reference is indicated in quotes (and is hyperlinked in
electronic versions of this book), and that the referenced pattern has
its own descriptive essay.

You are not expected to read this book straight through. Instead, I
recommend that you browse the table of contents and begin reading
the first topic that stands out to you. As you do, you’ll come across
references to other patterns, and you will naturally begin to jump
around the book.

The patterns are arranged alphabetically to make it easier for you to
find them, as you jump from one essay to the next. However, the
patterns range from high level to low level patterns, and so another
way to understand them within the whole is to see them arranged
hierarchically. If we begin with high-level patterns—patterns that
have organization-wide implications and/or require organization-
wide participation—we would begin with:

• “Autonomy of Space”
• “Collocation”
• “Communal Breakfast”
• “Free Snacks”
• “Outsider-In”
• “Play Space”
• “Workspace Standup”

The next level of patterns are team-wide patterns—patterns that
either refer to whole-team structures and movements, or which
require the participation, or at least the active support, of the whole
team:

• “Balanced Teams”
• “Collaborative Story Acceptance”
• “Discovery and Framing”
• “Facilitation”
• “Information Radiator”

2 | Radically Collaborative Patterns for Software Makers

• “Iteration Planning Meeting”
• “Relative Complexity Estimates”
• “Retrospective”
• “Rotation”
• “Team Standup”
• “User Stories”
• “Value-Stream Map”
• “Velocity”
• “Volatility”

Lastly, there are patterns that are specific to certain specialized roles.
Given that I myself am a software developer, I have chosen to write
short essays about certain radically collaborative ways of engineer‐
ing software that have made a deep impact on me as well as the peo‐
ple I’ve worked with. I’ve written them in a way that should be
accessible to you, even if you have never programmed. I haven’t
written about specialized patterns that product designers do, or
product managers, or exploratory testers, or data scientists, or any
other role that I have no real experience with. That’s not to say that I
think those patterns shouldn’t be written about—but simply that I
am not the person to write them. Here, then, are a few patterns spe‐
cific to software developers that have stood out to me:

• “Continuous Integration/Continuous Deployment”
• “Pair Programming”
• “Promiscuous Pairing”
• “Test-Driven Development”
• “Top of Backlog” (ToB)
• “User-Driven Architectures”

A final thought before you begin. Patterns make sense in certain
contexts, but when used outside of that context, they might do more
harm than good. In light of this, these essays not only attempt to
explain the “what” of the pattern, but the “why,” with the hope that
knowing the “why” will help you quickly develop an intuitive feel for
when the pattern fits the context you find yourself in. This might
not only reduce the ill effects of using a pattern outside of its

Introduction | 3

1 If you’d like to dive further into Alexander’s work, I recommend starting with his three-
part book series, The Timeless Way of Building, A Pattern Language, and The Oregon
Experiment, available from Oxford University Press.

context, but it might also increase your confidence in trying out the
pattern in the first place. Good luck!

Autonomy of Space
RC teams are empowered to shape and reshape their workspace
environment.

Who knows best what kind of environment radically collaborative
software makers need? Is it the high-priced architectural firms that
design “modern” corporate interiors? Clearly, no. Their results are so
often bland and devoid of joy, or worse, so strikingly “modern” that
they satisfy the aesthetics of only those architects who designed it.
So, if it’s not the architects, is it the executive leadership of the orga‐
nization? Also, clearly, no. They are too far removed from the actual
value-creating work of their company to understand what kind of
environment the makers need.

RC organizations recognize that the software makers themselves
know best what kind of environment they need—that the users of
the environment must also be the architects and builders of the
environment. RC organizations, whether they know it or not, sub‐
scribe to a “timeless way of building” originally promoted by the
architect and humanist Christopher Alexander. Alexander articula‐
ted a post-industrial way of building structures and livable environ‐
ments based on an ancient, participatory approach to architecture
that is responsible for some of the most beautiful human structures
on the planet. It is a way of organically creating and evolving living
structures that he believed had been largely lost with the rise of cor‐
porate and profit-driven construction methods in the twentieth cen‐
tury. Alexander sought to restore our harmony with the
environment by empowering communities to decide what to build,
and how to build it, and by arming those communities with a cata‐
log of ancient architectural patterns that enriched the structures of
old.1

Inside RC organizations, you can see a similar process unfold. For
example, employees in these workplaces decide where their team
“Collocation”, what kind of desks to get, and what kind of materials

4 | Radically Collaborative Patterns for Software Makers

to fill their team environment with. They decide what kind of com‐
puters, keyboards, mice, monitors, headsets, peripherals, and so on
that they need, and whether to have rolling whiteboards, whiteboard
walls, or both. They also decide what kind of “Information Radia‐
tor” to buy and where to put them so that their team has a direct
line of sight to them. But their decisions go beyond the team space
and into the whole office environment in general. They control how
many plants to decorate their office with, how much artwork to put
on the walls, and what kind of rugs to put on the floor. They decide
what kind of games to put in their “Play Space”, and what kind of
toys and gadgets to have laying around to play with on breaks; what
“Free Snacks” to fill their kitchen with, and what types of food to
have available at their “Communal Breakfast”.

An environment like this is finely tuned to the needs of its inhabi‐
tants—because the inhabitants themselves control the environment.
Unfortunately, the leaders of most traditional organizations have a
difficult time understanding the value of giving their employees
autonomy over their workspace. A traditional leader might hear
about this pattern and balk at the “cost.” If so, you might struggle to
convince that leader of the value of this pattern through direct dis‐
cussion and debate. Instead, I recommend taking them directly into
an RC environment and letting them walk though it and experience
it. When they experience a workplace environment that is visibly
alive, that reverberates and resonates innovation throughout, they
are much more likely to understand the value of the timeless way.

Balanced Teams
RC teams are leaderless in any formal sense of the word.

RC organizations are filled with something they call balanced teams,
but to understand what a balanced team is, it’s helpful to first look at
more traditional software development team structures.

On a traditional team, there is a line manager, typically with a pro‐
gramming background. Everyone on the team (which is composed
entirely or almost entirely of programmers) officially reports to this
manager; this manager has hire and fire power over everyone on the
team. This manager is also responsible for the team’s work and, most
important, for ensuring the team completes their assigned work on
time and on budget. The team is building software according to a
specification that has been handed down to it; the line manager

Balanced Teams | 5

might or might not have been involved in creating the specification.
The team typically doesn’t include designers or product managers—
their work has already been done and handed down to the develop‐
ment team, either in the form of a specification or in the form of
pixel-perfect design artifacts. Although all of this makes the work of
this team less creative, there are still plenty of times when the team
is confronted with situations that no one anticipated when building
the specification. In these moments, the manager plays an outsized
role. They will take the lead on addressing the situation and might
or might not tap others on the team to help out. This traditional
team is essentially a software equivalent of an industrial manufac‐
turing process.

On an RC-balanced team, there is no line manager. No one on the
team reports to anyone else. There is no specification handed down
to them. They’re responsible for designing and building a solution
(and often, for deciding on the problem to solve in the first place—
see “Discovery and Framing”). The team consists of anyone and
everyone needed to solve whatever problem the team is tackling.
And it does whatever needs to be done, end to end. Research, proto‐
typing, making, deployment, testing. The team puts software, or
prototypes, or simply questions in front of users. It learns from
those users’ feedback, and comes up with new ideas for what to do
next. The team does all of this, all of the time.

Team members each have roles. For example, there might be people
on the team that identify as product managers or product designers
or developers. There might be data scientists, exploratory testers,
user researchers, or systems operators. But the roles are fluid. A
developer can manage product, and a designer can develop code. A
product manager can conduct user research, and a data scientist can
administer the system. Of course, they don’t have to do any of these
things, either. RC-balanced teams are accepting of differences
among team members. They accept designers who want to program
just as much as they accept product managers who don’t.

An RC-balanced team is psychologically safe. The members of the
team respect one another for the human beings they are. They listen
to and care for one another. If someone has a high need for
autonomy, members leave them alone to solve complex problems. If
someone has a high need for security, they make plans and then
transparently message changes and deviations from said plans. If
someone wants to take a risk, the team supports them, even if it

6 | Radically Collaborative Patterns for Software Makers

doesn’t work out. If someone wants to speak up, they actively listen
to their words as well as the emotional meaning behind them.

RC-balanced teams are resilient. They can adapt to new informa‐
tion, even if it causes a dramatic shift in direction. They can grow
their team size or they can shrink it, and they can tackle unexpected
problems. They can handle failures, and they can learn from them.

Some traditional leaders might initially fear RC-balanced teams
because they might see them as an existential threat. RC teams flip
traditional organizations on their heads. Instead of the leaders being
the experts, the makers become the experts. Instead of the leaders
organizing the work of the makers, the makers self-organize their
own work. Instead of the leaders deciding what everyone should do,
the makers decide what they do. But these leaders, the ones that fear
the rise of the RC-balanced team, quite possibly have forgotten why
leaders exist in the first place. When an organization begins with
one or two people, there are no leaders; they just do whatever needs
to be done. They’re the original balanced team. And for a time, it’s
easy enough for the founders to simply hire more people to share
the increasing workload without worrying about how to coordinate
all of the work or support everyone. But soon enough the day comes
when everything has become too big, too complicated, and too cha‐
otic. That’s typically when the founders stop doing and start sup‐
porting, because that’s what real leadership is: support. And that’s
what some traditional leaders have forgotten.

Collaborative Story Acceptance
RC teams accept stories together, instead of leaving it to the product
manager.

After the engineers implement a “User Stories”, what next? What
needs to happen before the story can be delivered into the hands of
users? Many teams, even Agile teams, believe that someone other
than the engineers must manually test out the story before it can be
delivered into the production environment. But this is really just
carrying over the traditional quality assurance (QA) process from
waterfall software development methods and grafting it onto an
Agile team.

RC teams approach story acceptance differently. Instead of engi‐
neers throwing stories over the wall to a product manager for QA,
the engineers, product managers, designers, and anyone else

Collaborative Story Acceptance | 7

relevant to the process accept stories together. They all sit together
and walk through the implementation; they try out the interface,
explore its nooks and crannies, and see the new feature within the
context of the rest of the software. They approach acceptance in this
way because they see stories as tokens for a conversation—and that
conversation extends through the entire development process. They
accept stories together to see whether the vision everyone had in
their head when they first discussed the story matches the reality of
what’s been delivered. And when there’s a delta between the vision
and the reality, they have a conversation about why and what, if any‐
thing, they should do about it. To these teams, it’s all about the feed‐
back loop—the conversation.

They also accept stories immediately, as soon as the engineers finish
programming. This again is quite different from traditional waterfall
environments in which it might take days or even weeks for stories
to be accepted. But do you know how much code engineers can
build on top of those waiting-to-be-accepted stories during that
time? How much code they will potentially need to unwind if the
story is eventually rejected? How much time will it take them to
pair-up again and context-switch back into the code they wrote sev‐
eral days prior? Delaying acceptance creates waste. It wastes time
and money. But it’s also unnecessary; RC teams see no point in rush‐
ing ahead when delivered stories are waiting to be accepted. They
know that to rush ahead and implement more stories would be a
false expediency. RC teams don’t just want to go fast now; they want
to go fast forever, and sometimes that means slowing down before
speeding up.

Collocation
RC teams collocate—physically or virtually.

In traditional IT organizations, the notion of “team” can sometimes
become so distorted that it loses all meaning. You can commonly
find “teams” in which the members all work on different floors, or
in different buildings. They rarely talk to one another except in for‐
mal meetings that occur infrequently. Their “team” is actually one of
many such “teams” that they are assigned to and in which they
divide their time between.

RC teams are real teams (see “Balanced Teams”). The members are
dedicated to the team 100% of the time, and they all collocate

8 | Radically Collaborative Patterns for Software Makers

together—physically or virtually. When physically collocated, it’s
very obvious where the team is: they all sit together, share comput‐
ers together, and generally talk together, all the time. They believe
that innovation is a team effort—that it’s a process of collective
insight that’s only possible through the intimate interpenetration of
minds and mental models. It doesn’t happen when everyone sits
behind closed doors, or in isolated “cube farms,” working through
their assigned tasks. It happens when the team thinks together.

RC teams collocate virtually, too. Sometimes, a team member needs
to work from home or needs to travel to a different time zone.
Sometimes they even need to live in a different time zone. But it
doesn’t matter how many people on the team need to be physically
separated or for how long. The instant that one of the team mem‐
bers is remote, they all become remote, even if the rest are still tech‐
nically collocated physically. There’s no point in treating the remote
person like a second-class citizen while everyone else enjoys the ease
of collaborating face to face in the “real” world. Diminishing one
diminishes all. So they all go “remote.” They all collaborate virtually,
through screen sharing, video conferencing, virtual whiteboarding,
instant messaging, and the like—no matter where they are. And
despite the increased technological hurdles this creates for collabo‐
ration, the result is better than if they hadn’t. They feel better, think
better, act better.

Communal Breakfast
RC organizations start every day with a free communal breakfast.

RC software makers optimize for face time—which means they need
to agree on some kind of core working hours. It turns out, though,
that agreeing on and committing to a team schedule is challenging.
This is true for any organization, but it’s especially true for organiza‐
tions making the transition from siloed workers to radically collabo‐
rative teams.

One way to incentivize a shared schedule is to offer a warm, freshly
made, wholesome breakfast every morning, and a communal space
for sharing it together.

A breakfast like this—particularly if it’s offered only for a set, limited
time in the morning—works wonders at incentivizing schedule con‐
formance. Employees who in previous jobs were able to come and
go whenever they wanted now have an extra incentive to show up at

Communal Breakfast | 9

a designated time. Who wants to miss this amazing breakfast? In
this sense, a communal breakfast is a sort of culture hack.

A communal breakfast also has the added benefit of ensuring every‐
one has the energy they need for the day. RC patterns are an intense
experience; knowledge workers tend to increase their productivity
and focus by several orders of magnitude in RC environments—
making it all the more imperative that they start their days with full
bellies! Viewed purely through the lens of “cost,” many organizations
balk at offering a free communal breakfast to their employees—not
recognizing that without it, they’re also paying a cost: missed inno‐
vation because your workforce is hungry, or missed time, because
your workers are running out for coffee and snacks! (See the “Free
Snacks” pattern for more information about the effects that hunger
has on the brain.)

But there’s a more fundamental reason that RC workplaces share
communal breakfasts. A communal breakfast really sets the tone for
the organization. It gives everyone a chance to foster community
and connections beyond their teams. Those connections grow and
enhance the neural pathways of the organization’s hive mind. They
also decrease tribalism.

Continuous Integration/Continuous
Deployment

A team that can’t ship, can’t learn.
There are two questions that you need to ask when considering
shipping software:

• Can we ship?
• Should we ship?

“Should we ship?” is ultimately a business decision. Is it valuable to
the business to immediately put the latest features in the hands of
the users? The product manager represents the business interests on
the team and must own this decision.

However, the question “Can we ship?” is fundamentally an engi‐
neering question. Is the software in a working state? Are we confi‐
dent it won’t fail in production? The goal of radically collaborative
engineers is to always—always—have a “yes” answer to this

10 | Radically Collaborative Patterns for Software Makers

question. A team that can’t ship can’t learn. And the longer you’re
not learning, the greater the risk that you’re wasting time and money
building the wrong thing.

The combination of the following three RC practices make it possi‐
ble for teams to always have a “yes” answer to the question “Can We
Ship?”:

• “User Stories”
• “Test-Driven Development”
• “Continuous Integration”

What’s a story? It’s a little description of how a user interacts with the
system. It’s the smallest piece of user value that you can put in front
of users to learn from. You believe that the feature described in the
story, on its own, provides value to users. It can’t be demoware or
vaporware. It has to be real. It doesn’t need to be a lot—just enough
to test your belief.

If your backlog consists of stories that conform to this definition,
and your engineers commit implementations of those stories only
after the team (product manager, designers, and engineers) agrees
the implementation completes the story, you’ll never have any half-
implemented features in the build.

But does the software work? Well, we’ve already talked about how
XP engineers answer that question: they practice “Test-Driven
Development”. Any pair, on any pairing station, at any time, can run
the tests to determine whether their copy of the code works—
whether all of the features of the product work correctly. But on a
big team, you have lots of pairs working in parallel, and therefore
the codebase exists in multiple states simultaneously; the tests might
be passing on one pairing station but failing on another. That’s
where we get to Continuous Integration (CI): the team needs a single
source of truth that it can point to in order to answer the question
“does it work?” Every time a pair pushes up its code, a new CI build
is triggered. And if the CI build is green, it works. You can ship the
software. Now the product manager must decide whether the team
should ship the software.

It’s worth noting that some PMs automate their decision with
respect to shipping. Some always have the default answer: “Ship on
green.” In effect, they’ve asked the engineers to add another step to

Continuous Integration/Continuous Deployment | 11

their build pipeline to automatically promote code to production on
a green build. That’s called Continuous Deployment (CD). However,
although the mechanics of it are facilitated by engineers, shipping is
still a business responsibility. The default answer of “ship on green”
doesn’t abdicate the responsibility of the decision to the engineers.
The product manager still has the responsibility of understanding
how the features are working in production and how users are
responding to it—which means the product manager needs to pri‐
oritize all of the engineering work necessary to build automated
production monitoring capabilities that make CD responsible.

Discovery and Framing
RC teams don’t build solutions unless they actually understand the
problem they’re trying to solve.

In most traditional organizations, software teams build software
according to the specifications of some senior stakeholder. The spec‐
ifications are often handed down to the team with little to no discus‐
sion. The problem the software is supposed to solve, the user value
it’s supposed to create, and the metrics that would allow the team to
gauge success are rarely, if ever, articulated. Instead, the team is sim‐
ply expected to build software according to the specification and
deliver it “on time and on budget.”

The result is, as you might expect, often dismal. Rarely do teams
deliver the specification on time and on budget—but even if by
some miracle they do deliver it on time and on budget, the result
rarely creates any real user value. Instead, it lands on users with a
dull thud, while everyone involved with the project celebrates their
“success.”

RC teams reject this process wholesale. Instead, if a stakeholder
comes to them with a concrete idea or specification for software,
they’ll attentively listen to their idea, and then ask them, “What
problem are you trying to solve?” Nine times out of ten, the person
will stop dead in their tracks. In disbelief, they’ll say, “You must not
have heard me correctly; didn’t you hear how cool this software will
be?” “Oh, it sounds cool, to be sure,” they’ll reply, “but if we don’t
know what problem it’s trying to solve, how will we know whether
what we’re building is actually succeeding?”

This simple line of reasoning—that before you build a software solu‐
tion, you must first identify, understand, and validate the problem

12 | Radically Collaborative Patterns for Software Makers

it’s trying to solve—lies at the basis for a whole host of practices and
techniques collectively referred to as discovery and framing.

During the initial discovery phase, teams will attempt to discover,
articulate, and prioritize a single problem to solve, and a user base to
solve it for. They’ll deploy a host of disciplines and techniques in the
process—including assumptions and experiments workshops, eth‐
nographic user research, and “Facilitation” techniques like “dump
and sort” and “2×2s.” They’ll create journey maps to narrate what a
typical user is thinking, feeling, and interacting with over time.
They’ll create and maintain personas—provisional representations
of their users based on the team’s continuously evolving knowledge
and assumptions. They’ll create service blueprints and/or event-
storming process artifacts in order to map out the technologies and
processes users use today to try and solve the problem that con‐
fronts them. They’ll eventually whittle down a broad range of possi‐
ble problems to solve to just one.

As the teams begin to frame out a trajectory for a software solution,
they’ll engage in “design studios” to understand the problem from
different perspectives and generate sketches of many possible solu‐
tions. They’ll develop a lean “business model canvas” to see, at a
glance, how users, business, and technology meet to address the
problem opportunity. They’ll map out potential solutions on one or
more 2×2s, progressively narrowing down to a single trajectory. And
they’ll map out an initial batch of user stories that will help them
quickly validate their solution with real, working software (rather
than prototypes).

Discovery and framing is a whole-team activity; engineers partici‐
pate just as much as designers and product managers. And although
engineers might have some specific work during discovery and
framing that only they can do (e.g., validating the feasibility of vari‐
ous technological approaches and understanding specific technolog‐
ical constraints within the problem space), they still generally
attempt to participate in the rest of the activities as deeply as possi‐
ble. It’s only when the entire team deeply understands the problem,
empathizes with the users, and collectively imagines solutions, that
it truly innovates.

Discovery and Framing | 13

Facilitation
Well-run meetings are fun and make money. RC organizations imple‐
ment these techniques to make joyful collaboration the norm.

Do you enjoy meetings in your organization? Are they productive,
enlightening, mind-expanding events? Most people, in most organi‐
zations, would answer “no” to these questions. Meetings are the
bane of their professional existence. They are frustrating battles of
will; arenas where nothing is accomplished—where people talk past
one another, advocating for their own views. Where no one listens.
Where the loudest voices prevail.

RC organizations are different. If you walked into a meeting inside
an RC organization and observed it for a few minutes, you might
not believe that what you’re seeing is a “meeting,” because what the
people in the room are doing seems so very different from anything
like the “battle of wills” paradigm you are likely used to.

Why? In a nutshell, RC organizations recognize that meetings are
moments for collaboration, for developing unique, collective ideas
that were only possible by bringing different egos together into a
single room. They don’t assume that the best idea walked into the
room when it began; they believe that the best is waiting to be
found, and it can only be found by harnessing the creative potential
that only a collection of egos affords.

So, instead of a freeform “battle of wills,” they have disciplined,
facilitated affairs that attempt to unleash that potential. And during
a single “meeting,” the tenor of the room can change dramatically.
Depending on when you walked into the meeting room, you might
think you accidentally stumbled into a quiet Buddhist monastery or
into a noisy party.

Read on to find out how RC organizations do it.

Point A to Point B
Anyone can be a facilitator within an RC organization. And the first
goal of any RC facilitator is to understand where the participants are
at when they walked into the room (Point A) and also where they
want to get to (Point B). The facilitator’s job is then to shepherd
them from the start state to the end state—effecting as many inter‐
mediate states as necessary to get them there.

14 | Radically Collaborative Patterns for Software Makers

Point A—where the participants begin—is about more than under‐
standing the current state of their work as a team. It’s about under‐
standing where each participant is, mentally and emotionally. For
example, imagine that you are about to facilitate a meeting with four
participants. One of the participants, Jack, has just come out of an
annual performance review with his manager, which didn’t go as he
planned, leaving him feeling upset and distracted. Jane, on the other
hand, has just joined the company, and has the potential to offer an
outsider’s perspective that no one else in the room can bring. Bob,
one of the managers in the room, is under pressure to deliver on an
unrelated project, and seems distracted. And Alice has a cup of cof‐
fee and a stack of charts and papers—she’s ready and engaged.

As facilitator, it’s not possible to know all of these intimate details
exactly. Some you can deduce through observation; others you
might discover by casually talking with people before the session
begins. Most important, as facilitator, you must maintain flexible
mental models of the participants in the room; and during the ses‐
sion, you need to update your mental models of the participants
based on their actions and your observations. A facilitator has no
worse enemy than a fixed mental model of participants.

Point A is also about understanding the integrity of each of the rela‐
tionship dyads in the room. Do the participants have good working
relationships? Personal relationships? Are there power dynamics in
the room that can affect the psychological safety of participants? You
not only need to reflect on the mental models you hold for each of
the participants, you also need to consider the mental models they
hold for one another.

Although many of the facilitation techniques in this pattern help
participants let go of their implicit, and often fixed, mental models,
they’re not a silver bullet. The efficacy of the techniques will often be
limited by the reality of Point A—and it’s the job of the facilitator to
find ways to help the participants themselves mitigate these con‐
straints in order to unleash their true potential as a team.

Connecting with One Another as Human Beings
Most dysfunctional meetings can be characterized as a battle of wills
—that is, as a battle of implicit mental models. In that light, tribal‐
ism is one of the most pernicious antipatterns that plague meetings.
When engaged in a battle of mental models, we instinctively

Facilitation | 15

categorize everyone in the room as either supporters or detractors—
in-groups and out-groups.

To limit this self-defeating phenomena, facilitators—especially when
they expect the meeting’s subject to be contentious—must start the
meeting by helping everyone connect with one another as human
beings: to set aside professional differences, even if only for a
moment, to remember that there’s more to each of them than what’s
seen and observed at work.

One simple technique RC facilitators use is to start the meeting by
asking everyone to tell the room something about themselves that
people in the room don’t already know. It could be anything—a per‐
sonal hobby, a hidden skill, a story from their childhood, an organi‐
zation that they volunteer with, a love of films, a comic-book
collection.

Sharing this kind of information requires the participants to let their
guards down; to make themselves vulnerable. And because that’s a
scary prospect, the facilitator themselves typically go first. They gen‐
uinely invite the room to learn something personal about them‐
selves that they had never told their coworkers before.

It’s amazing how effective this simple technique is. Once, I was asked
to facilitate a two-day session with a dozen senior enterprise soft‐
ware architects from a bank; each of these architects represented dif‐
ferent functional silos within the bank. They all operated with a
great deal of autonomy, but were being told by the organization that
they had to start to work together in order to develop a shared serv‐
ices platform for the bank. Their psychological safety was clearly
threatened by this process. Furthermore, many of the architects in
the room had professional relationships with one another that had
deteriorated over the course of several years. Those troubled rela‐
tionships were actually a big part of the reason that they had each
amassed so much autonomy and power in their roles—their prob‐
lematic interactions in the past had driven them all further and fur‐
ther apart.

It was clear that two days was a very short amount of time to reach
the desired end state (an effective path forward for a shared services
platform)—even without the added complexity of their troubled
relationship history. In the interest of time, it was tempting to skip
an activity that would help them all get to know one another better,
and yet it’s in situations like this in which it’s most critical to make

16 | Radically Collaborative Patterns for Software Makers

these types of investments. So we started by going around the room.
I began by sharing that I was an amateur juggler, which led another
architect to reveal that he had, in the past, gone to clown school, and
was a master juggler—a fact that he had never had the courage to
reveal to his coworkers. We quickly began to juggle the first objects
we could find in the room (whiteboard erasers), stealing from each
other in mid-air. His fellow coworkers laughed and clapped, cheer‐
ing him on, and frankly were amazed at his prowess. They asked
him questions about his juggling activities; they learned that his son
has learned to juggle, as well, and that they entered competitions
together.

Another architect told us a story about recently meeting his favorite
musician, causing another architect in the room to audibly gasp, and
admit that he was also a huge fan. Another architect told us about
the village he grew up in—on the other side of the world. And on,
and on. This one activity—the introductions—took nearly an hour.
And yet it paid dividends throughout the entire two days. They all
saw one another in a new light; they forgot, however briefly, of their
troubled professional past. They created bonds that allowed them to
truly begin to listen to each person’s ideas. A necessary level of
respect among the participants was born.

An expert facilitator in one RC organization told a similar story:

In our office, we started a new practice called “product lunch”: a
forum for both consultants and clients to get together and improve
their craft of Lean product management and user-centered design.
During our first session, a consultant began the meeting with a pre‐
sentation on how a certain collaboration technique works, but the
room was deadly silent whenever he asked for questions or input. It
was clear that the participants in the room were hesitant to speak
up. As the forum was new to everyone, no one was quite sure what
to expect or what the norms of engagement were. And although the
various clients in the room had all been brushing shoulders and
eating a “Communal Breakfast” at the same table with the consul‐
tants every day for months, they didn’t really know each other.
There had been very little cross-client interactions up to this point.
It just so happened that the lunch arrived 20 minutes late, which
created a natural break in the session. I used this opportunity to ask
everyone to take turns telling the room something interesting
about themselves.
The impact was remarkable. Participants discovered a number of
common interests in the room, including singing and sports.

Facilitation | 17

Participants shared interests that even their own teammates hadn’t
been aware of—teammates that they had worked closely with for
months!
One client, a young well-dressed woman who came in every day
with makeup and earrings, made the room collectively gasp when
she shared that she was part of an air-rifle club. It made everyone
sit up and look at each other differently, while reinforcing the point
that you can’t judge anyone by their looks.
The discussions, after this, became much livelier. The clients
opened up and shared their thoughts and opinions on the stressful
issues they are facing during their training, and even came up with
their preferred topic for the next session: how to manage their
stakeholders when they return to their companies, and how to
effectively onboard other people in their company into a new way
of working, thinking, and collaborating.

So remember: RC organizations have learned that we all listen to
one another the most when we see in the room as more than the
sum of our professional interactions; when we remember that we
are all more than our roles, our jobs, our work; when we connect
with our colleagues not just as “professionals,” but as human beings.

From Many, to One
Facilitators help a room whittle down many things into one thing. In
this section, we describe broadly how this happens, but know that
this isn’t a technique so much as a guiding purpose for facilitators.

To effectively move the room from Point A to Point B, RC facilita‐
tors need to help the room uncover thoughts and ideas. Many of
them. And over the course of the meeting, they’ll help the group
whittle them down until they arrive at a single outcome.

Consider the following example. It’s OK if you don’t understand
each of the individual techniques yet. You can reread this after div‐
ing into them. But start by considering the overall movement of the
meeting—and the minds.

Imagine that you’re helping a team of five people align on their next
highest-priority problem to solve for their customers. Left to their
own devices, they will likely engage in the “battle of wills” meeting
antipattern. So, as the facilitator, you begin by asking them to per‐
form “Silent Generation” of high-priority problems. This leads to 10
problems per person, or a total of 50 problems. As a first reduction

18 | Radically Collaborative Patterns for Software Makers

step, you ask them to “Self-Edit”, immediately cutting the number of
problems in half.

Then, you work with them to Dump and Sort, incorporating a Silent
Read. This creates affinity groups for problems, and you work with
the team to synthesize each group into a single problem statement.
This can also involve the generation of new insights and problem
statements now possible through the communion of ideas and col‐
lective thinking. Either way, imagine that these techniques eventu‐
ally reduce the total number of problems to about a third—or eight
altogether.

Next, you construct a 2×2, labeling the x-axis as “Harder” on the
left, to “Easier” on the right, and the y-axis as “More Important” at
the top, to “Less Important” at the bottom. You negotiate the place‐
ment of each problem into the 2×2, eventually arriving at four prob‐
lems “above the line” and four “below the line.”

You throw away the four problems “below the line,” and facilitate a
collective stack rank of the problems that remained. At the end of
this process, you arrive at the highest-priority problem to solve.

From individual thinking, to collective thinking. From many prob‐
lems, to one.

No Laptops, No Phones
Ground rules. Norms of behavior. Every group needs them. Meet‐
ings are no different.

The radical collaboration techniques in this pattern require partici‐
pants to engage with one another in the analog world. They’ll use
sticky notes and Sharpies. They’ll use whiteboard markers and dot
stickers. They’ll move from individual, silent generation to collective
thinking.

But, to achieve this level of collaboration, we must eliminate the dis‐
tractions that continuously pull our focus away: emails, instant mes‐
sages, news alerts, push notifications, texts.

The simplest way to eliminate these distractions is to tell the partici‐
pants at the beginning of the meeting to close their laptops and put
them away. To put their phones in their pockets, bags, purses, and
not to pull them out unless it’s an emergency. Tell them that if there’s
something critical that comes up that they need to immediately

Facilitation | 19

address on their phone or laptop, that they must leave the room to
do so.

Of course, explain why. Be firm—but empathetic. Most participants
will be surprised; some will even see this as a threat to their psycho‐
logical safety need for autonomy. Tell them that you understand that
“life” happens; things come up. They can leave the room if neces‐
sary, no judgement. Even better—tell everyone that this could hap‐
pen to you, the facilitator. I have, on more than one occasion,
stepped out of a meeting I was facilitating in order to take an incom‐
ing call from my child’s school. Life has a funny way of finding you
at the least convenient moments.

It’s not just the participants that have norms to respect; you do to, as
the facilitator. For example, a facilitator must be seen as an unbiased
actor in the room. You can’t be a participant and a facilitator. You
need to choose. This demands that you leave your ego at the door.

Silent Generation
Have you ever struggled to voice your ideas in a meeting? Perhaps
you’re naturally shy; perhaps the loud voices in the room drown
yours out. Perhaps you are underrepresented in your field and find
yourself cut out of the conversation by the unconscious bias of
others.

Whatever the reason—you’re not alone. An untold number of pow‐
erful, vital ideas have failed to surface in organizations because of
the hostile arenas in which they are asked to appear.

One of the most essential jobs of the RC facilitator is to help the
group take advantage of the diversity of minds present; to be able to
consider a situation from as many different angles as possible, in the
hopes that through this diversity of sight, a new understanding is
born that would not have been possible otherwise.

RC facilitators typically begin this process through silent generation.
When giving the group a prompt (e.g., “What are the problems our
customers face that we could help them solve?”), instead of asking
everyone to simply start talking at the room, they give everyone a
chance to write down their ideas in silence. They provide everyone
with their own pad of sticky notes and tell them to write one idea
per sticky. They tell them to write in all caps, with a Sharpie (for
readability and conciseness).

20 | Radically Collaborative Patterns for Software Makers

Even with this time, people often still struggle to produce ideas—
because they suffer from an internal censor. A self-limiting mind-
goblin that tells them their ideas aren’t good enough; that makes
them fear sharing their ideas with others. These mind-goblins are
often reinforced by painful memories, sometimes dating all the way
back to childhood. A participant might have endured the laughter
and ridicule of their classmates in grade school when they had given
the teacher a wrong answer to a direct question; this experience had
birthed a censoring mind-goblin that continues to plague them to
this day. And that censor has grown stronger with each subsequent
negative experience in which their psychological need for esteem
was threatened.

One of the most effective ways facilitators can silence the mind-
goblins is to give everyone an idea minimum. For example, an RC
facilitator might tell everyone that they need to produce at least 10
stickies; in other words, 10 ideas. Participants are often shocked and
wide eyed when given this requirement. Ten stickies? They had just
been struggling to come up with even one sticky! But their struggle
wasn’t due to a lack of ideas: they have plenty of ideas. They’re sim‐
ply being held back by their doubts and fears.

To validate their shock and assuage their concerns, RC facilitators
tell participants that their first few ideas are often not their best
ideas, and that sometimes the best ideas are waiting to be found,
deep beneath the surface of their conscious thoughts. Giving them‐
selves an idea minimum will help them get into the flow of produc‐
ing ideas. RC facilitators remind the participants not to worry about
the quality of their ideas; everyone has good ideas and bad ideas, but
for this process to work, the participants must overcome their
doubts and write them all down.

This process of silent generation accomplishes two important goals:
individual reflection and equal participation.

Most people need time to quietly reflect on a prompt in order to
reveal their ideas. Instead of immediately hearing the ideas of oth‐
ers, which would bias and limit their own insights, they can instead
draw on their own experiences, analysis, and intuition. Exposing the
individual diversity of ideas within the room is a necessary step
toward discovering the collective insights of the group.

And secondly, silent generation gives everyone an equal chance to
participate. Those who in the past struggled to make their ideas

Facilitation | 21

heard amidst the din of the “battle of wills” now find themselves on
equal footing. By starting with silence, their voice will be heard
louder than ever before.

One last point: consider giving everyone the exact same color of
stickies. When the stickies move from the table to the wall in later
activities, the single color of stickies will help the group feel collec‐
tive ownership over the ideas. Conversely, if you gave everyone dif‐
ferent colored sticky pads, you could unintentionally reinforce the
“battle of wills” antipattern when participants see their stickies jux‐
taposed against others.

Self-Edit
The process of silent generation helps participants begin to separate
their ideas from their identities. But it’s only the first step. Though the
participants have made their ideas physical and visible, they still feel
ownership over them. These are their intellectual children, manifes‐
ted before their eyes.

So, to continue to increase the intellectual and emotional separation
between the participants identities and their ideas, RC facilitators
ask everyone to self-edit. “If you could show only five of these ideas
to the group, which ones would they be?” After everyone has
chosen, the facilitators ask the participants to set aside their top five
for the moment. “Now, gather up the rest of your stickies; these are
the stickies that you didn’t choose to be in your top five. Hold them
up in your left hand. Pass them to the person to your left. Don’t read
what’s passed to you. Now, rip up whatever was just passed to you.”

The reaction is predictable. When groups go through a self-edit for
the first time, there’s an immediate outburst, ranging from laughter
to incredulity. Participants have an emotional connection to their
ideas. You might even see some participants go through an acceler‐
ated form of the five stages of grief.

As a facilitator, it’s important to let this process play out. The group
will tend to lean on one another for humor and support. They’re all
going through the same experience at the same time, and they’re all
sharing responsibility for it because they’re ripping up one another’s
ideas. It creates bonds of empathy and solidarity among the
participants.

22 | Radically Collaborative Patterns for Software Makers

In addition to increasing the separation between ideas and identi‐
ties, self-editing also serves a practical purpose: the participants have
simply generated too many ideas to realistically consider in the time
that’s left. For example, with a group of five people, the process of
silent generation generates 50 (or more) ideas. Most teams of five
would have neither the time nor the mental stamina to consider all
50 ideas. Through self-edit, you can cut the number of ideas in half.

Working at the Wall
The following techniques (silent read, dump and sort, 2×2, dot vot‐
ing, and stack ranking) all require participants to work together at
the “wall”—so before diving into the particulars of those techniques,
it’s important to understand why RC software makers “work at the
wall” in the first place.

Up to this point, participants have been working alone at their seats.
They’ve silently generated ideas and silently self-edited. Each of
these activities have helped them begin the process of separating
their ideas from their identities, so that they can share their ideas
with one another in psychologically safe ways. But how to share
them? How to work with them together as a group? If participants
stayed in their chairs and simply resorted to talking about their
ideas, the group would quickly devolve back into the “battle of wills.”

To work together and to take advantage of the idea/identity separa‐
tion that’s already started, they need to bring the ideas into physical
contact with one another. And the wall—a single plane on which all
ideas can stand together with equality—represents the most partici‐
patory medium for collaboration available to the group.

The act of standing up to work together at the wall creates a clear
demarcation line for the meeting—between individual work and
group work: from thinking alone, to thinking together. It gives the
body and mind a variety of positional attitudes that promotes fresh
thinking and new associations. It brings the participants together,
giving them the freedom to mingle and collaborate. And, lastly, as
the ideas represented on the stickies mingle and merge with the
ideas of others—through affinity grouping, synthesis, and so on—it
replaces individual ownership of ideas with collective ownership,
giving participants the emotional freedom to consider and advocate
not just for their own ideas, but the ideas of others. Discussions over

Facilitation | 23

stickies will take place, without the participants even knowing who
wrote the sticky in the first place.

Keep in mind that “working at the wall” can be physically tiring for
participants because it typically involves standing. Make sure that
participants can take frequent breaks and sit when needed. And of
course, some participants might not even be able to physically stand.
RC facilitators must make sure that participants can “work at the
wall” in a way that makes it possible for everyone to participate
equally, even if that means not using a wall at all.

Silent read
The silent read is typically one of the first activities performed after a
team brings their ideas up to the wall. For example, after self-
editing, RC facilitators might have everyone place their stickies on a
whiteboard. The placement of the sticky doesn’t matter for now—
they’re simply trying to make everyone’s stickies available and acces‐
sible to the group. They make sure that the stickies spread out
enough so that everyone can stand together at the whiteboard and
be able to see and read some of the stickies regardless of where
they’re standing.

After everyone has brought their stickies up to the wall, RC facilita‐
tors give everyone a timebox in which to silently read the stickies.
There’s no discussion allowed during this time; if someone has a
question or a concern about a sticky, they can simply take a Sharpie
and put a small dot on the sticky. After the five minutes are up, the
facilitator can find all of the stickies that have dots next to them and
ask the creator of each sticky to explain the sticky’s meaning while
allowing others to ask clarifying questions.

The process of the silent read creates space for everyone to consider
the entire collection of ideas together as well as to quietly reflect on
them. It keeps participants from falling back into presentation or
“selling” mode for their stickies. The ideas stand on their own. And
if people have questions (or concerns) about them, instead of letting
the questioner and the creator directly discuss it or debate it, the
facilitator acts as an intermediary. The questioner can, and often
does, remain anonymous—there’s no signature next to the dot they
left on a sticky.

24 | Radically Collaborative Patterns for Software Makers

Dump and sort
It’s not uncommon for multiple participants to generate similar, or
even identical, ideas. So, continuing to work at the wall, the facilita‐
tor asks everyone to group the stickies together. Anyone and every‐
one are allowed to walk up to the wall and move the stickies around,
grouping them together.

At some point, the facilitator can even empower the participants to
circle and name the groupings by giving everyone whiteboard mark‐
ers. This leads the participants to collaboratively synthesize
categories.

This process tends to be iterative. Stickies grouped together by one
participant will be pulled apart by another participant—revealing
differences in understanding, and leading to a discussion about
what the stickies really represent.

And it’s often through this process that new stickies—new ideas—
are born. Because by exposing these differences in understanding,
new categories emerge. For example, a participant might discover
that their interpretation of a particular sticky is quite different from
the creator’s intent—and that their interpretation isn’t represented
by any particular sticky at all.

Depending on the level of insights and new ideas that begin to
emerge through this synthesis, the facilitator can even start a new
round of silent generation and self-editing. Although an inexper‐
ienced facilitator might see this as counterproductive to their goal of
going “from many, to one,” an experienced facilitator knows that this
is where the real magic of group dynamics emerges. The insights
and new ideas that spring from collaboration are the most impor‐
tant to foster and support—it’s the entire point of the whole process!
We don’t meet together to simply decide on who walked into the
room with the best idea. Although that’s sometimes the end result,
our real goal is to discover the collective idea that was visible only
through the multitude of individual perspectives.

2×2
What if you could wave a magic wand at a set of stickies to discover
which stickies are a definite “yes” for the group to proceed with?
And of those that remain, which ones are a definite “no,” which ones
are worth debating, and which ones are nothing more than seduc‐
tive distractions?

Facilitation | 25

Although magic seems to be in short supply in our universe, we can
rely on the next best thing to reveal these categories to us: the 2×2
(pronounced “two by two”). A 2×2 is nothing more than a finite car‐
tesian coordinate plane on which the two axes represent independ‐
ent spectrums that are meaningful within the context of the stickies.

Imagine that we are again concentrating on “finding the next prob‐
lem the team wants to focus on solving for its customer.” To do so,
we can construct a 2×2 for which the y-axis represents how impor‐
tant the problem is to the customer (less importance on the bottom,
more importance on the top), and the x-axis represents how difficult
the team thinks the problem is to solve (more difficult on the left,
easier on the right), as illustrated in Figure 1.

Figure 1. The meaning of the four quadrants in a 2×2

As you can see, the four quadrants reveal the four categories that we
sought to expose with our magic wand.

The problems in the upper-right quadrant—those that are really
important to the customer and really easy to solve—are the no-
brainer problems. The “oh-duh” problems. The problems that the
team would look silly for not bothering to solve. They’re easy to
solve, and they really matter to the customer—so do it!

The problems that make their way into the upper-left quadrant, on
the other hand, are equally important to the customer—but they’re

26 | Radically Collaborative Patterns for Software Makers

more difficult to solve. That doesn’t mean they’re not worth solving,
but given that the team can do only so much work at once, it needs
to ask itself some hard questions—are these problems really impor‐
tant to the customer? And, if so, should the team tackle them first,
before the easy/important problems?

The problems that make their way into the lower-left quadrant
clearly need to be ripped up and thrown away. They’re difficult to
solve—and they’re not very important to the customer anyhow! The
team shouldn’t waste any time on them.

And the problems that make their way into the lower-right quadrant
are the most dangerous of all—they’re really easy to solve and there‐
fore tempting for the team to sink its collective teeth into. But they
don’t actually matter all that much to the customer compared to the
stickies above the line. These are the “seductive distractions.”

When it works, the 2×2 is an amazing tool. Unfortunately, it doesn’t
always work out perfectly. Sometimes, a team will debate the relative
placement of stickies, only to discover that they don’t really have
enough data to make a determination about where it should go on
the 2×2. It’s up to the facilitator to help the team navigate this situa‐
tion; sometimes the facilitator can push the team to make a decision
with imperfect data. (For situations in which you’re dealing with a
team that’s commonly afflicted with “analysis paralysis,” this can be a
necessary nudge.) At other times, you might sense that this uncer‐
tainty is important to dig into. You might decide to use the remain‐
ing time to dive deeper into the issue, developing assumptions and
experiments that the team can run to reveal data and insights that
they’re lacking, or validate or invalidate assumptions that they rec‐
ognize about the sticky in question. Or, you might even decide to set
it aside, dedicating an entirely separate session to the examination of
that single sticky. There’s no “one size fits all” answer in this type of
situation. The facilitator needs to draw on their experiences, analy‐
sis, and intuition to find a path forward.

Another common problem you’ll encounter with 2×2s is that the
team will want to place every sticky above the line. “Everything is
important,” members will say. It’s a common dilemma, particularly
among passionate teams that really care about their customers.

Fortunately, if this happens, there’s a simple solution: simply move
the x-axis up, thereby positioning half of the stickies “below the
line,” as depicted in Figure 2.

Facilitation | 27

Figure 2. “Fixing” the x-axis

Some participants might object that this is “cheating,” but remind
them that there were no units on the axes in the first place; that the
placement of every sticky was simply relative to every other sticky.

In fact, because this situation is so common, it’s often useful to con‐
struct the 2×2 axes on the whiteboard with blue painter’s tape,
instead of drawing the axes with a whiteboard marker. It’s really easy
to pick up the x-axis and adjust its placement when it’s painters’
tape! And it also makes for a visual spectacle for those experiencing
this process for the first time.

Dot voting
Imagine that you have 10 items on the wall that ideally the group
would examine, discuss, and develop further—but you have only
enough time to get through one or two. Which ones do you start
with?

Dot voting is a simple technique for understanding the items with
which the group is most motivated to continue.

RC facilitators often begin by giving everyone three dots. These
could be literal dot-shaped stickers, or simply a whiteboard marker
for the participants to draw dots.

Next, working at the wall, they ask everyone to silently place their
dots on the items with which they’re most interested in moving for‐
ward. Participants are free to use their dots however they like; for
example, if a participant is really keen to see the group move for‐
ward with one particular item, that participant could place all three
of their dots on that particular item. Or perhaps they see several
items they’d like to consider; they can spread their dots among
them.

28 | Radically Collaborative Patterns for Software Makers

Note that, because everyone can see this process unfold, those that
place their dots later in the process are likely to be biased and influ‐
enced by the sentiments they already see visually unfolding on the
wall.

You might also see one or two participants hang back, waiting for
everyone else to place their dots first to see if there are competing
items vying for consideration. They then can use their three dots to
tip the scales in favor of one of the items.

Stack ranking
After a team has analyzed its stickies with a 2×2, it will wind up with
an even smaller set of stickies to work with. The team should gather
up the “Yes!” quadrant stickies as well as any “Debate” stickies that it
felt strongly about, and facilitate a collective stack ranking; that is, a
linear prioritization of the remaining stickies.

Moving from a 2×2 to a stack rank eliminates an entire dimension
of thought—we’re literally moving from the two-dimensional carte‐
sian coordinate plane of the 2×2, to the unidimensional straight line
of the stack rank.

For example, if we’re trying to discover and decide on the next most
important problem to solve for our customers, we can stack rank the
stickies “above the line” to collectively decide on which problem we
should tackle first.

Because this can often involve a considerable amount of discussion
and wrangling, it’s important that we have only a smaller number of
stickies to rank in the first place. As a general rule of thumb, don’t
stack rank until you have seven or fewer stickies to prioritize. If you
have more than seven, continue to use other analysis and prioritiza‐
tion techniques to whittle them down.

RC facilitators sometimes begin by sorting the stickies into a single
line themselves, using any criteria that seems appropriate. For exam‐
ple, the stickies “above the line” were already sorted into most diffi‐
cult to easiest, so they might start there.

But after they’ve placed them, they turn to the group and, starting
with the bottom two stickies, ask “does this placement make sense?
Is it really more important to work on this one before this one?”
Disagreements are often an opportunity to liberate knowledge—to
discover that different people know different things about the

Facilitation | 29

stickies at hand, and that only by understanding the sum total of the
group’s knowledge can the team effectively decide on the correct
order. RC facilitators repeat this process, working their way from the
bottom of the stack rank to the top, until the group reaches an
agreement about which sticky deserves top billing. It might matter
less whether the order of the remaining stickies is completely accu‐
rate—it really depends on the team and its situation.

The top ranking sticky sometimes surprises participants; it’s not
uncommon for the top sticky to represent something that no partic‐
ipant walked into the meeting thinking was the most important.
Typically, this is a really positive sign: when the team believes in the
results of its stack rank, even if the result is unexpected, it creates yet
more distance between the team’s ideas and its identities. Team
members begin to truly believe that together they are smarter than
any single individual on the team.

But it’s also an important moment to pause and sense-check the
result; a participant might realize that the team arrived at their result
because that participant had failed to mention some critical piece of
information.

For example, once I facilitated a session with the executive team of a
fortune 50 company in which members wanted to focus on how to
obtain a larger “wallet share” for a particular customer segment.
During the session, the participants each silently generated a per‐
sona that they believed represented this customer segment. It turned
out that the participants had many different ideas for who this cus‐
tomer segment really was. They brought their personas up to the
wall and then practiced a silent read followed by a dot vote. One of
the participants, the CFO, openly questioned this result; she told
everyone that she believed another persona made much more sense
to focus on—for reasons that no one else on the executive team had
known about. However, when the team heard her reasoning, every‐
one agreed.

In this situation, the facilitator (me) didn’t have to nudge the partici‐
pants into sense checking the outcome. The CFO felt safe and confi‐
dent in this situation to question the result—even though she knew
that the CEO had used his dot votes on the persona with which she
disagreed. However, it’s much more likely that you, as facilitator, will
need to explicitly create space and permission within the session for
everyone to sense check their results—particularly for situations in

30 | Radically Collaborative Patterns for Software Makers

which there are power dynamics in the room that naturally threaten
the psychological safety of the participants.

Affinity Groups
When dot voting, an RC facilitator might decide to proceed with a
single item for the entire group to dive into. But they could also
decide to break the group up into smaller groups to consider multi‐
ple items simultaneously. Obviously, this works best when the origi‐
nal group is large enough to be broken up into smaller subgroups in
the first place.

Affinity groups are a natural complement to dot voting. Imagine
that, through dot voting, a team has discovered two or more items
that have received a significant number of dots. Instead of choosing
just one, the RC facilitator could choose two or three of the items,
and ask everyone to break up into smaller groups based on
whichever item for which they have the most affinity.

RC facilitators must make sure to give very clear instructions to
everyone before they break out into groups. This includes giving
them a timebox for their affinity group work as well as instructions
for how each group will “report” back to the larger group.

Affinity groups tend to work best when the goal of the session is to
uncover information, not necessarily make decisions.

Materials and Space
A discussion of facilitation wouldn’t be complete without talking
about materials. Practically all of the techniques discussed in this
pattern require the organization to invest in space and materials to
make collaboration possible.

The RC organization needs to invest in collaboration rooms that
allow for individual work at a table as well as collective work at a
wall (note that most meeting rooms you’ll find in most organiza‐
tions fail to meet both of these requirements).

The organization also needs whiteboards in all of the rooms—not
little whiteboards, but giant ones that cover the entire wall. And not
just one whiteboard, but multiple whiteboards.

The rooms must be stocked every day with copious collaboration
materials, including the following:

Facilitation | 31

• Whiteboard markers of all different colors
• Whiteboard erasers
• Pads of sticky notes of all different colors
• Thick, black Sharpies—lots of them!
• Sheets of paper (for activities like persona generation)
• Dots (stickers)
• Name tags

This is just a small list of possible collaboration materials. Ulti‐
mately, the radical collaborators themselves should decide on what
they want inside their collaboration rooms—because they practice
“Autonomy of Space”.

Introducing Facilitation into Your Organization
With contributions from Daphne Lin, Weiman Kow, and Carl Coryell-
Martin.

As valuable as they are, introducing these facilitation techniques
into your organization can unintentionally reduce psychological
safety if you’re not careful.

For starters, any attempt to change the meeting culture and norms
within your organization can represent a basic threat to an individu‐
al’s need for security—that is, an individual’s desire for consistency,
or, conversely, their resistance to change.

Several of these techniques require participants to share ideas that
can be seen as “wrong,” which can threaten their need for esteem.
Silent generation, for example, encourages participants to generate a
large number of ideas, and it’s simply not possible to do that if par‐
ticipants are overly concerned with whether others will see their
ideas as “good.” To risk being wrong requires an environment that
makes interpersonal risk-taking possible—in other words, an envi‐
ronment of trust.

Facilitation will also directly challenge the power of individuals in
the organization who had heretofore dominated meetings via the
“battle of wills” antipattern. They will see facilitation as a loss of
control as well as a loss of autonomy. During the “battle of wills,”
they had been free to act as they pleased, with no real structure
imposed on their participation. They could interject at will, veer

32 | Radically Collaborative Patterns for Software Makers

conversations off course, or even ignore the battle altogether. But
now, they’re presented with a facilitator who will guide the group;
they’ll be forced to ideate silently and synthesize collaboratively.
They’ll rarely be given the floor to talk at the group, instead being
guided through small group activities like affinity groups. In other
words, the current organizational culture has predisposed them to
resist facilitation.

For all of these reasons, it’s critical that facilitators consciously culti‐
vate the psychological safety of any groups new to these techniques,
starting with setting expectations. Weiman Kow has discovered that
many of the clients she works with come from a corporate culture in
which they are expected by their leadership to “always have the right
answer,” seriously limiting their participation in meetings. In these
situations, she carefully and deliberately sets and resets their expect‐
ations at each stage of the meeting; for example, she tells partici‐
pants that for generative activities like silent generation, synthesis,
and affinity groups, they should have fun and let their ideas run
wild. “It’s freeing for them,” she explains, often witnessing waves of
ideas and creativity flow over the group that they had previously
held back out of fear. “I explain to them that their goal is to get into
the flow of generating ideas. Your first few ideas often aren’t your
best ideas. Good and bad ideas will naturally come to mind—the
only rule is that you must write all of them down.”

Facilitators can also significantly assuage the fear participants face
when first encountering these new techniques by narrating their
experience. For example, when presented with radically different
ideas, many participants might naturally feel concerned, sensing a
“battle of wills” brewing. A facilitator can defuse this tension by cele‐
brating the diversity of ideas. “Wow, it’s really amazing to see how
different all of these ideas are—I love the creativity in the room,
keep it coming!” As Weiman notes, comments like this, “keep the
mood up, building confidence that the room is heading in the right
direction.”

Similarly, facilitators can help the room connect disparate ideas and
detect trends; the participants—particularly when breaking out into
smaller groups—need the facilitators help to reconnect to the larger
picture. Simple statements such as “We are seeing a pattern here”
and “These ideas build on each other” reinforce the movement of
the entire group from individual thinking to collective thinking.

Facilitation | 33

2 Johannes Gutenberg Universitaet Mainz. “Individual stress susceptibility and glucose
metabolism are linked to brain function: Perturbations in brain glucose metabolism
identified as cause for stress-induced spatial memory impairments.” ScienceDaily, 24
October 2018. www.sciencedaily.com/releases/2018/10/181024122411.htm.

With careful facilitation, the fear and reluctance participants feel
when experiencing facilitation will fade. The act of joyful, positive
collaboration these techniques make possible will erode their fears
and win them over. Even the powerful will embrace facilitation, rec‐
ognizing that their loss of power has been offset by their reduction
in stress and the increase in innovation within their teams and
organization.

Free Snacks
RC software makers have access to free snacks and drinks whenever they
want them.

Hungry brains don’t work. You can’t think when you’re hungry. OK,
that’s not entirely true—if you fast for 16 hours, your brain will flip a
switch and move into a hyper-focused state that helped us survive in
the before time when saber-toothed tigers hunted us day and night.
But within the context of a normal, modern-day sustainable work
life, you’re unlikely to regularly go to work after 16 hours of fasting,
so let’s ignore this phenomenon for now.

If you’re hungry, your glucose levels drop. And that’s not good—glu‐
cose gives your body energy, and your brain requires about 10 times
more energy than any other organ in your body.2 If your brain is
starved for energy, you can’t think; you appear tired and irritable as
your “lower,” unconscious, primitive brain (the amygdala) increas‐
ingly takes the reins from your “higher,” conscious brain (the pre‐
frontal cortex).

Now think about the efficacy of a hungry, irritable workforce. A
modern organization relies on the creativity, innovation, problem
solving, collaboration, and rational decision making of its knowl‐
edge workers. If they’re hungry, all of that goes away. So, RC organi‐
zations created a simple, straightforward solution: give everyone
free snacks. At any time of the day, employees can and should be
able to reach for a snack if they’re feeling hungry. This extends to
drinks as well. Free coffee, tea, beer, wine, flavored water—whatever
they ask for.

34 | Radically Collaborative Patterns for Software Makers

You might balk at the organizational “cost” of providing everyone
with free snacks, but consider this: what’s more costly? Free snacks,
or the loss in productivity, creativity, and innovation that results
from a hungry workforce?

This solution works only in as much as the software makers actually
want to eat the snacks that are available. Thus, although it’s wonder‐
ful if they have access to healthy snacks rich in good fats, antioxi‐
dants, and vegetables (all shown to benefit the immune system)—
just make sure they’re not so healthy that no one wants to eat them!
RC organizations empower the software makers themselves to
decide what snacks to fill the office kitchen with (see “Autonomy of
Space”).

Note that in a chronic high-stress environment—one in which the
psychological safety of individuals is constantly threatened—free
snacks, particularly unhealthy ones, can facilitate emotional eating,
which can simply lead to more stress. So this pattern, despite its
simplicity, is intimately connected to a number of other patterns in
this book that promote psychologically safe environments.

Information Radiator
RC teams transparently share the status of their work with anyone who
wanders by.

What’s the point of hiding the status of your team’s work from other
people with whom you work? From other teams? From managers,
directors, vice presidents? Wouldn’t it be more interesting to share
the status with anyone who walks by so that they could ask ques‐
tions if they wanted to? If they’re another team, wouldn’t it be valua‐
ble to share insights, wins, and challenges with each other? If they’re
a leader, wouldn’t it be interesting to share with them the real,
unvarnished status of the work that the leader ostensibly supports?

Of course, in a traditional IT organization, the thought of transpar‐
ently radiating the status of the team’s work with anyone who walks
by is terrifying. Most traditional teams live on secrecy; on hiding the
bad from anyone who could punish them, and the good from any‐
one who could steal the credit from them.

RC teams, by contrast, live on transparency. They fearlessly share
the status of their work with anyone who walks by, because they
know that they have nothing to fear. The leader who would punish

Information Radiator | 35

them for mistakes is not a leader who deserves their fealty. The
leader who would steal the credit for their successes is not a leader
who deserves their attention. It helps, of course, that RC organiza‐
tions as a whole don’t suffer from those types of “leaders.” But even
if one did happen to slip through the cracks, RC teams would just
smile at them, laugh, and go on about their business.

One common way they transparently share the status of their team’s
work is with a digital information radiator—like a TV that displays
the real time status of their CI builds, their team’s velocity and vola‐
tility, their work-in-progress in the backlog, their production met‐
rics that tell them how well their application is succeeding at
providing user value.

These radiators, of course, also benefit the teams themselves. Mem‐
bers of a team will all be sitting with line of sight to an information
radiator. They’ll all see the second a build turns red, or a production
outage occurs, or a user metric falters. Then, they can fluidly self-
organize in order to address whatever the problem is.

Iteration Planning Meeting
At the beginning of every week, RC teams sit down and ask themselves:
“What should we work on this week? Why should we work on it? How
will we know whether our week is successful?”

On waterfall teams, it’s not uncommon to see months (or even
years) of work planned out for developers. But RC teams know that
the best software in the world isn’t built through a process of exten‐
sive upfront planning; instead, it’s built through learning—by
putting software in the hands of users, seeing whether the users
truly find it valuable, and adjusting as necessary. Future work is
informed by learnings from the previous work. You can’t iterate if
you can’t adjust.

But, deciding on exactly how to prioritize upcoming work based on
learnings isn’t always obvious or trivial. Prioritization is a whole-
team effort. You need to combine the ideas, insights, learnings, intu‐
itions, and risk assessments of everyone on the team. And you need
to do it often. Every week, a team learns several new, vital pieces of
information that inform their work—new insights from users, new
priorities from the organization, new challenges and opportunities
with technologies, and so on.

36 | Radically Collaborative Patterns for Software Makers

So, radically collaborative teams start every week by going into a
room and asking themselves the following questions:

• “What should we work on this week?”
• “Why should we work on it?”
• “How will we know whether this work is successful?”

During this meeting, they might pencil in new “User Stories” based
on last week’s learnings. Or, if they already have a pile of stories to
consider, they use “Facilitation” techniques to whittle them down
and prioritize them. Programmers on the team will quickly estimate
stories based on their relative complexity (see “Relative Complexity
Estimates”)—after all, the complexity of a story can affect how a
team prioritizes it!

RC teams make sure that everyone understands the “why” behind
each story that gets prioritized—what is the story’s value hypothesis?
What outcome is it trying to achieve? And how will the team meas‐
ure the story’s success? So many “Agile” teams forget to close this
most critical feedback loop (feedback from users), assuming some‐
one else will do it, or that they’ll eventually get around to it. RC
teams make sure to bake right into each and every story the ways to
measure success on the outcome the story is trying to achieve. And
they make sure they have a plan for how they’ll follow through on
these measurements as quickly as possible (see, for example, “Con‐
tinuous Integration/Continuous Deployment”). There should be a
clear path around the idea-to-feedback circle for every single story,
and the team should establish how to make that lap around the cir‐
cle as quick as possible for every single story.

At the end of the iteration planning meeting, make sure the team
has a prioritized backlog, answering the three questions and allow‐
ing developers to practice ToB.

Note that although the “Iteration Planning Meeting” at the start of
the week produces a prioritized backlog for that week, that doesn’t
mean that the backlog can’t change throughout the week. In fact, on
healthy teams, it absolutely will change throughout the week. See the
“Team Standup” pattern for more information about the kind of
information that a team can learn throughout the week that would
cause it to adjust its backlog by mid-week.

Iteration Planning Meeting | 37

Outsider-In
Every week, RC software makers invite outsiders into their organiza‐
tions to tell them that they’re doing it wrong.

Organizations are natural echo chambers. How often do you hear
someone challenge the status quo within your organization? Are
new ideas valued? Are they safe? When an organization begins,
ideas flow freely, as while in its infancy, the organization has yet to
develop hard-and-fast perspectives. To survive, the fledgling organi‐
zation must quickly create value in the world—and that value isn’t
guaranteed. The organization races, trying out different ideas in
quick succession in its search for market fit.

At some point, either the organization fails, gives up, or folds. Or, a
particular idea, a particular form of value, gains traction. Before this
turning point, new ideas were celebrated. They were the lifeblood of
the organization, the hope for the future, but now, the new idea is
seen with suspicion. It threatens to derail the organization’s focus
from the particular idea that has gained traction. The curious,
observant, inquisitive minds, so great at uncovering and exploring
new ideas, suddenly find their skills in question as the organization
transitions from exploration to optimization.

The longer your organization exists, the worse this problem
becomes. Most organizations become hyper focused on optimizing
their cash cow, forgetting that the rest of the world is continuing to
change and evolve. They forget that just as they once disrupted the
market, so too will they be disrupted.

The patterns of your organization cement themselves. And for this
reason, every organization is an exercise in inertia, and that inertia
creates the seeds for disruption. Thus, in many ways, the most
important patterns within your organization are the patterns that
promote change, evolution, disruption, transformation: the patterns
that will make it possible for your organization to reinvent itself
time and again, as it adapts to our ever-changing world.

When everyone in your organization becomes hyperfocused and
specialized on the enormous complexity of maintaining and opti‐
mizing your cash cow, they have little capacity to step back and see
the bigger picture and imagine new forms of value and new solu‐
tions. The forest is lost, each worker tending only to their own tree.

38 | Radically Collaborative Patterns for Software Makers

3 Kent Beck created one of the first Agile software development practices, known as
Extreme Programming, or XP for short. For further information about his ideas, see his
book Extreme Programming Explained: Embrace Change, 2nd ed., (Addison-Wesley,
2004).

4 After playing an influential role in the Ruby on Rails community, Steve Klabnik went
on to work on the Rust programming language. See the book The Rust Programming
Language, 2nd ed., that he coauthored with Carol Nichols (No Starch Press, 2019).

But when the leadership of an organization creates a forum for shar‐
ing ideas, and when they invite outsiders in to share perspectives
that differ from their own, they create an environment in which
alternative ideas are not only possible, but valued. They inspire a
learning culture that in turn empowers organizational innovation
and personal motivation.

Every week, RC software makers listen to a presentation from an
outsider. It might be a fellow software developer from the local com‐
munity talking about their open source project. It might be the
founder of extreme programming, Kent Beck,3 challenging them to
reframe their ideas about software development into his new “3X”
model (eXplore, eXpand, eXtract). It might be a former Ruby evan‐
gelist, like Steve Klabnik,4 talking about why he stopped using Ruby
and devoted himself to building a community for a very different
programming language—Rust.

But regardless of who it is, the goal is the same: everyone, from the
CEO down to the practitioner, needs to be challenged by the out‐
sider who has nothing to lose by telling them that they’re doing it
wrong.

Pair Programming
RC teams program in pairs. Two engineers, two keyboards, two mice—
one computer.

Will your project fail if one of your team members is hit by a bus?
What’s the bus count of your team? Admittedly, the “bus count”
question is a grim thought experiment. But ask any team this ques‐
tion, and you’ll discover that most, if not all of them, have never
considered it.

When engineers work alone on production code—a practice called
soloing—they become knowledge silos. They begin to “own” particu‐
lar parts of the system. Other engineers fear touching their code; the

Pair Programming | 39

other engineers don’t understand it, and they’re afraid they’ll break
it. The owners of the knowledge silos begin to jealously guard their
corners of the system, recognizing it as a form of power. They know
that their job security grows proportionally with the size of the silo
(this is sometimes referred to as mortgage-driven development).

But the cost of the silo is high. It poisons team power dynamics and
puts the continued development of the product at risk—a disservice
to both the users of the product and the organization. Even the
owner of the silo suffers. Creating benefits for yourself at the cost of
everyone else can’t lead to fulfillment.

One of the simplest, most straightforward, and most powerful ways
of breaking down knowledge silos is pair programming.

Imagine a typical scenario in our industry: two engineers, with two
computers, two keyboards, two mice, sitting at adjacent desks, writ‐
ing code all day long—but with their headphones on, never interact‐
ing with each other—in other words, they are soloing. Now simply
erase one of the computers from your mental image; plug both key‐
boards and both mice into the remaining computer. Sit the two
engineers next to each other at the same desk. Put the monitor
between them so that they can both see it. Now they are pairing—
giving each other real time feedback and sharing knowledge.

But they do more than program together. The pairing process runs
through the entire life cycle of the software development process.
For example, imagine that our pair of engineers pull a “User Stories”
from the “Top of Backlog” and proceed to implement it—together.
They talk about the “User-Driven Architectures” that the user expe‐
rience seems to demand. They decide what behavior to test first, and
exactly where within their modular codebase to write the first test.
They practice “Test-Driven Development” through ping-pong pair‐
ing—one engineer writes a test, the other makes it pass, and
together they refactor. They discover that one of them knows more
about a particular section of the code they have to work with, but
through pair programming, they spread that knowledge equally
between them. They each catch edge cases and bugs that the other
misses. One engineer calls out a code smell by name, whereas the
other suggests a design pattern to refactor to. Every hour or two,
they stand up and take a break. One makes tea; one plays guitar. Or,
they catch a game of actual ping-pong with other coworkers on
break.

40 | Radically Collaborative Patterns for Software Makers

Sooner or later, they complete the engineering for the story—but
they’re not done. They now turn around and show it to their prod‐
uct manager and designers for “Collaborative Story Acceptance”.
They learn that they had missed the intent behind a particular aspect
of the user interface and adjust it with the help of the designers.
They deploy it to an acceptance environment, then a staging envi‐
ronment, and then a production environment, ensuring that the
appropriate human, proactive, and reactive quality controls are
observed at each step in the pipeline.

While analyzing the usage metrics in their production environment,
they discover that a large percentage of users are bailing out at a crit‐
ical stage of the feature. A heat map from the production user inter‐
face indicates that some users are never seeing and clicking the
button that’s necessary for progression at this stage—because it’s
below the fold in two out of the three most popular web browsers
due to a styling glitch. They quickly work with a designer to fix the
button’s location so that it shows correctly in all browsers and rede‐
ploy. Afterward, they talk as a team about how they could ensure a
problem like that doesn’t make it into production again.

As you can see, pair programming isn’t just two engineers writing
code—it’s two engineers collaboratively solving problems and learn‐
ing together. It creates rapid feedback loops through a sort of real-
time code review.

There are many patterns of pair programming; we’ve already men‐
tioned ping-pong pairing (in which one engineer writes the test, the
other makes it pass, and together they refactor). There’s also driver-
navigator, mute, remote, and others. But one of the most powerful
forms of pair programming, expert-expert, is characterized by a
state of organic flow—testing, writing, debugging, discussion,
shared intuition—that can come only from a deep well of familiarity,
empathy, trust, and mastery between the two engineers. The pair of
engineers think and act as one in a way that’s difficult to grasp when
seen from the outside, as if they have achieved some level of telepa‐
thy, some Vulcan mind-meld. They finish each other’s thoughts, ver‐
bally and at the keyboard. One senses when the other wants to take
control and so leans back in their chair accordingly, hands receding
from the keyboard. One seems two steps ahead of the other, only to
smile as the other mentally leapfrogs over them. They end each day
exhausted, fulfilled, and energized all at the same time.

Pair Programming | 41

This might sound like a beautiful process—indeed, it is! It’s a unique
experience in the world of software engineering as well as one that’s
highly fulfilling and inherently addictive. But it’s important that you
know that there’s a dark side to pairing, particularly when transi‐
tioning from a traditional, siloed development team to a pair pro‐
gramming team. Pair programming, to those going through this
transition, can represent a profound loss of autonomy—one of the
three key ingredients for intrinsic motivation. On your traditional
team, when you were given a task by a project manager, you were
also given the autonomy for how to implement it. But now you
share that responsibility with another engineer. You no longer do
only what you want, you need to write code together, and you must
agree on the tests and implementations.

This problem is exacerbated in traditional organizations by a fear of
mistakes. Many traditional organizations measure success not by
whether a team achieved goals like creating true user value, but by
whether they made mistakes: were there bugs in the software, did
the team miss deadlines, did it overrun its budget. Organizations
that focus on these metrics as the measure of success create a culture
of fear, blame, and scapegoating. In traditional organizations,
employees lack the psychological safety necessary to think out loud,
and if they can’t think out loud, they can’t pair.

Pair programming brings to the surface all kinds of feelings of inad‐
equacy. In a traditional organization, your worth to the organization
directly correlates to your individual knowledge and productivity. In
the new world, your worth is wrapped up in your team’s ability to
iterate and learn quickly. The individual talents of any one person
on the team matter much less than the capabilities of the team com‐
bined. But at first, the feelings of worth equating to personal prow‐
ess will be difficult to shake. When paired with someone else, every
time their partner seems to exhibit knowledge or skills that they
lack, they will feel real, palpable fear.

For these reasons, any attempt to force pair programming on engi‐
neers is destined to fail. They will reject it. Pairing must be opt-in. If
you’re transitioning from a traditional organization to a radically
collaborative one, tell everyone that you’re creating a new team with
pair programming, and ask for volunteers. Give the curious a
chance to try it out by letting them pair with an expert pair pro‐
grammer on a short code kata. An engineer can maintain their feel‐
ing of autonomy only if they choose to pair. Over time, as teams

42 | Radically Collaborative Patterns for Software Makers

5 Brooks, Frederick P., Jr. Mythical Man Month. (Addison-Wesley Professional, Anniver‐
sary edition; August 12, 1995).

practicing pair programming show positive results, many skeptical
practitioners will be swayed.

But what of the skeptical managers? When asked to consider mov‐
ing their teams to pair programming, they’ll typically start by asking
two related questions:

• Won’t everything take twice as long now?
• Won’t I need to hire twice as many engineers to get the same

amount of work done?

The first question is based on an assumption that programming is
their bottleneck. The second is based on the Mythical Man-Month5

fallacy—the idea that the more humans you throw at a software
problem, the faster that problem is solved! Yet time and time again,
when teams thoughtfully map out their idea-to-feedback cycle, they
discover (much to their surprise) that the programming itself isn’t
the bottleneck. They uncover all kinds of other waste:

• Technical debt
• Backlog mismanagement
• Too much work in progress not actually being actively worked

on
• Ambiguous definitions of done
• Overly large stories
• Large teams
• Unnecessary complexity
• Psychological distress
• Context-switching
• Knowledge loss
• Deployment issues
• Organizational bureaucracy

Pair Programming | 43

6 Sedano, Todd; Ralph, Paul; and Péraire, Cécile. Software Development Waste.
IEEE/ACM 39th International Conference on Software Engineering (2017): 130-140.
https://doi.org/10.1109/ICSE.2017.20

These are just a handful of challenges that limit a team’s ability to
effectively build software together. If you’d like to dive deeper into
the sources of waste on software development teams, start by read‐
ing the research paper “Software Development Waste,” by Todd
Sedano, Paul Ralph, and Cécile Péraire.6

Play Space
RC organizations create time and space within their day to play.

RC is an intensely focused experience—and the human brain can
stay in that state of focus for only so long. After a while, the “focus”
pathways of the brains tire, and you transition from a collaborative,
deliberative, creative state into a uncollaborative, rash, and irritable
state.

That’s why it’s critical to create play spaces in your place of work—
spaces that are physically separated, yet easily accessible, from team
areas. Spaces that condone, and even incentivize, rest and play.

The RC employees themselves decide what to fill the space with. For
example, some of the software makers might be musicians, so they
would make sure the space has guitars, keyboards, electric drums,
and other instruments. Perhaps some of the software makers love
board games and card games; thus, they would make sure that the
play space includes games like Settlers of Catan, chess, checkers,
UNO, playing cards, and so on. Perhaps there are several gamers in
the organization; they would decide to put TVs, gaming systems,
and couches in the space. Still others might like a space to practice
yoga, or to perform quiet meditation, or to take naps. And so it
would be built.

In other words, RC organizations do whatever they need to do to
successfully unfocus from their team work (work which, when going
well, is really no different from play anyways). When viewed
through the lens of “cost,” most traditional organizations balk at this
pattern. But they’re playing a dangerous game: those organizations
are actively being disrupted by the organizations that understand
the real value of fostering psychologically safe environments that

44 | Radically Collaborative Patterns for Software Makers

foster creativity, innovation, and optimal brain states. If they don’t
transform, those traditional organizations will be disrupted.

Promiscuous Pairing
RC teams swap pairs—every day.

The purpose of “Pair Programming”—to learn and emancipate
knowledge—is quickly undermined when the pairs on a team don’t
change (an antipattern known as “pair-married”). Knowledge silos,
originally broken down by “Pair Programming”, begin to reform in
specific pairs; pairs begin to specialize; knowledge of significant
refactorings don’t escape the pair boundary.

Furthermore, hearing the same perspective day in and day out from
your pair leads to a loss of learning, makes pairs blind to broken
windows, creates boredom, or worse, tension and stress, and even
burnout.

But there’s a very simple antidote: promiscuous pairing—a cheeky
name for a simple practice. Swap your pair every day, at the start of
the day. It doesn’t matter whether a “User Stories” is in flight. It
doesn’t matter whether a pair is working on a “critical issue.” That’s
all the more reason to swap. Fresh perspectives help ensure quality
work.

At the end of “Team Standup”, RC team members self-organize into
pairs. And if there were stories in progress at the end of the previous
day, they quickly divide their team into two sets—one set of engi‐
neers that will stay on the story that’s in progress, and another set
that will rotate. By simply requiring that everyone pair with some‐
one different than the day before, they ensure that every story in
flight receives both continuity and fresh perspective.

Relative Complexity Estimates
RC engineers estimate “User Stories” by ordering upcoming stories from
least complex to most complex. They then assign points to the stories to
reflect their relative complexity.

Time estimates in our industry are the definition of insanity. Since
the start of our industry, organizations have been asking, “How long
will this take?” And for decades, developers have been responding
with time estimates. Kent Beck, the inventor of Extreme Program‐
ming, has a rule for time estimates: “Whatever they say, double the

Promiscuous Pairing | 45

number, and increment the unit.” In other words, if a programmer
says it will take “one day,” it will take two weeks. “One week”? Two
months. Of course, he’s not seriously recommending this method of
estimation to anyone, but he is hinting at a real truth in our indus‐
try. Time estimates tend to be horribly, terribly, catastrophically
wrong.

In a traditional waterfall/leader-follower organization, success isn’t
measured by the realization of user value, but by the ability of teams
to deliver predetermined requirements on time and on budget,
hence the focus on estimating in time. RC organizations, on the
other hand, incrementally build and deliver “User Stories” into the
hands of users and iterate based on concrete feedback. RC teams
don’t typically have months or years of work planned upfront.
Instead, they have goals that they’re trying to achieve with their
product and outcomes that their measuring against; the specific
functionality that will achieve the goal isn’t all determined upfront.
Instead, it’s discovered through validated learning.

Which leads to an interesting question: if success in an RC organiza‐
tion is about the realization of user value and not about delivering a
predetermined set of features on time and on budget, do RC teams
need to estimate? Perhaps, surprisingly, the answer is “yes.” Some‐
times, they literally need to know when a certain set of stories will be
done. For example, imagine there’s an important conference on the
horizon, and everyone would like to know what they’ll be able to tell
the world what the product contains on that date. It’s not easy to
develop speeches, marketing materials, and so on for an event like
that when you don’t have a clue as to what the product will contain
by that time.

But even without dates like that, estimating work can still provide
value. The trick is, you need to estimate with relative complexity
points, not time. Because even though programmers are terrible at
estimating work with time, they’re really great at estimating how
easy or difficult one user story is compared to other user stories.

For example, line up three stories in front of the development team,
and ask the team to rank the stories from least complex to most
complex, relative to one another. They’ll quickly sort it out. The
conversation might go something like this:

46 | Radically Collaborative Patterns for Software Makers

• “Hmmmm. Well, this one will be really easy, it’s really just some
light updates to the frontend.”

• “Yeah, but this one, though, will require work in multiple mod‐
ules, so it’s definitely more complex.”

• “This third one touches all of that as well as the third-party
rules engine integration, which is always a pain—there’s quite a
bit of technical debt to address there. It’s definitely the most
complex.”

And now you have three stories, estimated with relative complexity.
Assign each of them a certain number of points; for example, “1” for
the easiest, “3” for the most difficult, and “2” for the story in
between. We said this process can provide value—but what value
has the team actually realized by going through this process?

Even if it did nothing else, the team already had a conversation that
illuminated the complexity that each developer saw in a story. This
process often uncovers knowledge silos on the team or highlights
different levels of experience. For example, imagine one engineer
declares a story to be the most complex, whereas another says it’s the
least complex. Differences in perspectives like this aren’t as uncom‐
mon as you might think, and can reveal knowledge silos about the
underlying system, or different levels of experience with certain
types of engineering work. And revealing those differences gives the
team the opportunity to take advantage of one another’s skills and
knowledge better, and learn more effectively. In this example, it
would be great to pair the two engineers together for that story so
that the knowledge that makes the story “low complexity” (or “high
complexity,” depending on whose perspective was more accurate in
this situation) is spread through the team.

But if teams take this a little further—for example, if they keep track
of how many user story points they deliver each week—they can
understand their team’s “Velocity”, as well their team’s “Volatility”.
They can use the velocity to predict when stories will be done based
on math, instead of guessing when something will be done based on
a death-march-inducing combination of fear and ego. And they can
monitor their volatility as a trailing indicator of dysfunction.

Relative Complexity Estimates | 47

Rotation
RC teams routinely rotate outsiders into their teams in order to point
out the problems that the team can no longer see.

Every team needs two things. First, it needs a core group of practi‐
tioners that deeply understand the problem the team is solving and
the users for whom it’s solving it so that it can iterate on user feed‐
back, day in, day out. But it’s easy for a team like this to become
blind to problems and team inefficiencies over time. This is why the
team also needs fresh perspectives. It needs outsiders to join the
team and tell it all of the things that have gone wrong, that team
members themselves can’t see. This process of bringing outsiders
into a team is called “rotation.”

How often do you need the fresh perspectives of outsiders? Ask
yourselves: is everyone comfortable? Has the team gelled? Does each
day feel familiar? If the answer is “yes,” you need a fresh perspective
because it means no one on the team is an outsider; everyone is
comfortable with the team’s process. And if everyone is comfortable,
your team is suffering from flaws that none of you can see. You have
all become happy, comfortable, boiling frogs.

The time it takes for an outsider to be assimilated into the team and
lose their outsider perspective varies. But here’s a good rule of
thumb: rotate someone new into your team every eight weeks. A
warning, though: feelings of tribalism will grow whenever someone
new joins the team. Instincts within the human psyche will take
hold. The feedback of the newcomer will be rejected; the defensive
circuits of the brain will activate, lowering both the individual and
the collective IQ of the team. Human evolution, which saved us
from the saber-toothed tiger, now works against us.

You can’t force an outsider onto a team. For this pattern to really
work, the team members need to invite the outsider in themselves.
They need to genuinely ask for the feedback and fresh perspective.
This willingness to be vulnerable is fostered by an empowering feed‐
back culture that rests on a foundation of individual and organiza‐
tional psychological safety.

48 | Radically Collaborative Patterns for Software Makers

Retrospective
Once a week, RC teams sit down and reflect on what’s working well and
what could be better. A team that doesn’t adapt doesn’t thrive.

Within this book, you’ll find a number of patterns that you can seed
new teams with (“Discovery and Framing”, “Balanced Teams”, “Pair
Programming”, “Iteration Planning Meeting”, “Test-Driven Devel‐
opment”, “Collocation”, “Collaborative Story Acceptance”, etc.). But
there are two forces always at work to undermine teams: the inevita‐
ble degradation of norms, and the team’s evolving context. We’ve
studied the psychological basis for the former in the “Rotation”
pattern.

However, what about the second force: a team’s ever-evolving con‐
text? The world outside the team never stops changing. Team com‐
positions, organizational directions, user expectations, technology
fads—they’re all changing. Unless a team adapts to its ever-evolving
context, unless it mutates its ways of working to meet its new cir‐
cumstances, it will wither. Every week, the team will encounter more
and more challenges that will go unmet. Retrospectives are a simple
pattern for purposeful pattern mutation. At the end of every week,
RC teams go into a room and reflect on what’s going well and what
could go better.

There are many formats for doing this. Here’s two popular variants
that will give you a sense for the possibilities:

The “Happy, Meh, Sad” three-column retro
Everyone writes down their reflections on the weeks (one reflec‐
tion per sticky—in all caps, with a Sharpie, for readability) and
puts them on the board under the appropriate columns. Then,
someone pulls stickies down one by one, and facilitates a discus‐
sion about each sticky, capturing action items along the way.
Variations on this format include altering the column names to
“Keep, Question, Change.”

The boat retro
The facilitator draws a boat in an ocean on the whiteboard.
They draw lines to indicate wind in its sails, and then they draw
an island that the boat is clearly heading to. However, they also
draw an anchor holding it back as well as sharks in the water,
between the boat and the island. The boat represents the team,

Retrospective | 49

the anchors represent the current blockers, and the sharks are
potential future problems. The wind represents the things that
are already working well for the team, the island stands for the
team’s goals. Everyone writes down (one per sticky) examples of
wind, anchors, and sharks. They also write down what they
believe their island to be—what their goal, or destination, is.
They all put their stickies on the board in the appropriate
places, and then the facilitator guides a discussion about each
sticky, capturing action items along the way.

There are entire books filled with retrospective formats, but the
point of every format is the same: adaptation. Identify what’s work‐
ing well, and keep doing it. Determine what’s not working well, and
change it.

Here are some signs that your retrospectives aren’t as effective as
they could be:

• The same problems show up week after week (action items inef‐
fective)

• The same action items show up week after week (no one is fol‐
lowing through on the action items each week)

• There are obvious omissions each week that no one is coura‐
geous enough to call out (there’s a lack of psychological safety in
your retrospectives)

Whenever you see problems like this, it’s important to call them out,
even if it feels scary to do so. Otherwise, retrospectives on your team
will become a hollow imitation of what they’re intended to be. In
addition to watching out for the aforementioned signs, there are also
some simple do’s and don’ts:

• Don’t let management into the retrospective (this undermines
psychological safety)—make sure the retrospective consists
solely of the “Balanced Teams”

• Do assign owners for the action items, make them visible in the
team’s space, and track their progress

• Don’t allow specific personalities to dominate conversations
• Do rotate facilitation duties around the entire team

50 | Radically Collaborative Patterns for Software Makers

These do’s and don’ts go a long toward increasing the efficacy of a
team’s retrospective practice and connecting the reflections from the
retrospective to the daily work and rhythm of the team.

A word of caution: retrospectives, when not balanced with root-
cause analysis and a “Value-Stream Map”, and when not grounded
in a foundation of systems thinking, can easily lead a team toward
local optimizations—one of the key antipatterns inhibiting learning
and efficacy in organizations today.

Team Standup
Before an RC team starts pairing for the day, they take a moment to see
whether anyone on the team is blocked or has vital information to
share.

Have you ever spent all day working on something only to discover
that all of your work was for naught because of some vital piece of
information that a member of your team had neglected to share
with you? Or have you ever struggled to get work done only to dis‐
cover that someone else on the team could have unblocked you had
only they known you needed help?

Because of situations like these, RC teams begin every day with a
team standup: a moment for anyone and everyone to expose block‐
ers or share vital information that’s not yet widely known on the
team. In the early days of Agile, it was common to see teams use a
format for standup in which everyone stood, everyone spoke in
turn, and everyone said what they worked on yesterday, what they’re
working on today, and if they’re blocked on anything.

And it was common to find this format produce little to no value for
the team. For example, some people would tell the team information
that everyone on the team already knew—perhaps the team prac‐
ticed “Collocation”, and lots of information was already widely
known from the day before. Others would ramble, trying to remem‐
ber what they did the day before, relaying all kinds of information
that was neither urgent nor important. Teams with a prioritized
backlog that obeyed “Top of Backlog” had no need to say what they
were going to work on today—that was dictated by ToB, and had
already been decided on during that week’s “Iteration Planning
Meeting”. Team members would commonly zone out, simply wait‐
ing for their turn to talk, and everyone was visibly relieved when the
ritual was over.

Team Standup | 51

This is an example of cargo-culting. The team had copied a ritual
without understanding its deeper intent, causing the ritual to lose all
meaning and purpose.

You can avoid making the same mistake by focusing on the goal of
the standup: removing blockers and disseminating knowledge. If no
one is blocked and no one has gained vital knowledge that’s not
already widely known on the team, the standup can literally take
seconds.

Here are some examples of the vital knowledge conveyed during a
standup:

• A team member on pager duty was awakened during the middle
of the night by a production outage.

• A pair learned yesterday that a feature they had built and
deployed had low adoption, invalidating the value hypothesis
behind the feature.

• Another pair discovered that a third-party integration was
going to be much more challenging to implement than origi‐
nally anticipated.

• A product manager participated in a workshop to ideate and
prioritize business goals for the upcoming year.

Similarly, here are some examples of blockers worthy of mention in
a standup:

• The “Continuous Integration/Continuous Deployment” envi‐
ronment went down overnight—everyone needs to stop work
on “User Stories” until the impediment is resolved.

• An entire track of prioritized work must be put on hold due to
delays on the completion of a downstream dependency by
another team.

• A product manager has been sucked into too many status-
report meetings that provide no value to the team or the organi‐
zation—causing backups and delays in “Collaborative Story
Acceptance”.

All of these examples represent siloed knowledge that needs to be
shared with the entire team. It’s the responsibility of the team as

52 | Radically Collaborative Patterns for Software Makers

whole to absorb this knowledge because it’s likely to affect the col‐
lective goals, directions, and mental models.

Test-Driven Development
RC programmers test to see whether the program does what they want it
to do—before they’ve programmed it. No, they’re not insane.

Consider the two graphs of team speed over time illustrated in Fig‐
ure 3, and ask yourself which team you want to be on:

Figure 3. Two possible graphs of team speed over time.

Look at the first curve. They went really fast at first — but it didn’t
last. Their speed dropped precipitously, until reaching a depressing
asymptote. That asymptote kills teams. It kills their spirit. It’s the
death march.

RC teams believe that the best software is built through a process of
learning, which requires them to continuously deliver software into
the hands of users, solicit their feedback, and iterate on the product
in response to that. You can’t do that if you’re on that first curve. You
need the second curve. You need to go fast forever.

There’s lots of reasons why a team slows down. But there’s one thing
that will always slow a team down: bad code. A team that looks like
the first curve cut corners (e.g., it didn’t clean its code, it created lots
of defects). You can go really fast if you cut all the corners — but only
for a little while. It’s false expedience. What made it easy to go super
fast in the short term makes it impossible to go fast in the long term.
The codebase very quickly resembles a ball of mud. And eventually,
it reaches the point of no return, and those engineers will have no
choice but to start over and try again.

If you want to go fast forever, you need to have clean code. But you
don’t just clean your code once. Cleaning code is like taking a bath.

Test-Driven Development | 53

You need to bathe regularly if you want to stay clean. The longer you
wait, the dirtier you get. It’s the same with code.

So, to keep your code clean, you must constantly refactor it. Every
new feature you add to your codebase challenges the assumptions
behind the code’s design. Here’s where you have two options: you
can either find a way to workaround the invalidated design in your
code, or you can take the time right then to fix it — to refactor it. The
former leads to that rollercoaster first curve, which ends with a
death spiral. Refactoring leads to the second curve — consistent
speed — by holding the behavior of the system constant while clean‐
ing up the underlying design.

Regrettably, out of fear, most teams don’t refactor. They know the
code is rotting, but they’re not sure whether everything will still
work after they clean it up. To continuously refactor your code, you
have to have confidence that the refactoring has still resulted in
working software, that you haven’t introduced regressions.

Unfortunately, there’s no magic wand that you can wave to prove
that your system still works. You need to do the work yourself. If
that work is too difficult, or takes too long, you’re unlikely to do it.
That’s why manual QA teams don’t work—it takes too long for the
engineers to know whether the changes they made resulted in work‐
ing software. The only way to get that confidence quickly is to write
tests. Tests give you the confidence you need to refactor your code
to keep it clean so that you can go fast forever.

So the question becomes: when do you do it? When do you write
tests? And the answer is obvious. Because everything depends on
tests, you do them first—they’re the most important thing! This is
why RC teams practice test-driven development (TDD)—the pro‐
cess of writing a test first, running it, watching it fail, writing the
simplest production code to make it pass, and then refactoring (see
Figure 4).

54 | Radically Collaborative Patterns for Software Makers

Figure 4. The go fast forever” dependency chain

There are, of course, many more reasons why RC teams write tests
before instead of after they write the production code. Writing it
first helps them tease out and think through their APIs. It forces
them to clarify exactly what behavior they’re trying to build because
they can’t write a test without that clarity. It also lets them know
when they’re done. It helps them triangulate on simple, maintaina‐
ble implementations by making each test pass one by one and writ‐
ing just enough code to make each test pass. Furthermore, writing
the test before the implementation gives them the confidence that
their test suites aren’t giving them false positives; they first watch the
test fail for the reason they expect and then do the simplest thing
they can to make it pass.

A word of warning though: TDD is difficult. Progressing from nov‐
ice to expert at TDD can take years. The payoff is large, but the dan‐
ger is this: telling a workforce of engineers who have never practiced
TDD to simply start doing it is guaranteed to fail. Without anyone to
teach them, guide them, grow them, and rescue them, they will write
brittle, flaky, unreadable, unmaintainable test suites that do much
more harm than good. Furthermore, an existing workforce working
on existing products and codebases, none of which were built with
TDD, will have the extra complexity of attempting to introduce tests
into legacy codebases not built for it. This isn’t TDD 101. Working
effectively with legacy code requires mastering both the skill of TDD
and the skill of incrementally retrofitting tests into codebases that

Test-Driven Development | 55

weren’t built with automated testing in mind. Both skills require a
great deal of time and expertise to master.

Don’t set up teams for failure. Introduce TDD slowly. Begin with a
single team, and hire people into the team who are already experts at
TDD. Use expert–novice “Pair Programming” to teach the skill;
rotate pairs frequently, and occasionally set up novice–novice pair‐
ings to help everyone stay aware of how far they’ve truly progressed.

Prove success with one team before expanding the practice to more
teams. This process takes long enough that you also need to focus
on retention. The skills you’re cultivating into your workforce are
long-term investments. Don’t watch your investment vanish due to
poor retention rates.

Crafting a good test suite is difficult. Teams need to keep in mind
the four goals of a test suite:

• Fast
• Clean
• Confidence
• Freedom

We explore each of these goals in turn and then end by considering
why these goals are actually really challenging to achieve completely.

Fast
A test suite should be fast for the simple reason that if it’s slow,
you’re less likely to run it. And the less likely you are to run it, the
longer it takes for you to know whether you’ve broken anything
while refactoring. And the longer that takes, the less likely you’ll be
to refactor.

How fast should a test suite be? I asked a team recently, and received
several answers:

• Short enough that your mind doesn’t wander
• Short enough that it’s not an excuse to take a break
• Less than the time it takes to get a cup of coffee

Although these answers are good, I prefer the simple goal of “instan‐
taneous.” The ideal test suite time is zero seconds.

56 | Radically Collaborative Patterns for Software Makers

Clean
RC programmers write tests to help them keep their production
code clean so that they can go fast forever. But test suite code is sus‐
ceptible to all of the same problems that plague production code. No
one wants an unreadable, unmaintainable test suite. For example,
without proper grooming, you can quickly end up with a test suite
that’s riddled with knowledge duplication. And that knowledge
duplication leads to fragility—a simple change you’d like to make to
the production code causes tons of tests to break, and each test must
be fixed individually.

You need to keep your test suite clean (i.e., clear, readable, and
maintainable) , not just the production code. Otherwise, you won’t
be able to maintain your test suite over time. It will become such a
burden that team members will stop writing tests.

Confidence
If your test suite is green, how confident should you be that the soft‐
ware works? Obviously, the ideal answer is: 100% confident! If my
product manager asks me, “Can we ship the software?” I want to be
able to point to a green CI build and say, “Yep — it’s green. There’s
nothing more I need to do to know that we have a working release.
Ship it!”

Freedom
Even if you’ve been practicing TDD for a while, you might have
been wondering what is meant by “freedom.” A test suite should give
you freedom: the freedom to refactor your code! This might sound
obvious, but actually, it’s not uncommon to discover teams have
written test suites that make it more difficult for them to refactor
their production code instead of easier. Sometimes, it’s because
they’ve tested implementation instead of behavior. Sometimes, it’s
because they’ve coupled their tests to the underlying design of their
production code, making it difficult to refactor that design because
the tests are all aware of it.

This problem often stems from a common, but incorrect, definition
of “unit testing”: teams mistakenly believe that unit testing means
that for every class, and every public method of every class, there
must be a corresponding unit test. In fact, the “unit” in “unit testing”

Test-Driven Development | 57

simply meant that each test could be run in isolation of all of the
other tests—that each test was a unit unto itself, that there were no
ordering dependencies between the tests.

The Great Balancing Act
Imagine it: a test suite that runs instantaneously, gives you 100%
confidence that the software works, is incredibly readable and main‐
tainable, and gives you unfettered freedom to refactor your produc‐
tion code. That would be a fearsome thing to behold!

But actually, it’s challenging to balance all of these qualities. Each
test you write will take a little bit of time to run; even if each individ‐
ual test takes only a few milliseconds, they’ll add up. And you might
very well discover that in order to feel really confident in your test
suite, you’ll need to write an end-to-end integration test or two,
which will further slow down your test suite. But then maybe you’ll
decide that to speed it up, you’ll use test doubles to “mock every‐
thing out” — so many teams have practically ruined their test suites
by overzealously “mocking” everything out in the pursuit of speed.
The test suite runs fast , but they’re not confident that it’s actually
testing anything real anymore. And the tests themselves are tightly
coupled to the underlying implementations, making it increasingly
difficult to refactor.

As you and your team are practicing TDD, you should constantly
ask yourself the following questions:

• Is this test helping us meet our test suite goals of Fast, Freedom,
Clean, and Confidence?

• Or are we testing in such a way that it undermines one or more
of our goals?

• And, if so, is there a different way we could test this?

These kinds of objective goals can lead to less heated, more reasoned
discussions about different ways in which you could employ TDD.
Aligning a team around goals leads to less religious debates and
more productive conversations, experimentation, and innovation.

58 | Radically Collaborative Patterns for Software Makers

Top of Backlog
RC teams don’t assign work to specific developers. Instead, they create a
single prioritized backlog of “User Stories”, and have every pair of pro‐
grammers pull stories straight from the ToB.

In traditional waterfall organizations, all of the work for a software
development product is planned up front; the work is then divided
into hundreds or even thousands of tasks. Any one task, on its own,
wouldn’t be valuable; it’s only after the sum of all of the tasks are
completed that the software “works.” The tasks themselves are often
assigned out to individual developers by a project manager.

RC teams operate in a radically different fashion. They don’t plan all
conceivable features and tasks up front; instead, they focus on the
problem they want to solve and then create and deploy “User Sto‐
ries” that they believe will help them start to solve that problem. The
user story, unlike the waterfall task, represents incremental value.

But which stories do pairs work on at any given time? Is the work
assigned out to specific pairs by a project manager? Of course not!
Each week, in an “Iteration Planning Meeting”, the team prioritizes
any stories that they’ve written into a backlog, and each pair pulls
from the “Top of Backlog” until the backlog is exhausted (this pro‐
cess is sometimes simply referred to as “tob’ing”).

Why? Well, the story at the top of the backlog is the highest priority
story. The team wants to complete that story and put it in the hands
of users sooner than any other story in the backlog. They believe
that story will provide the value their users need the most at this
moment. Or, conversely, they believe that if that story proves unsuc‐
cessful at providing value to users, it has the biggest potential to
change the team’s future trajectory, and future stories.

Obeying ToB has other benefits, too; in a traditional waterfall orga‐
nization, developers are often assigned tasks that have them work on
only a single part of the tech stack. The knowledge of their work in
that part of the tech stack is siloed into their brains; other engineers
don’t know or understand that part of the stack. But when you “tob,”
you end up working on every part of the tech stack of your product;
frontend, backend, middleware, persistence, and so on. ToB, com‐
bined with “Pair Programming”, eliminates knowledge silos and
reduces the risk that those silos represented.

Top of Backlog | 59

7 Brown, Simon. Software Architecture For Developers, volumes 1 and 2. (Lean Pub,
2018).

User-Driven Architectures
Have you ever put 20 engineers in a room and asked them to write
down their definition of software architecture? I did once and I got
20 different answers. Some were negative, some positive, and several
contradictory.

It’s not their fault. The software industry has yet to actually agree
upon a definition of software architecture, and that’s causing real
problems. There are a great many battles happening within organi‐
zations, between different engineers with different roles and differ‐
ent levels of power, simply because they don’t agree on—or even
understand—what architecture is and what makes it “good.”

Before we can show how engineers within RC organizations
approach architecture, we first must define architecture. There are
several great people improving our industry’s understanding and
practice of architecture (Matt Stine, Simon Brown, Robert Martin,
Grady Booch, and Martin Fowler come to mind) and the following
definitions are beginning to emerge:

Architecture
Decisions that are difficult to reverse.

Software Architecture
The high-level shape and flow of the software that’s independent
of the problem domain, but dependent on the desired user
experience.

Let’s look at each of these definitions in detail.

Architecture, Generally
In his two-volume work Software Architecture for Developers,7

Simon Brown explores some of Grady Booch’s writings on architec‐
ture, including the following gem: “Architecture represents the sig‐
nificant design decisions that shape a system, where significance is
measured by cost of change.”

Simon then goes on to note, “The architectural decisions are those
that you can’t reverse without some degree of effort.”

60 | Radically Collaborative Patterns for Software Makers

https://leanpub.com/software-architecture-for-developers

I’m sure that with that definition, even the most die-hard “anti-
architecture” Agile developer will admit that they’ve made architec‐
tural decisions. For example, every engineer has at some point
chosen a programming language for a project. The programming
language is a very significant decision. Imagine that you choose Java
on day one of a project and then three months later, you decide Go
would have been a better language choice. Well, too bad. You’re
three months into writing Java. You’re unlikely to quickly reverse
that decision. The programming language, then, is architecture.

Software Architecture, Specifically
Software architecture refers to something more specific that’s diffi‐
cult to reverse: it’s the high-level shape and flow of the software
that’s independent of the problem domain and dependent on the
desired user experience. To understand what that means, let’s look at
three common categories of software architecture:

Request/response
I make a discrete request to the system; I get a discrete response.

Event driven
Events happen. Actors independently react to those events and
can generate new events in the process. Actors can be both
human and nonhuman. There is no central coordination.

Batch
The system processes data without user interaction or involve‐
ment, including error handling and recovery.

Most web applications have request/response architectures. If you
examine the codebases of those web applications, you’ll find that
they have a very similar high-level shape and flow. How can that be?
Those web applications are all solving different problems for their
users. But remember: the software architecture is independent of the
problem domain but dependent on the user experience. So even
though those web applications are all solving different problems,
they all have a very similar user experience. Click a link, navigate to
a new page. Submit a form, see validation errors. Submit request.
Get response. Start. Stop. Request. Response. Get it?

Interestingly, it’s not just most web applications that have request/
response architectures. So do most command-line programs. Type
whoami into your Unix terminal, see your username. Type pwd, see

User-Driven Architectures | 61

your current working directory. Type command. See output. Start.
Stop. Request. Response.

This means that most command-line applications and most web
applications have the same user experience! And if you examine the
codebases, you’ll see that those command-line applications and
those web applications have the same high-level shape and flow—a
request/response software architecture.

Let’s look at another category of software architecture. Have you
ever played a video game? A sidescroller like Super Mario Bros? Or
a first-person-shooter like Doom? (Am I aging myself?) A video
game user experience feels very different from those web and
command-line applications that we just discussed. With these
games, you press Start and a whole world is set in motion. Your
character is just one of the actors in those worlds. You press the
right-arrow key and Mario moves to the right. The game notices
your move event and reacts by updating the screen so that you are
centered in it. While you’re moving, a goombah strolls into the
frame and collides with you. The sound engine notices the collision
event and reacts by playing a sound. Many actors. Many events.
Many reactions. Get it?

Most games have event-driven architectures, but so do a lot of dis‐
tributed systems. For example, Diego, the core distributed system
powering Cloud Foundry, is event driven. And if you examine the
codebases, you’ll find that all of these applications have a very simi‐
lar high-level shape and flow—despite the fact that a distributed sys‐
tem is made up of many different processes running on different
machines on a network, and a game might be made up of a single
process running on a single machine.

Let’s look at one more software architecture. Do you get a paycheck?
Perhaps it’s mailed to you every couple of weeks, or it’s deposited
into your bank account. Do you have to submit a request to some
software every two weeks to make sure you get a paycheck? No! Of
course not. That paycheck is sent to you (and likewise to all of your
fellow employees) every two weeks without you having to interact
with any software. That’s because, behind the scenes, the system is
processing the payroll on a schedule, without direct user
involvement.

That’s the defining characteristic of a batch architecture: the system
is processing requests for the users without the users having to

62 | Radically Collaborative Patterns for Software Makers

actually make the request! And that has a profound consequence on
the shape and flow of the software. When a user submits a request to
a website, if the response is “503 Service Unavailable,” the user can
simply refresh and try again. In other words, in a request/response
architecture, the responsibility to “retry” is given to the users. But if
a batch job is processing some data behind the scenes and suddenly
encounters some transient exception, there’s no user there to notice
it and make the software retry processing the job. The batch archi‐
tecture has to do that for us, automatically, without our intervention.

So obviously, payroll-processing applications have a batch architec‐
ture. But so do many other systems: automated clearing houses and
subscription management systems, for example. And, you guessed
it: examine the codebases, and the high-level shapes and flows are
the same.

Because the shape of the architecture fits the user experience, and
because RC teams create user experiences that enhance users’ lives—
experiences that their users actually enjoy and benefit from. I refer
to this type of architecture as user-driven architecture.

But Why Is Software Architecture “Architecture”?
Remember, architecture, generally speaking, refers to the decisions
we make that are difficult to reverse. And the software architecture
—the high-level shape and flow—is not an easy thing to change. All
of your code—and tests—are built around that flow. After you
decide to go with a specific software architecture, you can’t easily
reverse it.

Software architecture is expensive. You need to make sure you’re
making the correct decision when you choose one. But before we
talk about how we choose, let’s talk about when we choose.

When Do RC Engineers “Architect”?
Agreeing on the definition of architecture is only half the equation;
the engineers also need to agree when to architect the software. Do
they determine it all at the outset? Does it evolve over time? Does it
emerge naturally through refactoring?

The mistake that many Agile engineers make is assuming that the
software architecture will emerge naturally through the process of
“Test-Driven Development” and refactoring. It won’t. Software

User-Driven Architectures | 63

architecture is a significant decision. As Robert Martin notes in his
essay “The Domain Discontinuity,” you can’t even begin to TDD
until you know the software architecture within which you will
TDD—because your tests are, by necessity, coupled to the software
architecture. This implies that we must determine the software
architecture before development.

However, RC engineers don’t foolishly attempt to plan all of the fea‐
tures they’re going to build into the software upfront, before begin‐
ning development. They know that good software is built through a
process of validated learning, not through extensive foreplanning.
They know that the quicker they can put working software in front
of users and get their feedback, the quicker they can discover the
product assumptions that they got wrong. And lastly, they know that
software is never “done.” Software solves problems for people.
Because people are always changing, software must be ready to
change along with them or risk obsolescence. This means that on an
RC team, the user experience of the product will grow and evolve
over time in ways that can’t be predicted or planned at the outset.
Most products grow to encompass multiple user experiences—and
therefore multiple architectures.

This implies that we must determine the software architecture dur‐
ing development, which might seem paradoxical. First we say we
need to decide before development and then we say we must decide
during development. But in fact, those two statements are not mutu‐
ally exclusive. Let’s look at how RC engineers determine the software
architecture before development first.

How Do RC Engineers “Architect” Before Development?
Before you can write your first test, you need to know the software
architecture. So how do you determine that? You do it by establish‐
ing the desired user experience—by talking to your product owners
and product designers about the features that you’re going to build,
and understanding how the users are interacting with the product.

Imagine that we’re building an application for the game “Rock,
Paper, Scissors.” Our product manager shows you the following
story:

Feature: Play

 Scenario: Rock v. Scissors

64 | Radically Collaborative Patterns for Software Makers

 Given player one throws rock
 And player two throws scissors
 Then player one wins

What software architecture does this story demand? Request/
response? Event driven? Batch?

The answer is that it’s impossible to know based on this story. Why?
Because this story doesn’t give us enough information about the
desired user experience. Do player one and player two throw rocks
and scissors in real life, and then enter their throws into the applica‐
tion to see who the winner is? Or are they actually using the applica‐
tion to play the game?

We ask our product manager to clarify; they send us an updated ver‐
sion of the story:

Feature: Play

 Scenario: Rock v. Scissors
 Given player one throws rock in real life
 And player two throws scissors in real life
 When one of them enters the throws into the application
 Then the application tells them that player one wins

That’s much clearer. Now we need to decide which software archi‐
tecture maps to this user experience. After talking about it a bit, we
decide that it’s probably request/response. The “When” statement
seems to indicate that a user enters throws into the system, and the
“Then” statement indicates a response. We ask our product manager
for a wireframe to confirm our suspicions. Figure 5 depicts what we
received back.

Figure 5. Wireframe for “Play” “User Stories”

User-Driven Architectures | 65

It’s as we suspected! The user enters the details into a simple web
form and presses the “Play!” button. The system replies with a
result. This is a request/response user experience. We know what the
high-level shape and flow of a request/response architecture looks
like and we know the boundaries within which we’ll TDD.

But what if...
Imagine for a second that the product manager had replied to our
clarification query with the following story:

Feature: Play
 Scenario: Rock v. Scissors
 Given player one submits a “rock” throw
 When player two submits a “scissors” throw
 Then player one should see that they won
 And player two should see that they lost

This feels a bit different. This doesn’t feel like a start/stop, request/
response flow. This feels like there are multiple actors in the system.
We ask the product owner for wireframes to confirm our suspicions.
Figure 6 shows what they gave us.

Figure 6. Alternative wireframe/user experience for the Play feature

As we suspected, this is an event-driven user experience! There are
two users simultaneously using the application. The users are gener‐
ating “throw” events. The system is watching those “throw” events,

66 | Radically Collaborative Patterns for Software Makers

and computing and generating “result” events after both players
have thrown. The user interface is watching “result” events and
updating the display accordingly. And again, now that we know that
we need an event-driven architecture, we know the boundaries
within which we will TDD.

How Do RC Engineers “Architect” During Development?
Software architecture happens both before and during development.
You can’t begin to TDD until you know the software architecture
that you’ll TDD within. The software architecture flows from the
desired user experience.

But products grow and evolve over time, and the desired user expe‐
rience grows and evolves over time, too. On an RC team, at any
time, you could pick up a story that demands a different user experi‐
ence than the one your application has facilitated until now. You
must ask yourself, with each and every story, “What user experience
does this story demand?” If the answer is different from the user
experience that you’ve been building to this point, now you’ll have a
product that facilitates two different types of user experiences.
Which means your code will need to house multiple software archi‐
tectures simultaneously. That’s a complexity booster for your code‐
base; maintaining the multiple necessary architectures requires care
and craft. In the long run, this is of course simpler than choosing
“One Architecture to Rule Them All” upfront, and then adhering to
that architecture come hell or high water.

User Stories
User stories are the primary unit of currency on RC teams.

Building software is complex. Between the technology, teams, pro‐
cesses, practices, not to mention individual personalities and inter‐
personal dynamics, it’s shockingly easy to lose sight of the single
most important actor in all of this: the user—the human—for whom
you’re building the software.

When you lose sight of the user, when you lose focus on creating
value for them, software development transitions from a purposeful,
mission-fulfilling process into a meaningless, frustrating struggle
without purpose. And if you and your organization don’t right the
ship, your users will abandon it for the first life raft they see.

User Stories | 67

RC teams stay laser-focused on the users by organizing all of their
efforts around a single purpose: delivering features, one by one, into
the hands of users and getting feedback on them. And they describe
those features to one another through user stories. A user story is a
narrative description of a single task or activity that a human can
perform with your software. It represents potential incremental value
—in fact, it represents the smallest amount of potential incremental
value that you can put in the hands of users in order to learn.

Note that we say potential. The creator of the user story believes that
the story will create value for the users. But they also know that it’s
just a hypothesis, that they might be wrong; so instead of building
lots of functionality and then releasing it all at once, they build a sin‐
gle, small user story and put that in the hands of the users. Releasing
little by little gives teams the ability to adapt, adjust, and reprioritize
based on concrete learnings from those who are actually using the
product.

Teams often struggle with the size of their user stories. They ask,
“How big (or small) should a story be?” But to answer this, they
must simply ask themselves one or two questions. “Could I remove
functionality from this story and still provide value to the users?” If
the answer is yes, the story is too big. Conversely: “If I complete this
story, will it actually provide value to the user?” If the answer is no,
the story is too small. For example, imagine a story that describes a
user filling out a web form—yet the story doesn’t require that the
form do anything when the user presses the submit button. That
story is too small. Asking users to fill out a form that doesn’t actually
work isn’t adding value.

The “Continuous Integration/Continuous Deployment” of user sto‐
ries reduces the risk inherent in the process of building software.
But these patterns require particular traits that are sometimes diffi‐
cult to come by in the software development industry: humility and
courage. The creator of the user story must have the humility to
admit that their assumptions might be wrong, that the story might
not actually provide value; and they must have the courage to test
their assumptions by releasing the completed story into the hands of
users.

68 | Radically Collaborative Patterns for Software Makers

Value-Stream Map
If you can’t describe what you’re doing as a value stream, you don’t
know what you’re doing.

—Karen Martin, Value Stream Mapping

What does it take for a software team to take an idea, turn it into
software, and put it into the hands of users? How many steps are
involved? How many ideas are in progress simultaneously? Clearly,
software developers live within this process—turning ideas into real‐
ity—day in, day out; it’s familiar. Yet, to paraphrase the German phi‐
losopher Georg Hegel: what is familiar is not known.

I once learned this lesson the hard way, 11 months into a greenfield
project. We were developing a very complicated software product
with both shrink-wrap components and server-side components,
including an API as well as a web-based GUI. We’d launched a beta
version of the product in three months—a record at the company we
were at—and went GA after another two months. We were proud of
what we’d accomplished, and we thought our development process
was nearly flawless.

With that optimism, we decided to investigate our process for turn‐
ing ideas into working software in the hopes that we would find a
way to make it completely flawless. We reserved a conference room
with a long whiteboard and sketched out all the steps in our soft‐
ware development process. Then, we used green and red sticky
notes to write down what we thought was working well at each stage
and what could be better (respectively). When we finished decorat‐
ing the board and stepped back to see the whole picture, we were
fairly shocked to discover a veritable sea of red stickies, occasionally
peppered with a green sticky, here or there. Not only that, but at an
even higher level, our “flawless” process, which we thought was very
Agile and very Lean, was actually terribly long and complicated. It
looked less like a Lean software development process and more like
the blueprints for a Rube Goldberg machine.

We didn’t know it at the time, but we had stumbled our way into a
Lean product development practice now widely known as value-
stream mapping, an activity that helps organizations ask, “How do
we deliver value to our customers today, and how could we do that
better tomorrow?” The practice was originally created by Toyota
Motor Corporation, and revealed to the rest of the world in the

Value-Stream Map | 69

8 Roos, Daniel, Ph.D.; Womack, James P., Ph.D.; and Jones, Daniel T. The Machine That
Changed the World: The Story of Lean Production (Harper Perennial, 1991).

9 Womack, James P. and Jones, Daniel T. Lean Thinking (Simon & Schuster, 1996).
10 Rather, Mike and Shook, John. Learning to See: Value Stream Mapping to Add Value and

Eliminate Muda. (Lean Enterprise Institute, 2003).
11 Martin, Karen, and Osterling, Mike. Value Stream Mapping: How To Visualize Work and

Align Leadership for Organizational Transformation (McGraw-Hill Education, 2013).

1990s through the books of James Womack, Daniel Jones, and Dan‐
iel Roos—particularly, The Machine the Changed the World8 and
Lean Thinking.9 However, it wasn’t until Mike Rother and John
Shook wrote their 1999 work, Learning to See,10 that the term “value
stream mapping” made its way into the Lean lexicon.

Our industry now has an entire book dedicated specifically to the
practice of value-stream mapping, thanks to Karen Martin and Mike
Osterling: Value Stream Mapping: How To Visualize Work and Align
Leadership for Organizational Transformation.11 Through two deca‐
des of consulting efforts, Karen and Mike have captured a set of rec‐
ommendations and patterns for successfully implementing value-
stream mapping within an organization—particularly for situations
in which a single team does not own the entire value stream, but
instead the value stream touches many discrete portions of the orga‐
nization. They have a multistep process for mapping that includes
the following:

1. Gathering the best mapping team, often including an executive
sponsor, a value stream champion, and a facilitator

2. Developing and socializing a charter that creates alignment
within an organization for the challenges the organization is
facing and motivation for improvement/value stream mapping

3. Generating the current-state value-stream mapping through an
iterative, back-and-forth process of sketching and physically
walking the value stream (“going to the gemba”), progressively
layering it with metadata (e.g., pain points like barriers to flow,
excessive batching, system downtime, shared resources, inacces‐
sible staff, excessive task-switching and interruptions, and
incompatible priorities across different divisions) and metrics
(such as process time, lead time, and percent complete and
accurate)

70 | Radically Collaborative Patterns for Software Makers

4. Designing a future-state value stream through an iterative pro‐
cess prioritizing important problems to solve, and removing
wasteful steps (e.g., local optimizations) and/or adding
upstream time-saving steps (i.e., global optimizations in systems
theory speak)

5. And lastly, designing and executing a transformation plan that
will enable the entire organization to collaboratively realize the
future-state plan

Both works—Learning to See and Value Stream Mapping—provide a
fantastic starting point for understanding and realizing the transfor‐
mational possibilities of value-stream mapping. However, if you’re
already on an autonomous, empowered, self-organizing feature
team, you likely won’t need to read an entire book to reap the bene‐
fits of value-stream mapping. (Although reading books definitely
won’t hurt!) You can do as we did—start by simply making your
value stream visible to yourselves, and take it from there. You will
undoubtedly discover ample room for improvement.

Velocity
RC teams use velocity to statistically predict when stories will be deliv‐
ered instead of pretending that they can intuitively determine how long
a piece of work might take to complete.

We’ve already talked about the value teams can derive from “Rela‐
tive Complexity Estimates” (as opposed to time estimates). However,
when you take those estimates a step further and begin to keep track
of how many points a team delivers week over week, you uncover
two powerful metrics: velocity and “Volatility”.

Velocity is nothing more than a rolling average of how many points
a team delivers in a week, based on the last three weeks of data. In
other words, add up the number of points delivered in the three pre‐
vious weeks (W–3 to W–1), and divide it by 3:

V = ∑
i = − 3

−1
wi /3

With that number, you can estimate the delivery time of any story in
the backlog. Pick a story in the backlog that you want to estimate
delivery of (let’s call it Story “n”, or Sn) and then simply add up how

Velocity | 71

many points are between it and the first story at the “Top of Back‐
log” (we’ll call that S1) and divide it by the team’s velocity (V) to get
the estimated time of delivery (ETD) in work weeks:

ETD Sn =
∑i = 1

n points Si
V

Why is this valuable? Because a stable velocity allows a team to pre‐
dict when stories will be delivered based on concrete data and prob‐
abilities. A stable velocity is far more effective at making predictions
than a developer estimating work in time. As we discussed in “Rela‐
tive Complexity Estimates”, time estimates tend to be terribly, horri‐
bly, catastrophically wrong.

A couple of points to make: don’t compare velocity between teams.
For starters, different teams might use different pointing scales. One
might use a simple 1-2-3-4 pointing scale, whereas another uses a
subset of the Fibonacci sequence (e.g., 1-2-3-5-8).

But even if all teams used the same pointing sequence, you still can’t
compare velocities between teams. The number tells you how many
points a team can deliver in a single week—but the points them‐
selves won’t mean the same thing between teams. One team’s “1”
might be another team’s “3.” Points are not a standard unit of
measurement.

You can (and should), however, look at “Volatility” differences
between teams.

Volatility
Volatility is more important than “Velocity”. RC teams strive to keep
their velocity stable by keeping volatility low. When volatility is high,
they relentlessly root out the cause.

For velocity to work, for it to be predictive, it must be stable. A vola‐
tile velocity—one that fluctuates wildly week over week—can’t be
used to predict when something will be done with any degree of reli‐
ability. So, keep track of how volatile your team’s velocity is. You can
measure volatility (X) as the standard deviation of the last three
week’s delivered points (Wi), divided by the velocity for that same
time period:

72 | Radically Collaborative Patterns for Software Makers

X = ∑
i = − 3

−1
Wi − V

2
/3 /V

RC teams use this number to establish the range for the estimated
time of delivery for a particular story:

Range Sn = ETD Sn ± x * ETD Sn

When volatility is high, RC teams find out why. Volatility is a trail‐
ing indicator of dysfunction—perhaps on your team, or in your
organization, or in your deployment stack, or in your codebase.
Whatever it is, find it and fix it. For example, examine it week over
week in your team’s “Retrospective”. The real problem with volatility
is that it’s affecting your team’s ability to reliably and consistently put
value in the hands of users and quickly iterate on the product based
on concrete feedback.

Workspace Standup
RC organizations begin every day with a workspace-wide standup—a
way for everyone in their workspace to quickly and easily tap into the
local hive mind.

Every day, within an RC organization, practitioners discover, dis‐
cuss, investigate, and solve problems. Every day, they learn new
techniques, skills, methods, and disciplines. Every day, they inno‐
vate. When the organization is small, when it’s just a handful of peo‐
ple, it’s easy to share all of this knowledge throughout the entire
organization. But as the organization grows, this natural hive mind
tends to wane. Most organizations are quickly confronted with a
range of troubling questions as they rapidly scale: How can they take
advantage of and amplify the innovation in their organization? How
do they scale the learnings? How do they ensure that teams can use
existing solutions, instead of reinventing the wheel, time and time
again? How can they avoid someone struggling with a problem that
others have already solved?

It’s not easy. There is no silver bullet. The larger an organization
becomes, the greater the challenge becomes. There are a variety of
patterns that RC organizations need to employ in order to work at
this pattern, and this is but one.

Workspace Standup | 73

At the start of every day, many RC organizations create a simple way
for everyone in the organization to tap into the hive mind. To give
everyone the ability to ask for help, broadcast events, introduce new
faces, or share interesting learnings, solutions, challenges, innova‐
tions, and experiments. They accomplish this through a workspace
standup—a standup that brings together every single person work‐
ing in the same general space together.

Many RC organizations run their workspace standup immediately
after “Communal Breakfast”: they let it mark the end of breakfast
and the beginning of the workday. They often create a ceremonial
way to start it. They might ring a cowbell, bang a gong, strum a gui‐
tar, or clap.

They tend to rotate facilitation duties week to week; they let anyone
and everyone in their organization take a turn at facilitating the
workspace standup. The facilitator will ask everyone who has con‐
gregated together for new faces, helps, interestings, and events. But,
most important—they make it a psychologically safe environment:
an inviting place for people who need help to ask for it; for people
who have an idea to share it; for people who have had a recent suc‐
cess to celebrate it. Then, they create a ritualized, ceremonial way to
end the standup—like with a synchronized clap, where everyone
claps “on three.”

If the RC organization is large; if it spans multiple locations, or com‐
prises hundreds or thousands of people, they scale this practice by
creating multiple standups. One in each location, or even one on
each floor, if they have multiple densely populated floors in the same
building. This helps them achieve smaller hive minds.

Note that, over time, the larger the standup grows, the more work
they need to do to maintain psychological safety. The larger the
group, the scarier it is to speak up. Also, over time, the format will
become stale. Participation will lessen. They have to mix it up;
change the location; change the structure; if they were standing in a
circle, they switch the format and stand in a mob. If no one says any‐
thing, they introduce a “talking stick” and pass it to someone, chal‐
lenging them to share something. Or they ask pointed questions:
“Did anyone struggle with a technological challenge yesterday that
they were unable to solve?” “Who went into production yesterday?
Who deployed multiple times to production yesterday? Who’s going
into production today?” “Who put a new feature in the hands of

74 | Radically Collaborative Patterns for Software Makers

users and learned something?” “Who’s speaking at an upcoming
event?” “Who tried a new productivity hack?” And so on.

Conclusion
I hope that this little book has quickly given you insight into both
the “how” and the “why” behind patterns commonly seen within
radically collaborative software organizations.

If these practices are new to you, you might be tempted to begin
introducing them into your organization. I wholeheartedly hope you
do. However, please keep in mind that changing the way people
work is hard—incredibly hard. There are many reasons for this, but
one of the most basic reasons has to do with the fact that change is a
spontaneous, inner movement of the human being and thus cannot
be forced from the outside. People resist change that originates from
outside of themselves; they find that it threatens their need for
autonomy, security, and even respect.

To complicate matters, the structure of your organization might
unintentionally resist radically collaborative ways of working. RC
patterns require that the “front-line” software maker—the individual
contributor—be the most important and empowered member of the
organization, whereas everyone else in the organization plays a sup‐
porting role, subordinate to their needs. This tends to stand the tra‐
ditional organization on its head. In some sense, you might say that
to become an RC organization, the leaders of the traditional organi‐
zation must become the followers, and the followers must become
the leaders.

But there’s good news. There’s no dividing line separating RC organ‐
izations from traditional organizations. Those are just abstractions
that we can use for intellectual convenience. Real organizations will
always be some mix of both. In fact, they already are. Even in the
most draconian organizations, there’s space enough to work in radi‐
cally collaborative ways, though it might require a fair bit of bravery
on the part of those attempting it.

And you also don’t need to force anybody to do anything. Tell others
about these patterns, and soon enough someone else will be interes‐
ted in trying it. Work with those people. And have fun. When you
worry less about the future, and stop trying to force everything to

Conclusion | 75

change, you’ll find that you have plenty of time to stop and enjoy the
experience.

76 | Radically Collaborative Patterns for Software Makers

About the Author
Matt K. Parker is a third-generation programmer who has played a
variety of roles in the software industry. From small startups to large
enterprises, he’s been a developer, manager, director, and global head
of engineering. He’s currently researching and investigating the day-
to-day experience-in-consciousness of software makers working in
radically collaborative environments.

	Copyright
	Table of Contents
	Chapter 1. Radically Collaborative Patterns for Software Makers
	Introduction
	Autonomy of Space
	Balanced Teams
	Collaborative Story Acceptance
	Collocation
	Communal Breakfast
	Continuous Integration/Continuous Deployment
	Discovery and Framing
	Facilitation
	Point A to Point B
	Connecting with One Another as Human Beings
	From Many, to One
	No Laptops, No Phones
	Silent Generation
	Self-Edit
	Working at the Wall
	Affinity Groups
	Materials and Space
	Introducing Facilitation into Your Organization

	Free Snacks
	Information Radiator
	Iteration Planning Meeting
	Outsider-In
	Pair Programming
	Play Space
	Promiscuous Pairing
	Relative Complexity Estimates
	Rotation
	Retrospective
	Team Standup
	Test-Driven Development
	Fast
	Clean
	Confidence
	Freedom
	The Great Balancing Act

	Top of Backlog
	User-Driven Architectures
	Architecture, Generally
	Software Architecture, Specifically
	But Why Is Software Architecture “Architecture”?
	When Do RC Engineers “Architect”?
	How Do RC Engineers “Architect” Before Development?
	How Do RC Engineers “Architect” During Development?

	User Stories
	Value-Stream Map
	Velocity
	Volatility
	Workspace Standup
	Conclusion

	About the Author

