
M A N N I N G

William Lyon

Compliments of

With React, Node.js and Neo4j

Learn more:
neo4j.com/developer/graphql

GraphQL:
The New Way of
Building APIs.

(graphs) - [: ARE] -> (everywhere)

https://neo4j.com/product/graphql-library/

Full Stack GraphQL Applications

Full Stack
 GraphQL Applications

WITH REACT, NODE.JS, AND NEO4J

WILLIAM LYON

M A N N I N G
SHELTER ISLAND

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical development editor: Doug Warren
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Christian Berk
Proofreader: Melody Dolab

Technical proofreader: Niek Palm
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781638351467
Printed in the United States of America

http://www.manning.com

v

brief contents
PART 1 GETTING STARTED WITH FULL STACK GRAPHQL....................1

1 � What is full stack GraphQL? 3

2 � Graph thinking with GraphQL 29

3 � Graphs in the database 49

4 � The Neo4j GraphQL Library 67

PART 2 BUILDING THE FRONTEND ..99

5 � Building user interfaces with React 101

6 � Client-side GraphQL with React and Apollo Client 116

PART 3 FULL STACK CONSIDERATIONS ...137

7 � Adding authorization and authentication 139

8 � Deploying our full stack GraphQL application 172

9 � Advanced GraphQL considerations 212

vi

contents
foreword xi
preface xiii
acknowledgments xiv
about this book xv
about the author xviii
about the cover illustration xix

PART 1 GETTING STARTED WITH FULL STACK GRAPHQL 1

1 What is full stack GraphQL? 3
1.1 A look at full stack GraphQL 3

1.2 GraphQL 5
GraphQL type definitions 5 � Querying with GraphQL 7
Advantages of GraphQL 10 � Disadvantages of GraphQL 12
GraphQL tooling 13

1.3 React 15
React components 16 � JSX 16 � React tooling 16

1.4 Apollo 18
Apollo Server 18 � Apollo Client 18

1.5 Neo4j Database 18
Property graph data model 19 � Cypher query language 19
Neo4j tooling 20

CONTENTS vii

1.6 How it all fits together 23
React and Apollo Client: Making the request 24 � Apollo Server
and GraphQL backend 25 � React and Apollo Client: Handling
the response 26

1.7 What we will build in this book 27

1.8 Exercises 28

2 Graph thinking with GraphQL 29
2.1 Your application data is a graph 30

2.2 Graphs in GraphQL 31
API modeling with type definitions: GraphQL-first development 31
Resolving data with resolvers 37 � Our first resolver 38

2.3 Combining type definitions and resolvers with
Apollo Server 41

Using Apollo Server 41 � Apollo Studio 42 � Implementing
resolvers 43 � Querying using Apollo Studio 46

2.4 Exercises 47

3 Graphs in the database 49
3.1 Neo4j overview 50

3.2 Graph data modeling with Neo4j 50
The property graph model 51 � Database constraints and
indexes 54

3.3 Data modeling considerations 54
Node vs. property 54 � Node vs. relationship 55 � Indexes 55
Specificity of relationship types 55 � Choosing a relationship
direction 55

3.4 Tooling: Neo4j desktop 55

3.5 Tooling: Neo4j Browser 56

3.6 Cypher 57
Pattern matching 57 � Properties 58 � CREATE 58
MERGE 62 � Defining database constraints with cypher 63
MATCH 64 � Aggregations 65

3.7 Using the Neo4j client drivers 65

3.8 Exercises 66

CONTENTSviii

4 The Neo4j GraphQL Library 67
4.1 Common GraphQL problems 68

Poor performance and the n + 1 query problem 68 � Boilerplate
and developer productivity 69

4.2 Introducing GraphQL database integrations 69

4.3 The Neo4j GraphQL Library 69
Project setup 70 � Generated GraphQL schema from type
definitions 74

4.4 Basic GraphQL queries 76

4.5 Ordering and pagination 79

4.6 Nested queries 80

4.7 Filtering 82
where argument 82 � Nested filter 82 � Logical operators:
AND, OR 83 � Filtering in selections 85

4.8 Working with temporal fields 86
Using a Date type in queries 86 � Date and DateTime filters 87

4.9 Working with spatial data 88
The Point type in selections 88 � Distance filter 89

4.10 Adding custom logic to our GraphQL API 90
The @cypher GraphQL schema directive 90 � Implementing
custom resolvers 94

4.11 Introspecting GraphQL schema from an existing database 96

4.12 Exercises 97

PART 2 BUILDING THE FRONTEND99

5 Building user interfaces with React 101
5.1 React overview 102

JSX and React elements 103 � React components 103
Component hierarchy 104

5.2 Create React App 104
Creating a React application with Create React App 104

5.3 State and React Hooks 110

5.4 Exercises 114

CONTENTS ix

6 Client-side GraphQL with React and Apollo Client 116
6.1 Apollo Client 117

Adding Apollo Client to our React Application 117 � Apollo Client
hooks 120 � GraphQL variables 124 � GraphQL
fragments 125 � Caching with Apollo Client 127

6.2 GraphQL mutations 129
Creating nodes 129 � Creating relationships 130 � Updating
and deleting 131

6.3 Client state management with GraphQL 132
Local-only fields and reactive variables 132

6.4 Exercises 136

PART 3 FULL STACK CONSIDERATIONS137

7 Adding authorization and authentication 139
7.1 Authorization in GraphQL: A naive approach 140

7.2 JSON Web Tokens 143

7.3 The @auth GraphQL schema directive 147
Rules and operations 148 � The isAuthenticated authorization
rule 149 � The roles authorization rule 151 � The allow
authorization rule 153 � The where authorization rule 154
The bind authorization rule 156

7.4 Auth0: JWT as a service 157
Configuring Auth0 157 � Auth0 React 161

7.5 Exercises 171

8 Deploying our full stack GraphQL application 172
8.1 Deploying our full stack GraphQL application 173

Advantages of this deployment approach 173 � Disadvantages of
our deployment approach 174 � Overview of our approach to full
stack GraphQL 174

8.2 Neo4j Aura database as a service 175
Creating a Neo4j Aura cluster 175 � Connecting to a Neo4j Aura
cluster 178 � Uploading data to Neo4j Aura 181 � Exploring
the graph with Neo4j Bloom 183

8.3 Deploying a React application with Netlify Build 186
Adding a site to Netlify 187 � Setting environment variables for
Netlify builds 196 � Netlify deploy previews 199

CONTENTSx

8.4 Serverless GraphQL with AWS Lambda and
Netlify Functions 202

Serving a GraphQL API as a Lambda function 202 � The Netlify
dev CLI 204 � Converting our GraphQL API to a Netlify
function 205 � Adding a custom domain in Netlify 207

8.5 Our deployment approach 210

8.6 Exercises 211

9 Advanced GraphQL considerations 212
9.1 GraphQL abstract types 213

Interface types 213 � Union types 214 � Using abstract types
with the Neo4j GraphQL library 215

9.2 Pagination with GraphQL 226
Offset pagination 226 � Cursor pagination 227

9.3 Relationship properties 231
Interfaces and the @relationship GraphQL schema directive 232
Creating relationship properties 233

9.4 Wrapping up Full Stack GraphQL 234

9.5 Exercises 235

index 237

xi

foreword
There has never been a better time to be a full-stack developer. The tooling and
frameworks available to developers today enable them to build complex applications
with quicker to-market times and small teams. However, the prevalence of this tooling
comes at the expense of understanding how the pieces fit together to achieve this feat.
That’s what this book aims to accomplish: showing you how to build full-stack
GraphQL applications with graph databases.

Why should you learn GraphQL?
GraphQL is a language for defining and querying your data. It’s also a runtime server
to parse that language and produce meaningful JSON results. Its strong type system
means reduced probability of errors in the transaction between your application, your
API, and the database. GraphQL’s new approach to building APIs allows you to specify
what data is available in the API and allows the client to select exactly the data needed
with each request—reducing the number of requests to your database and increasing
the performance of your application. It’s not surprising that usage of GraphQL
increased from 13 percent in 2017 to 47 percent in 2020 [ref: state of JS 2020], when
you consider its advantages including:

 Over-fetching results in sending less data over the wire
 Under-fetching provides everything the client needs in a single request
 Simplified data fetching with component-based data interactions
 “Graphs all the way down” means GraphQL helps unify disparate systems and

focuses API interactions on relationships instead of resources

https://2020.stateofjs.com/en-US/technologies/datalayer/

FOREWORDxii

 Powerful libraries, such as Relay or Apollo, at your disposal that have features
contributing to scalability of big projects, performance, and efficiency

What does Neo4j have to do with GraphQL?
Developers increasingly want to deploy databases through the cloud, given the sim-
plicity and the low-code setup required to spin up an API to connect applications and
the data they need to run. Recent years have seen a clear consumer shift toward defer-
ring the management of backend infrastructures to cloud services. These cloud-first
products are pervading the market, and Neo4j has become a leading technology in
this shift. A solution that lets developers concentrate on the frontend and takes care
of backend hosting and persistence in a database is appealing to many.

 Neo4j provides a GraphQL API Library, which is powerful because GraphQL can
be mapped neatly onto a graph database, and a graph database maps onto GraphQL
nicely when they’re both implemented as graphs. Other key factors contributing to
the success and popularity of Neo4j are that it works with any JavaScript GraphQL
implementation, there’s no requirement to learn a new language, it handles generat-
ing database queries from arbitrary GraphQL requests at query time, and, once you
have your schema (your source of truth for types when talking to the backend), the
Neo4j GraphQL handles the backend for you. And if you use typescript and build type
definitions from that, it’s unlikely that you’ll ever ship bugs.

 In this book, you’ll learn how to build, deploy, and secure your modern and intelli-
gent GraphQL applications using cloud services such as Neo4j AuraDB, Netlify, and
Auth0.

 You can find the documentation and other resources for the Neo4j GraphQL
Library at neo4j.com/product/graphql-library/.

 You can find all the relevant code and exercise solutions in the book’s GitHub
page: https://github.com/johnymontana/fullstack-graphql-book

 Thanks for reading, and I hope you enjoy your GraphQL journey with Neo4j!

 —Hélène Sanchez,
Product Manager for
Neo4j GraphQL

https://neo4j.com/product/graphql-library/

xiii

preface
Thank you for reading Full Stack GraphQL Applications. The goal of this book is to
demonstrate how GraphQL, React, Apollo, and Neo4j Database (the so-called
GRANDstack) can be used together to build complex, data-intensive full stack applica-
tions. You may be wondering why we’ve chosen this specific combination of technolo-
gies. As you read through the book, I hope you will realize the developer productivity,
performance, and intuitive benefits of using a graph data model throughout the
stack—from the database to the API—and all the way through the frontend client
data-fetching code.

 This is the book that I wished existed when I was the first engineering hire at a
small startup, tasked with building out our full stack web application. We spent
months evaluating technologies for our stack and exploring how they fit together.
Eventually, we figured it out and got to production with a combination of technolo-
gies we were happy with, but getting there required many iterations.

 GraphQL is a technology that has fundamentally changed how developers
approach web development over the last few years. This book is focused on GraphQL;
however, understanding how to build GraphQL servers and write GraphQL opera-
tions is not enough to put a full stack application into production. We need to con-
sider how to enable GraphQL data fetching and state management in our frontend
application, how to secure our API, how to deploy our application, and myriad other
considerations. That’s why this book isn’t about just GraphQL; instead, we explore
using GraphQL holistically by showing how the pieces fit together. If you find yourself
tasked with building a full stack application using GraphQL, then this book is for you!

xiv

acknowledgments
Writing a book is a long process that involves the help and support of many others. It’s
impossible to acknowledge everyone who helped this book come to fruition without
missing some folks. Of course, this book wouldn’t be possible without everyone
involved in creating the amazing technologies we cover.

 Thanks to Michael Stephens for approaching me with the idea of writing a book
about GraphQL and helping to ideate on the idea of full stack GraphQL, to Karen
Miller for all the great feedback on early versions of every chapter, and all the folks at
Manning who were involved: Doug, Aleksandar, Andy, Christian, Melody, Niek, Gor-
dan, and Marija. Thanks to my family for putting up with me while working on this
book. Special thanks goes out to the graph community for helping to validate the
ideas in this book as well as providing great feedback and contributions to the Neo4j
GraphQL library as it has evolved.

 To all the reviewers: Andres Sacco, Brandon Friar, Christopher Haupt, Damian
Esteban, Danilo Zekovic, Deniz Vehbi, Ferit Topcu, Frans Oilinki, Gustavo Gomes,
Harsh Raval, Ivo Sánchez Checa Crosato, Jose Antonio Hernandez Orozco, Jose San
Leandro, Kevin Ready, Konstantinos Leimonis, Krzysztof Kamyczek, Michele Adduci,
Miguel Isidoro, Richard Meinsen, Richard Vaughan, Rob Lacey, Ronald Borman,
Ryan Huber, Satej Kumar Sahu, Simeon Leyzerzon, Stefan Turalski, Tanya Wilke,
Theofanis Despoudis, and Vladimir Pasman, your suggestions helped make this a bet-
ter book.

xv

about this book
The goal of Full Stack GraphQL Applications is to show how the pieces of a full stack
GraphQL application fit together and how full stack developers can leverage online
services to enable development and deployment. This is done by introducing con-
cepts and building upon each chapter as we build and deploy a full stack business
review application.

Who should read this book?
This book is intended for full stack web developers interested in GraphQL who have
at least a basic level of understanding of Node.js API applications and client JavaScript
applications that connect to these APIs. The successful reader will have some basic
familiarity with Node.js and a basic understanding of client-side JavaScript but, most
importantly, they will have a motivation for understanding how to build GraphQL ser-
vices and applications leveraging GraphQL.

How this book is organized: A roadmap
This book is composed of nine chapters, divided into three parts. Each chapter intro-
duces new concepts and technologies in the context of building a full stack business
review application.

 In part 1, we introduce GraphQL, the Neo4j graph database, and the concept of
thinking in graphs:

https://livebook.manning.com/book/fullstack-graphql-applications
http://www.manning.com
https://github.com/johnymontana/fullstack-graphql-book
https://github.com/johnymontana/fullstack-graphql-book
https://github.com/johnymontana/fullstack-graphql-book
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/
https://livebook.manning.com/book/fullstack-graphql-applications/discussion
https://livebook.manning.com/book/fullstack-graphql-applications/discussion
https://livebook.manning.com/book/fullstack-graphql-applications/discussion
https://livebook.manning.com/discussion
https://neo4j.com/docs/graphql-manual/current/
https://neo4j.com/docs/graphql-manual/current/
https://graphacademy.neo4j.com/
https://graphacademy.neo4j.com/
https://community.neo4j.com/
https://community.neo4j.com/
https://community.neo4j.com/

ABOUT THIS BOOKxvi

 Chapter 1 discusses the components of a full stack GraphQL application,
including an introduction to each specific technology we’ll be using in the
book (GraphQL, React, Apollo, and Neo4j Database).

 Chapter 2 introduces GraphQL and the basics of building a GraphQL API (type
definitions and resolver functions).

 Chapter 3 introduces the Neo4j graph database, the property graph data
model, and the Cypher query language.

 Chapter 4 shows how to bring the power of GraphQL to the Neo4j graph data-
base, using the Neo4j GraphQL library.

In part 2, we focus on developing our client application using React:

 Chapter 5 introduces the React framework and concepts that are important for
working with React as we begin building our front-end application.

 Chapter 6 shows how to enable data fetching and client state management with
React and GraphQL as we pull in data from the GraphQL API we built in previ-
ous chapters.

In part 3, we explore securing our application and deploying it using cloud services:

 Chapter 7 shows how we can secure our application, using GraphQL and
Auth0.

 Chapter 8 introduces the cloud services we will use to deploy our database,
GraphQL API, and React application.

 Chapter 9 closes the book with a look at how to leverage abstract types in
GraphQL, cursor-based pagination, and handling relationship properties in
GraphQL.

This book is designed to be read from beginning to end, as each chapter builds on
work done in previous chapters, all working toward building a full stack business
review application. Readers may choose to focus on individual chapters to dive into
specific topics of interest, but be sure to refer to previous chapters for context on how
and why other parts of the applications have been built.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (å). Additionally, comments in the source code have often been removed

https://lyonwj.com/

ABOUT THIS BOOK xvii

from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/fullstack-graphql-applications. The com-
plete code for the examples in the book is available for download from the Manning
website at www.manning.com, and from GitHub at https://github.com/johnymontana/
fullstack-graphql-book.

Software/hardware requirements
Readers will need to have installed a recent version of Node.js. I used the latest ver-
sion, v16, so I recommend using the nvm tool for installing and managing Node.js ver-
sions. Installation and usage instructions for nvm can be found at https://github.com/
nvm-sh/nvm.

 We will also be using several (free) online services for deployment. Most of these
can be accessed using a GitHub account, so be sure to create a GitHub account, if you
don’t currently have one, at https://github.com/.

liveBook discussion forum
Purchase of Full Stack GraphQL Applications includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the author
and other users. To access the forum, go to https://livebook.manning.com/book/
fullstack-graphql-applications/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
Be sure to consult the documentation for the Neo4j GraphQL library at https://
neo4j.com/docs/graphql-manual/current/. Other online resources that might be
helpful include the free online courses available at GraphAcademy (https://
graphacademy.neo4j.com/) and the Neo4j Community site (https://community.neo4j
.com/).

xviii

about the author
William Lyon is a Staff Developer Advocate at Neo4j, where he
helps developers be successful building applications with graphs.
Prior to joining Neo4j, he worked as a software engineer at startups
working on systems for quantitative finance, mobile apps for the
real estate industry, and predictive API services. He holds a master’s
degree in computer science from the University of Montana and
publishes a blog at lyonwj.com.

Part 1

Getting started with
 full stack GraphQL

Before beginning our journey with full stack GraphQL, we will take a look
at the technologies we will be using and introduce the powerful concept of
thinking in graphs. This section of the book focuses on the backend of our full
stack application, specifically the database and GraphQL API.

 In chapter 1, we introduce the components of a full stack GraphQL applica-
tion and take a look at the specific technologies we will use throughout the
book: GraphQL, React, Apollo, and Neo4j Database. In chapter 2, we dive head
first into GraphQL and the basics of building a GraphQL API application. In
chapter 3, we explore the Neo4j graph database, the property graph data model,
and the Cypher query language. Then, in chapter 4, we show how to leverage
database integrations for GraphQL and, specifically, the Neo4j GraphQL library
to build GraphQL APIs backed by a graph database. After completing this first
part of the book, we will have our database and initial GraphQL API application
up and running and will be ready to start building the frontend in part 2.

3

What is
 full stack GraphQL?

1.1 A look at full stack GraphQL
In this chapter, we take an introductory look at the technologies we will use
throughout the book. Specifically, we’ll look at the following:

 GraphQL—For building our API
 React—For building our user interface and JavaScript client web application
 Apollo—Tools for working with GraphQL, on both the server and client
 Neo4j Database—The database we will use for storing and manipulating our

application data

This chapter covers
 Components that make up a typical full stack

GraphQL application

 Technologies used throughout the book
(GraphQL, React, Apollo, and Neo4j Database)
and how each piece fits together in the context
of a full stack application

 Requirements for the application we will build
throughout the book

4 CHAPTER 1 What is full stack GraphQL?

Building a full stack GraphQL application involves working with a multitier architec-
ture, commonly known as a three-tier application, which consists of a frontend applica-
tion, the API layer, and a database. In figure 1.1 we see the individual components of a
full stack GraphQL application and how they interact with each other.

Throughout this book, we will use these technologies to build a simple business review
application, working through each technology component as we implement it in the
context of our application. In the last section of this chapter, we review the basic
requirements of the application we will be building throughout the book.

 The focus of this book is learning how to build applications with GraphQL, so as
we cover GraphQL, we’ll do so in the context of building a full stack application and
using GraphQL with other technologies, including designing our schema, integrating
with a database, building a web application that can query our GraphQL API, adding
authentication to our application, and so on. As a result, this book assumes some basic
knowledge of how web applications are typically built, but it does not necessarily
require experience with each specific technology. To be successful, the reader should
have a basic familiarity with JavaScript, both client side and Node.js, and concepts
such as APIs and databases. You should have installed node and should be familiar
with the basics of the npm command line tool (or yarn) and how to use it to create
Node.js projects and install dependencies. We will use the latest LTS version of

Request

Web
client

Response
GraphQL API

Apollo
Client

Apollo
Server

Database

Figure 1.1 The components of a full stack GraphQL application: GraphQL, React, Apollo, and Neo4j
Database

51.2 GraphQL

Node.js as of this writing (16.14.2), which is available to download at https://
nodejs.org/. You may wish to use a Node.js version manager such as nvm for manag-
ing Node versions. See https://github.com/nvm-sh/nvm for more information.

 We include a brief introduction to each technology and suggest other resources for
more in-depth coverage where needed by the reader. It is also important to note that we
will cover specific technologies to be used alongside GraphQL and that at each phase,
a similar technology could be substituted (e.g., we could build our frontend using Vue
instead of React). Ultimately, the goal of this book is to show how these technologies fit
together and provide the reader with a full stack framework for thinking about and
building applications with GraphQL.

1.2 GraphQL
At its core, GraphQL is a specification for building APIs. The GraphQL specification
describes an API query language and a way of fulfilling those requests. When building
a GraphQL API, we describe the data available using a strict type system. These type
definitions become the specification for the API, and the client is free to request the
data it requires based on these type definitions, which also define the entry points for
the API.

 GraphQL is typically framed as an alternative to REST, which is the API paradigm
you are mostly likely to be familiar with. This can be true in some cases; however,
GraphQL can also wrap existing REST APIs or other data sources. This is due to the
benefit of GraphQL being data-layer-agnostic, meaning we can use GraphQL with any
data source.

GraphQL is a query language for APIs and a runtime for fulfilling those queries with your
existing data. GraphQL provides a complete and understandable description of the data in
your API, gives clients the power to ask for exactly what they need and nothing more, makes
it easier to evolve APIs over time, and enables powerful developer tools.

—graphql.org

Let’s dive into some more specific aspects of GraphQL.

1.2.1 GraphQL type definitions

Rather than being organized around endpoints that map to resources (as with REST),
GraphQL APIs are centered around type definitions that define the data types, fields,
and how they are connected in the API. These type definitions become the schema of
the API, which is served from a single endpoint.

 Since GraphQL services can be implemented in any language, a language-agnostic
GraphQL Schema Definition Language (SDL) is used to define GraphQL types. Let’s
look at an example in figure 1.2, motivated by considering a simple movie application.
Imagine you’ve been hired to create a website that allows users to search a movie cata-
log for movie details, such as title, actors, and description, as well as show recommen-
dations for similar movies the user may find interesting.

https://github.com/nvm-sh/nvm
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://graphql.org/

6 CHAPTER 1 What is full stack GraphQL?

Let’s start in the next listing by creating some simple GraphQL type definitions that
will define the data domain of our application.

type Movie {
movieId: ID!
title: String
actors: [Actor]

}

type Actor {
actorId: ID!
name: String
movies: [Movie]

}

type Query {
allActors: [Actor]
allMovies: [Movie]
movieSearch(searchString: String!): [Movie]
moviesByTitle(title: String!): [Movie]

}

Our GraphQL type definitions declare the types used in the API, their fields, and how
they are connected. When defining an object type (such as Movie), all fields available
on the object and the type of each field are also specified (we can also add fields later,
using the extend keyword). In this case, we define title to be a scalar String type—a
type that resolves to a single value, as opposed to an object type, which can contain
multiple fields and references to other types. Here actors is a field on the Movie type

Listing 1.1 Simple GraphQL type definitions for a movie GraphQL API

Figure 1.2 A
simple movie
web application

Movie is a GraphQL object type, which means
a type that contains one or more fields.

title is a field on the Movie type.

Fields can reference other types, such
as a list of Actor objects in this case.

actorId is a required (or non-nullable) field on the
Actor type, which is indicated by the ! character.

The Query type is a special type in GraphQL,
which indicates the entry points for the API.

Fields can also have arguments;
in this case, the movieSearch field
takes a required string argument:
searchString.

71.2 GraphQL

that resolves to an array of Actor objects, indicating that the actors and movies are
connected (the foundation of the “graph” in GraphQL).

 Fields can be either optional or required. The actorId field on the Actor object
type is required (or non-nullable). This means that every Actor object must have a
value for actorId. Fields that do not include a ! are nullable, meaning values for
those fields are optional.

 The fields of the Query type become the entry points for queries into the GraphQL
service. GraphQL schemas may also contain a Mutation type, which defines the entry
points for write operations into the API. A third special entry-point-related type is the
Subscription type, which defines events to which a client can subscribe.

NOTE We’re skipping over many important GraphQL concepts here, such as
mutation operations, interface and union types, and so on, but don’t worry;
we’re just getting started and will get to these soon enough!

At this point, you may be wondering where the graph is in GraphQL. It turns out that
we’ve defined a graph using our GraphQL type definitions. A graph is a data structure
composed of nodes (the entities or objects in our data model) and relationships that
connect nodes, which is exactly the structure we’ve defined in our type definitions
using SDL. The GraphQL type definitions previously shown have defined a simple
graph with the following structure (see figure 1.3).

Graphs are all about describing connected data, and here we’ve defined how our mov-
ies and actors are connected in a graph. GraphQL allows us to model application data
as a graph and traverse the data graph through GraphQL operations.

 When a GraphQL service receives an operation (e.g., a GraphQL query), it is vali-
dated and executed against the GraphQL schema defined by these type definitions.
Let’s look at an example query that could be executed against a GraphQL service
defined using the previously shown type definitions.

1.2.2 Querying with GraphQL

GraphQL queries define a traversal through the data graph defined by our type defi-
nitions and request a subset of fields to be returned by the query—this is known as the
selection set. In this query, we start from the allMovies query field entry point and tra-
verse the graph to find actors connected to each movie (see the next listing). Then,
for each of these actors, we traverse to all the other movies they are connected to.

actors

moviesMoviemovieId:ID!
 title:String

Actor actordId:ID!
 name:String

Figure 1.3 GraphQL type definitions for our movie web application expressed as a graph diagram

8 CHAPTER 1 What is full stack GraphQL?

query FetchSomeMovies {
allMovies {

title
actors {

name
movies {

title
}

}
}

}

Note that our query is nested and describes how to traverse the graph of related
objects (in this case, movies and actors). We can represent this traversal through the
data graph and the results visually (see figure 1.4).

Although we can represent the traversal of the traversal of the data graph visually, the
typical result of a GraphQL query is a JSON document, as shown in the next listing.

"data": {
"allMovies": [

{
"title": "Toy Story",
"actors": [

{
"name": "Tom Hanks",
"movies": [

{
"title": "Bachelor Party"

}

Listing 1.2 A GraphQL query to find movies and actors

Listing 1.3 JSON query results

This is the optional naming of the operation. query is the default
operation and can, therefore, be omitted. Naming the query—in
this case, FetchSomeMovies—is also optional and can be omitted.

Here we specify the entry point, which is a field on either the Query or Mutation
type. In this case, our entry point for the query is the allMovies query field.The selection

set defines the
fields to be
returned by
the query.

In the case of object fields, a nested selection set is used to specify the fields to
be returned.

A further nested selection is needed for the fields on movies to be returned.

Toy Story

Jim
Varney

Robin
Williams

Tom
Hanks

Midnight
Special

All
Good

Things
Bachelor

Party
3

Ninjas

Jumanji Grumpier
Old Men

Popeye

Kirsten
Dunst

Walter
Matthau Ann-Margret

Cactus
Flower

Bye
Bye Birdie

Figure 1.4 A GraphQL query traversal through the movies data graph

91.2 GraphQL

]
},
{
"name": " Jim Varney",
"movies": [

{
"title": "3 Ninjas: High Noon On Mega Mountain"

}
]

}
]

},
{

"title": "Jumanji",
"actors": [

{
"name": "Robin Williams",
"movies": [

{
"title": "Popeye"

}
]

},
{
"name": "Kirsten Dunst",

"movies": [
{

"title": "Midnight Special"
},
{

"title": "All Good Things"
}

]
}

]
},
{

"title": "Grumpier Old Men",
"actors": [

{
"name": "Walter Matthau",
"movies": [

{
"title": "Cactus Flower"

}
]

},
{
"name": " Ann-Margret",
"movies": [

{
"title": "Bye Bye Birdie"

}
]

}

10 CHAPTER 1 What is full stack GraphQL?

]
}

]
}

As you can see from the results, the response matches the shape of the query’s selec-
tion set—exactly the fields requested in the query are returned. But where does the
data come from? The data-fetching logic for GraphQL APIs is defined in functions
called resolver functions, which contain the logic for resolving the data for an arbitrary
GraphQL request from the data layer. GraphQL is data-layer-agnostic, so the resolvers
could query one or more databases or fetch data from another API—even a REST
API. We will cover resolvers in depth in the next chapter.

1.2.3 Advantages of GraphQL

Now that we’ve seen our first GraphQL query, you may be thinking, “OK, that’s nice,
but I can fetch data about movies with REST, too. What’s so great about GraphQL?”
Let’s review some of the benefits of GraphQL.

OVERFETCHING AND UNDERFETCHING

Overfetching refers to a pattern commonly associated with REST, in which unnecessary
and unused data is sent over the network in response to an API request. Since REST is
modeling resources, when we make a GET request for, say, /movie/tt0105265, we get
back the representation of that movie—nothing more, nothing less.

{
"title": "A River Runs Through It",
"year": 1992,
"rated": "PG",
"runtime": "123 min",
"plot": "The story about two sons of a stern minister -- one reserved,

one rebellious -- growing up in rural Montana while devoted to
fly fishing.",

"movieId": "tt0105265",
"actors": ["nm0001729", "nm0000093", "nm0000643", "nm0000950"],
"language": "English",
"country": "USA",
"production": "Sony Pictures Home Entertainment",
"directors": ["nm0000602"],
"writers": ["nm0533805", "nm0295030"],
"genre": "Drama",
"averageReviews": 7.3

}

But what if the view of our application only needs to render the title and year of the
movie? Then we’ve unnecessarily sent too much data over the network. Further, some
of those movie fields may be expensive to compute. For example, if we need to

Listing 1.4 REST API response for GET /movie/tt0105265

111.2 GraphQL

calculate averageReviews by aggregating across all movie reviews for each request,
but we’re not even showing that in the application view, that’s a lot of wasted compute
time, which unnecessarily impacts the performance of our API. (Of course, in the real
world, we may cache this, but that adds additional complexity as well.) Similarly,
underfetching is a pattern associated with REST, in which insufficient data is returned
by the request.

 Let’s say our application view needs to render the name of each actor in a movie.
First, we make a GET request for /movie/tt0105265. As previously shown, we have an
array of IDs for the actors connected to this movie. Now, to get the data required for
our application, we need to iterate over this array of actor IDs to get the name of each
actor by making another API request for each actor to be rendered in our view:

/actor/nm0001729
/actor/nm0000093
/actor/nm0000643
/actor/nm0000950

With GraphQL, since the client is in control of the data requested, we can accomplish
this in a single request by specifying exactly the data needed by the application view in
the selection set of the GraphQL query, solving both the overfetching and under-
fetching problems. This results in improved performance on the server side, as we are
spending less compute resources at the data layer, there is less overall data sent over
the network, and latency is reduced by being able to render our application view with
a single network request to the API service.

GRAPHQL SPECIFICATION

GraphQL is a specification for client-server communication that describes the fea-
tures, functionality, and capability of the GraphQL API query language. Having this
specification gives a clear guide of how to implement your GraphQL API and clearly
defines what is and what is not GraphQL.

 REST does not have a specification; instead, there are many different implementa-
tions, from what might be considered merely REST-ish to hypermedia as the engine of
application state (HATEOAS). Having a specification as part of GraphQL simplifies
debates over endpoints, status codes, and documentation. All of this comes built in
with GraphQL, which leads to productivity wins for developers and API designers. The
specification provides a clear path for API implementors.

WITH GRAPHQL, IT’S GRAPHS ALL THE WAY DOWN

REST models itself as a hierarchy of resources, yet most interactions with APIs are
done in terms of relationships. For example, given our previous movie query—for this
movie, show me all of the actors connected to it, and for each actor, show me all the
other movies they’ve acted in—we’re querying for relationships between actors and
movies. This concept of relationships is even more prominent in real world applica-
tions, when we might be working with the relationships connecting customers and the

12 CHAPTER 1 What is full stack GraphQL?

products in their orders or users and their messages to other users in the context of a
conversation.

 GraphQL can also help unify data from disparate systems. Since GraphQL is data-
layer-agnostic, we can build GraphQL APIs that integrate data from multiple services
together and provide a clear way to integrate data from these different systems into a
single unified GraphQL schema.

 GraphQL can also be used to compartmentalize data fetching in the application in
a component-based data interaction pattern. Since each GraphQL query can describe
exactly the graph traversal and fields to be returned, encapsulating these queries with
application components can help simplify application development and testing. We’ll
see how to apply this once we start building our React application in chapter 5.

INTROSPECTION

Introspection is a powerful feature of GraphQL that allows us to ask a GraphQL API for the
types and queries it supports. Introspection becomes a way of self-documenting the API.
Tools that make use of introspection can provide human-readable API documentation,
as well as visualization tooling, and leverage code generation to create API clients.

1.2.4 Disadvantages of GraphQL

Of course, GraphQL is not a silver bullet, and we should not think of it as the solution
to all of our API-related problems. One of the most notable challenges of adopting
GraphQL is that some well-understood practices from REST don’t apply when using
GraphQL. For example, HTTP status codes are commonly used to convey success, fail-
ure, and other cases of a REST request; 200 OK means our request was successful, and
404 Not Authorized means we forgot an auth token or don’t have the correct permis-
sions for the resource requested. However, with GraphQL, each request returns 200
OK, regardless of whether the request was a complete success. This makes error han-
dling a bit different in the GraphQL world. Instead of a single status code describing
the result of our request, GraphQL errors are typically returned at the field level. This
means we may have successfully retrieved part of our GraphQL query, while other
fields returned errors and will need to be handled appropriately.

 Caching is another well-understood area of REST that is handled a bit differently
with GraphQL. With REST, caching the response for /movie/123 is possible because
we can return the same exact result for each GET request. This isn’t possible with
GraphQL because each request could contain a different selection set, meaning we
can’t simply return a cached result for the whole request. This is mitigated by most
GraphQL clients implementing client caches at the application level, and in practice,
much of the time, our GraphQL requests are in an authenticated environment, where
caching isn’t applicable.

 Another challenge is exposing arbitrary complexity to the client along with related
performance considerations. If the client is free to compose queries as they wish, how
can we ensure these queries don’t become so complex as to impact performance
significantly or overwhelm the computing resources of our backend infrastructure?

131.2 GraphQL

Fortunately, GraphQL tooling allows us to restrict the depth of the queries used and
further restrict the queries that can be run to a whitelisted selection of queries
(known as persisted queries). A related challenge is implementing rate limiting. With
REST, we could simply restrict the number of requests that can be made in a certain
time period; however, with GraphQL, this becomes more complicated, since the client
could be requesting multiple objects in a single query. This results in bespoke query-
costing implementations to address rate limiting.

 Finally, the so-called n + 1 query problem is a common problem in GraphQL data
fetching implementations that can result in multiple round trips to the data layer and
can negatively impact performance. Consider the case in which we request informa-
tion about a movie and all actors in the movie. In the database, we might store a list of
actor IDs associated with each movie, which is returned with our request for the movie
details. In a naive GraphQL implementation, we would then need to retrieve the actor
details, and we would need to make a separate request to the database for each actor
object, resulting in a total of n (i.e., the number of actors) + 1 (i.e., the movie) queries
to the database. To address the n + 1 query problem, tools like DataLoader allow us to
batch and cache requests to the database, increasing performance. Another approach
to addressing the n + 1 query problem is employing GraphQL database integrations,
such as the Neo4j GraphQL library and PostGraphile, which allow us to generate a sin-
gle database query from an arbitrary GraphQL request, ensuring only a single
roundtrip to the database.

1.2.5 GraphQL tooling

In this section, we review some GraphQL-specific tooling that will help us build, test,
and query our GraphQL API. These tools leverage GraphQL’s introspection feature,
allowing for extracting the schema of a deployed GraphQL endpoint to generate
documentation, query validation, auto-completion, and other useful development
functionality.

GRAPHIQL
GraphiQL is an in-browser tool for exploring and querying GraphQL APIs. With
GraphiQL, we can execute GraphQL queries against a GraphQL API and view the
results. Thanks to GraphQL’s introspection feature, we can view the types, fields, and
queries supported by the GraphQL API we’ve connected to. In addition, because of
the GraphQL type system, we have immediate query validation as we construct our
query. GraphiQL is an open source package now maintained by the GraphQL

GraphQL limitations
While we’re talking about databases, it is important to understand that GraphQL is
an API query language and not a database query language. GraphQL lacks semantics
for many complex operations required of database query languages, such as aggre-
gations, projects, and variable length path traversals.

14 CHAPTER 1 What is full stack GraphQL?

Foundation. GraphiQL is packaged as either a stand-alone tool or a React component
and, therefore, is often embedded in larger web applications (see figure 1.5).

GRAPHQL PLAYGROUND

Like GraphiQL, GraphQL Playground is an in-browser tool for executing GraphQL
queries, viewing the results, and exploring the GraphQL API’s schema, powered by
GraphQL’s introspection feature (see figure 1.6). GraphQL Playground has a few
additional features, such as viewing GraphQL type definitions, searching through the
GraphQL schema, and easily adding request headers (e.g., those required for authen-
tication). GraphQL Playground was once included by default in server implementa-
tions, such as Apollo Server; however, it has since been deprecated and is no longer
actively maintained. We include GraphQL Playground here, since it is still deployed in
many GraphQL endpoints, and you will likely come across it at some point.

APOLLO STUDIO

Apollo Studio is a cloud platform from Apollo that includes many features for build-
ing, validating, and securing GraphQL APIs (see figure 1.7). Apollo Studio is included
in this section because the Explorer feature of Studio is similar to the GraphiQL and
GraphQL Playground tools, mentioned previously, for creating and running
GraphQL operations. Also, the Explorer in Apollo Studio is now used by default by
Apollo Server (as of version 3 of Apollo Server), so we will be using Apollo Studio
throughout this book to run GraphQL operations against our GraphQL API as we
develop it.

Figure 1.5 GraphiQL
screenshot

151.3 React

1.3 React
React is a declarative, component-based library for building user interfaces using
JavaScript. React uses a virtual DOM (a copy of the actual document object model) to
efficiently calculate DOM updates required to render views as application state and

Figure 1.6 GraphQL Playground screenshot

Figure 1.7 Apollo Studio screenshot

16 CHAPTER 1 What is full stack GraphQL?

data changes. This means users simply design views that map to application data and
React handles rendering the DOM updates efficiently. Components encapsulate data
handling and user interface rendering logic without exposing their internal structure,
so they can easily be composed together to build more complex user interfaces and
applications.

1.3.1 React components

Let’s examine a simple React component in the next listing.

import React, { useState } from "react";

function MovieTitleComponent(props) {
const [movieTitle, setMovieTitle] = useState(

"River Runs Through It, A"
);

return <div>{movieTitle}</div>
}

export default MovieTitleComponent;

COMPONENT LIBRARIES

Since components encapsulate data handling and user interface rendering logic and
are easily composable, it becomes practical to distribute libraries of components that
can be used as dependencies of our project for quickly leveraging complex styling and
user interface design. Using such component libraries is beyond the scope of this
book; however, a good example is the Material UI component library, which allows us
to import many popular, common user interface components, such as a grid layout,
data table, navigation, and inputs.

1.3.2 JSX
React is typically used with a JavaScript language extension called JSX. JSX looks simi-
lar to XML and is a powerful way of building user interfaces in React and composing
React components. It is possible to use React without JSX, but most users prefer the
readability and maintainability that JSX offers. We will introduce JSX in chapter 5 as
well as a number of other React concepts, such as unidirectional data flow, props and
state, and data fetching with React.

1.3.3 React tooling
Next we’ll review some useful tooling that will help us build, develop, and trouble-
shoot React applications. There is a healthy ecosystem of tooling for developing with
React applications, so don’t consider this a complete list.

Listing 1.5 A simple React component

We import React and the useState
hook for managing state variables.

Our component is a function that is
passed props or values from other
components higher in the React
component hierarchy.

Using the useState hook, we create a
new state variable and the associated
function for updating this value.

Here we access the movieTitle value from our
component state and render that inside a div tag. We export this component so it can be

composed in other React components.

171.3 React

CREATE REACT APP

Create React App is a command line tool that can be used to quickly create the
scaffolding for a React application, taking care of configuring build settings, installing
dependencies, and templating a simple React application to get started. We will use
Create React App later in chapter 5 when we begin building the frontend of our
application.

REACT CHROME DEVTOOLS

React DevTools is a browser extension that lets us inspect a React application and see
the component hierarchy, props, and state of each component under the hood while
our application is running, which enables debugging of our React applications. It can
be very useful to see how our components are structured under different usage sce-
narios (see figure 1.8).

Figure 1.8 React Chrome DevTools

18 CHAPTER 1 What is full stack GraphQL?

1.4 Apollo
Apollo is a collection of tools that make it easier to use GraphQL, including on the
server, the client, and in the cloud. We will make use of Apollo Server, a Node.js
library for building our GraphQL API, and Apollo Client, a client-side JavaScript
library for querying our GraphQL API from our application, as well as Apollo Studio’s
Explorer for building and running queries, which was introduced previously.

1.4.1 Apollo Server

Apollo Server allows us to easily spin up a Node.js server serving a GraphQL endpoint
by defining our type definitions and resolver functions. Apollo Server can be used
with many different web frameworks; however, the default and most popular is
Express.js. Apollo Server can also be used with serverless functions, such as Amazon
Lambda and Google Cloud Functions. Apollo Server can be installed with npm: npm
install apollo-server.

1.4.2 Apollo Client

Apollo Client is a JavaScript library for querying GraphQL APIs and has integrations
with many frontend frameworks, including React and Vue.js, as well as native mobile
versions for iOS and Android. We will make use of the React Apollo Client integration
to implement data fetching via GraphQL in our React components. Apollo Client
handles client data caching and can also be used to manage local state data. The
React Apollo Client library can be installed with npm: npm install @apollo/client.

1.5 Neo4j Database
Neo4j is an open source native graph database. Unlike other databases that use tables
or documents for the data model, the data model used with Neo4j is a graph,
specifically known as the property graph data model, which allows us to model, store, and
query our data as a graph. Graph databases like Neo4j are optimized for working with
graph data and executing complex graph traversals, such as those defined by GraphQL
queries.

 One of the benefits of using a graph database with GraphQL is that we maintain
the same graph data model throughout our application stack, working with graphs on
both the frontend, backend, and database. Another benefit has to do with the perfor-
mance optimizations graph databases make versus other database systems, such as
relational databases. Many GraphQL queries end up being nested several levels
deep—the equivalent of a JOIN operation in a relational database. Graph databases
are optimized for performing these graph traversal operations very efficiently and,
therefore, are a natural fit for the backend of a GraphQL API.

NOTE It’s important to note that we aren’t querying the database directly
with GraphQL. While there are database integrations for GraphQL, the
GraphQL API is a layer that sits between our application and the database.

191.5 Neo4j Database

1.5.1 Property graph data model

Like many graph databases, Neo4j uses a property graph model (see figure 1.9). The
components of the property graph model are

 Nodes—The entities or objects in our data model
 Relationships—Connections between nodes
 Labels—A grouping semantic for nodes
 Properties—Key–value pair attributes, stored on nodes and relationships

The property graph data model allows us to express complex, connected data in a
flexible way. This data model also has the additional benefit of closely mapping to the
way we often think about data when dealing with a domain.

1.5.2 Cypher query language

Cypher is a declarative graph query language used by Neo4j and other graph data-
bases and graph compute engines. You can think of Cypher as being similar to SQL,

IN

P
U
B
L
I
S
H
E
D
_
B
Y

pu
bl

is
he

d_
on

: 0
7/

04
/2

02
2

CONTAINSquantity: 1

P
L
A
C
E
D

cr
ea

te
d:

08
/2

1/
22

Book

title: Full Stack GraphQL

Category name: GraphQL

Publisher

name: Manning Publications

Order

id: 1234

User

name: Amelia

Figure 1.9 Property graph example of books, publisher, customers, and orders

20 CHAPTER 1 What is full stack GraphQL?

but instead of working with tables, Cypher is designed for graph data. A major feature
of Cypher is pattern matching. With graph pattern matching in Cypher, we can define
the graph pattern using an ASCII-art-like notation. In the next listing, let’s look at a
simple Cypher example: querying for movies and actors connected to these movies.

MATCH (m:Movie)<-[r:ACTED_IN]-(a:Actor)
RETURN m,r,a

In our Cypher query, MATCH is followed by a graph pattern described using an ASCII-
art-like notation. In this pattern, nodes are defined within parentheses—for example,
(m:Movie). The :Movie indicates we should match nodes with the label Movie, and
the m before the colon becomes a variable that is bound to any nodes that match the
pattern. We can refer to m later throughout the query.

 Relationships are defined by square brackets (e.g., <-[r:ACTED_IN]-) and follow a
similar convention, in which :ACTED_IN declares the ACTED_IN relationship type, and
r becomes a variable we can refer to later in the query to represent any relationships
matching that pattern.

 In the RETURN clause, we specify the data to be returned by the query. Here, we
specify the variables m, r, and a, which are variables that were defined in the MATCH
clause and are bound to nodes and relationships in the database that match elements
of the graph pattern.

1.5.3 Neo4j tooling

We will make use of Neo4j Desktop for managing our Neo4j instances locally and on
Neo4j Browser, a developer tool for querying and interacting with our Neo4j database.
For querying Neo4j from our GraphQL API, we will use the JavaScript Neo4j client
driver as well as the Neo4j GraphQL library, a Node.js GraphQL integration for
Neo4j.

NEO4J DESKTOP

Neo4j Desktop is Neo4j’s command center (see figure 1.10). From Neo4j Desktop we
can manage Neo4j database instances, including editing configuration, installing
plugins and graph apps (e.g., visualization tools), and accessing admin level features,
such as dump/load database. Neo4j Desktop is the default download experience for
Neo4j and can be downloaded at neo4j.com/download.

NEO4J AURADB
Neo4j AuraDB is Neo4j’s fully managed cloud service that offers hosted Neo4j
instances in the cloud. AuraDB includes a free tier, which makes it a great option for
developing and deploying hobby projects. We will cover Neo4j AuraDB in more detail
in chapter 8 when we explore deploying our full stack application making use of

Listing 1.6 Simple Cypher query querying for movies and actors

Describing a graph pattern
to find data in the database

We return the data matching
the graph pattern described.

https://neo4j.com/download/

211.5 Neo4j Database

cloud services. You can get started with Neo4j AuraDB for free at dev.neo4j.com/
neo4j-aura.

NEO4J BROWSER

Neo4j Browser is an in-browser query workbench for Neo4j and is one of the primary
ways of interacting with Neo4j during development (see figure 1.11). With Neo4j
Browser, we can query the database with Cypher and visualize the results, either as a
graph visualization or with tabular results.

NEO4J CLIENT DRIVERS

Since our end goal is to build an application that talks to our Neo4j database, we will
make use of the language drivers for Neo4j. Client drivers are available in many lan-
guages (Java, Python, .Net, JavaScript, Go, etc.), but we will use the Neo4j JavaScript
driver.

NOTE The Neo4j JavaScript driver has both a Node.js and browser version
(allowing connections to the database directly from the browser); however, in
this book, we will only use the Node.js version.

The Neo4j JavaScript driver is installed using npm:

npm install neo4j-driver

Figure 1.10 Neo4j Desktop

https://neo4j.com/cloud/platform/aura-graph-database/
https://neo4j.com/cloud/platform/aura-graph-database/
https://neo4j.com/cloud/platform/aura-graph-database/

22 CHAPTER 1 What is full stack GraphQL?

In the following listing, let’s look at an example: using the Neo4j JavaScript driver to
execute a Cypher query and log the results.

const neo4j = require("neo4j-driver");

const driver = neo4j.driver("neo4j://localhost:7687",
neo4j.auth.basic("neo4j", "letmein"));

const session = driver.session();

session.run("MATCH (n) RETURN COUNT(n) AS num")
.then(result => {

const record = result.records[0];
console.log(`Your database has ${record['num']} nodes`);

})
.catch(error => {

console.log(error);
})
.finally(() => {

session.close();
)

Listing 1.7 Basic Neo4j JavaScript driver usage

Figure 1.11 Neo4j Browser

Importing the neo4j-
driver module Creating a driver instance

and specifying the database
connection string

Specifying the database user and password

Sessions are more lightweight and should
be instantiated for a specific block of work.

Run the query in
an auto-commit
transaction; it
returns a promise.

The
promise
resolves

to a
result

set.

Accessing the records of the result
set and selecting the first record

Be sure to close the session.

231.6 How it all fits together

We will learn how to make use of the Neo4j JavaScript driver in our GraphQL resolver
functions as one way to implement data fetching in our GraphQL API.

THE NEO4J GRAPHQL LIBRARY

The Neo4j GraphQL Library is a GraphQL-to-Cypher query execution layer for
Neo4j. It works with any of the JavaScript GraphQL server implementations, such as
Apollo Server. We will learn how to use this library for the following:

1 Using GraphQL type definitions to drive the Neo4j database schema
2 Generating a full CRUD GraphQL API from GraphQL type definitions
3 Generating a single Cypher database query for arbitrary GraphQL requests

(solving the n + 1 query problem)
4 Adding custom logic to our GraphQL API using Cypher

While GraphQL is data-layer-agnostic—GraphQL APIs can be implemented using any
data source or database—when used with a graph database, there are benefits, such as
reducing mapping and translation of the data model and performance optimizations
for addressing complex traversals defined with GraphQL. The Neo4j GraphQL library
helps to build GraphQL APIs backed by the Neo4j graph database. Using the Neo4j
GraphQL library is covered beginning in chapter 4, and you can read more about the
library at dev.neo4j.com/graphql.

1.6 How it all fits together
Now that we’ve taken a look at each individual piece of our GraphQL stack, let’s see
how everything fits together in the context of a full stack application, using the movie
search application as our example. Our imaginary movie application has three simple
requirements:

1 Allow the user to search for a movie by title.
2 Display any matching results and details of those movies, such as rating or

genre, to the user.
3 Show a list of similar movies that might be a good recommendation if the user

liked the matching movie.

Figure 1.12 shows how the different components would fit together, following the flow
of a request from the client application, searching for movies by title, to the GraphQL
API, then resolving data from the Neo4j database, and back to the client, rendering
the results in an updated user interface view.

https://neo4j.com/product/graphql-library/

24 CHAPTER 1 What is full stack GraphQL?

1.6.1 React and Apollo Client: Making the request

The frontend of our application is built in React; specifically, we have a MovieSearch
React component, which renders a text box that accepts user input (a movie search
string to be provided by the user). This MovieSearch component also contains the
logic for taking the user input, combining it with a GraphQL query, and sending this
query to the GraphQL server to resolve the data using the Apollo Client React integra-
tion. The following listing shows what the GraphQL query sent to the API might look
like if the user searched for “River Runs Through It.”

{
moviesByTitle(title: "River Runs Through It") {

title
poster
imdbRating
genres {

name
}
recommendedMovies {

title
poster

}
}

}

Listing 1.8 GraphQL query searching for movies matching “River Runs Through It”

Request

Web
client

GraphQL API

Apollo
Client

Apollo
Server

Database

{
 moviesByTitle(title: "Matrix") {
 title
 year
 }
}

GraphQL query

{
 "data": {
 "moviesByTitle": [
 {
 "title": "Matrix
Reloaded, The",
 "year": 2003
 }
]
 }
}

Client issues GraphQL query

GraphQL API sends Cypher query to Neo4j

Response sent to client

Data updated in React component props and view rendered

MATCH (m:Movie {title: "Matrix"})
RETURN m.title, m.year

Cypher
Bolt JavaScript driver

Response

1

2

3

4

1

2

3

4

Figure 1.12 Following a movie search request through a full stack GraphQL application

251.6 How it all fits together

This data-fetching logic is enabled by Apollo Client, which we use in the MovieSearch
component. Apollo Client implements a cache, so when the user enters their search
query, Apollo Client first checks the cache to see if a GraphQL query has previously
been handled for this search string. If not, then the query is sent to the GraphQL
server as an HTTP POST request to /graphql.

1.6.2 Apollo Server and GraphQL backend

The backend for our movie application is a Node.js application that uses Apollo Server
and the Express web server library to serve a /graphql endpoint over HTTP. A GraphQL
server is composed of the network layer, which is responsible for processing HTTP
requests, extracting the GraphQL operation, and returning HTTP responses, and the
GraphQL schema, which defines the entry points and data structures for the API and
is responsible for resolving the data from the data layer by executing resolver functions.

 When Apollo Client makes its request, our GraphQL server handles the request by
validating the query and then begins to resolve the request by first calling the root
level resolver function, which, in this case, is Query.moviesByTitle. This resolver
function is passed the title argument—the value the user typed into the search text
box. Inside our resolver function, we have the logic for querying the database to find
movies with titles matching the search query, retrieving the movie details, and finding
a list of other recommended movies for each matching movie.

Resolver functions are executed in a nested fashion (see figure 1.13)—in this case,
starting with the moviesByTitle query field resolver, which is the root level resolver
for this operation. The moviesByTitle resolver will return a list of movies, and then
the resolver for each field requested in the query will be called and passed an item
from the list of movies returned by moviesByTitle—essentially iterating over this list
of movies.

 Each resolver function contains logic for resolving data for a piece of the overall
GraphQL schema. For example, the recommendedMovies resolver, when given a
movie, has the logic to find similar movies that the viewer might also enjoy. In this
case, this is done by querying the database, using a simple Cypher query to search for
users who have viewed the movie, and traversing out to find other movies those users
have viewed to provide a collaborative filtering recommendation, as shown in the

Resolver implementation
In this book, we will show two methods for implementing resolver functions:

 The naive approach of defining database queries inside individual resolvers
 Auto-generating resolvers using GraphQL engine libraries, such as the Neo4j

GraphQL library

This example covers only the first case.

26 CHAPTER 1 What is full stack GraphQL?

following listing. This query is executed in Neo4j using the Node.js JavaScript Neo4j
client driver.

MATCH (m:Movie {movieId: $movieID})<-[:RATED]-(:User)-[:RATED]->(rec:Movie)
WITH rec, COUNT(*) AS score ORDER BY score DESC
RETURN rec LIMIT 3

1.6.3 React and Apollo Client: Handling the response

Once our data fetching is complete and the data is sent back to Apollo Client, the
cache is updated, so if this same search query is executed in the future, the data will
be retrieved from the cache, instead of requesting the data from the GraphQL server.

Listing 1.9 A simple movie recommendation Cypher query

GraphQL resolver execution
moviesByTitle

title poster imdbRating genres

name

recommended
Movies

title poster

Figure 1.13 GraphQL resolver functions are called in a nested fashion.

n + 1 query problem
Here we have a perfect demonstration of the n + 1 query problem. Our root-level
resolver returns a list of movies. Now, to resolve our GraphQL query, we need to call
the actors resolver once for each movie. This results in multiple requests to the
database, which can impact performance.

Ideally, we instead make a single request to the database, which fetches all data
needed to resolve the GraphQL query in a single request. There are a few solutions
to this problem:

 The DataLoader library allows us to batch our requests together.
 GraphQL engine libraries, like the Neo4j GraphQL library, can generate a sin-

gle database query from an arbitrary GraphQL request, leveraging the graph
nature of GraphQL without negative performance impacts from multiple data-
base calls.

271.7 What we will build in this book

 Our MovieSearch React component passes the results of the GraphQL query to a
MovieList component as props, which, in turn, renders a series of Movie components,
updating the view to show the movie details for each matching movie—in this case, just
one. And our user is presented with a list of movie search results (see figure 1.14)!

The goal of this example is to show how GraphQL, React, Apollo, and Neo4j Database
are used together to build a simple full stack application. We’ve omitted many details,
such as authentication, authorization, and optimizing performance, but don’t worry,
we will cover all this in detail throughout the book!

1.7 What we will build in this book
The simple movie search example we’ve used throughout the chapter was, hopefully,
a decent introduction to the concepts we’ll learn throughout this book. Instead of
building a movie search application, let’s start from scratch and build a new applica-
tion, working through the requirements and GraphQL API design together as we
build up our knowledge of GraphQL. To demonstrate the concepts covered in this
book, we will build a web application that makes use of GraphQL, React, Apollo, and
Neo4j. This web application will be a simple business review application. The require-
ments of the application are

 Listing businesses and business details
 Allowing users to write reviews of businesses
 Allowing users to search for businesses and showing personalized recommenda-

tions to the user

App
MovieSearch

MovieListMovie

Figure 1.14 React components are composed together to build a complex user interface.

28 CHAPTER 1 What is full stack GraphQL?

To implement this application, we will need to design and implement our GraphQL
API, user interface, and database. We will need to handle issues such as authentication
and authorization and deploy our application to the cloud.

1.8 Exercises
1 To familiarize yourself with GraphQL and writing GraphQL queries, explore

the public movies GraphQL API at https://movies.neo4j-graphql.com. Open
the URL in a web browser to access GraphQL Playground, and explore the DOCS
and SCHEMA tabs to view the type definitions.

Try writing queries to respond to the following prompts:

– Find the titles of the first 10 movies, ordered by title.
– Who acted in the movie Jurassic Park?
– What are the genres of Jurassic Park? What other movies are in those genres?
– What movie has the highest imdbRating?

2 Consider the business review application we described earlier in the chapter. See
if you can create the GraphQL type definitions necessary for this application.

3 Download Neo4j, and familiarize yourself with Neo4j Desktop and Neo4j
Browser. Work through a Neo4j Sandbox example dataset guide at neo4j.com/
sandbox.

You can find solutions to the exercises as well as code samples from this book in the
GitHub repository for this book: github.com/johnymontana/fullstack-graphql-book.

Summary
 GraphQL is an API query language and runtime for fulfilling requests. We can

use GraphQL with any data layer. To build a GraphQL API, we first define the
types, which include the fields available on each type and how they are con-
nected, and describe the data graph.

 React is a JavaScript library for building user interfaces. We use JSX to construct
components that encapsulate data and logic. These components can be com-
posed together, allowing for building complex user interfaces.

 Apollo is a collection of tools for working with GraphQL, both on the client and
the server. Apollo Server is a Node.js library for building GraphQL APIs. Apollo
Client is a JavaScript GraphQL client that has integrations for many frontend
frameworks, including React.

 Neo4j is an open source graph database that uses the property graph data
model, which consists of nodes, relationships, labels, and properties. We use the
Cypher query language for interacting with Neo4j.

 These technologies can be used together to build full stack GraphQL
applications.

https://neo4j.com/sandbox/
https://neo4j.com/sandbox/
https://neo4j.com/sandbox/
https://movies.neo4j-graphql.com
https://github.com/johnymontana/fullstack-graphql-book

29

Graph
 thinking with GraphQL

In this chapter, we will design a GraphQL API for a business review application.
First, we will define the requirements of this application; then, we will describe a
GraphQL API that addresses these requirements following a GraphQL-first devel-
opment approach. We then explore how to implement the data fetching logic for
this API. Finally, we explore how to combine our GraphQL type definitions and
resolver functions to serve a GraphQL API using Apollo Server and to query it,
using Apollo Studio. When building APIs, it is often useful to understand the data

This chapter covers
 Describing the requirements of our business review

application

 Translating requirements into GraphQL type
definitions

 Implementing resolver functions for data fetching for
these type definitions, using a naive approach

 Using Apollo Server to combine our type definitions
and resolvers and serve a GraphQL endpoint

 Querying our GraphQL endpoint with Apollo Studio

30 CHAPTER 2 Graph thinking with GraphQL

domain and the common access patterns—in other words, what are the problems to
be solved by the API? The GraphQL-first development approach allows us to build
APIs by first considering the data domain and defining a GraphQL schema describing
that domain, which then serves as a blueprint for implementing the API.

2.1 Your application data is a graph
A graph is a fundamental data structure that is composed of nodes (the entities or
objects) and relationships that connect nodes. Graphs are an intuitive model that can
be used to represent many different domains. Often, when we go through the exer-
cise of producing a data model by examining the business requirements of a domain,
we end up drawing a diagram of the objects and arrows showing how they are con-
nected. This is a graph!

 Let’s go through this process for our business reviews application. The require-
ments for our application are

1 As a user, I want to search for a list of businesses by category, location, and name.
2 As a user, I want to view details for each business (name, description, address,

photos, etc.).
3 As a user, I want to view reviews for each business, including a summary for each

business, and rank my search by favorably reviewed businesses.
4 As a user, I want to create a review for a business.
5 As a user, I want to connect my friends and users who have tastes that I like, so I

can follow my friends’ reviews.
6 As a user, I want to receive personalized recommenda-

tions based on reviews I have previously written and my
social network.

Now that we’ve identified the requirements for our applica-
tion, let’s think about the data requirements for this applica-
tion and the data model that describes it.

 First, what are the entities? These will become nodes in
our graph. I can think of users, businesses, reviews, and pho-
tos as entities that we need to think about (see figure 2.1).

GraphQL-first development
The GraphQL-first development paradigm is an approach for building applications that
is driven by the GraphQL API design. The process begins by describing GraphQL type
definitions synthesized from business requirements. These type definitions then
become the basis for the API implementation, database data-fetching code, and cli-
ent application code. GraphQL-first development is a powerful approach because it
allows for parallel implementation of the backend and frontend systems once the
GraphQL type definitions have been defined.

User

Business

Review

Photo

Figure 2.1 Entities
become nodes.

312.2 Graphs in GraphQL

 Next, how are those entities connected? These
connections are modeled as relationships between
the entities, and what we’ve described is a graph
(see figure 2.2). Let’s add the following relation-
ships:

1 Users write reviews.
2 Reviews are connected to a business.
3 Users upload photos.
4 Photos are tagged to businesses.

Now that we’ve described the data requirements of our application as a graph, we can
start to think about how to build a GraphQL API to enable us to work with this data
graph.

2.2 Graphs in GraphQL
GraphQL models our business domain as a graph. With GraphQL, we define this graph
model by creating a GraphQL schema, which we do by writing GraphQL type defini-
tions. In the schema, we define types of nodes, the fields available on each node, and
how they are connected by relationships. The most common way of creating a
GraphQL schema is by using the GraphQL schema definition language (SDL). In this
section, we take the requirements of our application and create a GraphQL schema
that models our business review domain in GraphQL using GraphQL type definitions.

2.2.1 API modeling with type definitions: GraphQL-first development

Having translated our business requirements into the graph data model necessary for
our application, we can now formally write our GraphQL type definitions, using the
GraphQL schema definition language. With the GraphQL SDL, we define the types,
the fields on each type, and how they are connected. The GraphQL SDL representa-
tion of our data is just another representation of the graph data model we described
in the previous section. Our GraphQL type definitions will become the specification
for the API and guide the rest of our implementation. This process is known as
GraphQL-first development.

Other ways of representing GraphQL types
The SDL is not the only way to create our type definitions. Each GraphQL implemen-
tation (e.g., graphql.js, the reference implementation used by most Node.js Java-
Script GraphQL projects) also exposes a programmatic API to represent GraphQL type
definitions. In fact, when the SDL is parsed, it is this object representation that is
created internally for working with the GraphQL schema. This approach of construct-
ing GraphQL types can be used by the API developer as well and is often the better
option when programmatically generating GraphQL types, such as when generating
types from existing classes.

User Business

Review

Figure 2.2 Adding relationships to
connect nodes

32 CHAPTER 2 Graph thinking with GraphQL

Since GraphQL services can be implemented in any language, a programming-
language-specific syntax is not relevant for all GraphQL implementations; therefore,
the programming-language-agnostic GraphQL SDL is used to define GraphQL types.
In chapter 1, we introduced the basic syntax of the GraphQL Schema Definition Lan-
guage, using a simple movie and actor GraphQL schema. Using the syntax introduced
in that example, let’s create GraphQL type definitions for our business reviews appli-
cation, based on the requirements we created in the previous section of this chapter,
as shown in the following listing.

type Business {
businessId: ID!
name: String
address: String
avgStars: Float
photos: [Photo!]!
reviews: [Review!]!

}

type User {
userId: ID!
name: String
photos: [Photo!]!
reviews: [Review!]!

}

type Photo {
business: Business!
user: User!
photoId: ID!
url: String

}

type Review {
reviewId: ID!
stars: Float
text: String
user: User!
business: Business!

}

Note that the entities we identified become GraphQL types, the properties of the enti-
ties become fields on the types, and the connections or relationships connecting the
types are defined as fields that reference other types. Each type contains fields, which
can be scalar types, objects, or lists.

 Each type should have some field that uniquely identifies that object. ID is a special
GraphQL scalar used to represent this unique field. Internally, we treat ID fields as
strings. The exclamation ! indicates this field is required; we cannot have a User
object in our GraphQL API without a value for the userId field. The brackets [] here

Listing 2.1 GraphQL type definitions for our business review application

Each type of object or entity in our
graph becomes a GraphQL type.

Each type should have some field
that uniquely identifies that object.

Fields can be references to other types—
in this case, a one-to-many relationship.

Connection references can also
represent one-to-one relationships.

332.2 Graphs in GraphQL

indicate this is a one-to-many relationship; one User can create zero or more reviews
and a Review can be written by only one User. To represent one-to-one relationships,
we simply leave off the brackets, indicating this is not an array field.

Now that we have our type definitions, we need to define the entry points for our API.
The entry points for read operations are defined in a special type called the Query type.
Entry points for write operations are defined in a special type called the Mutation type.
In this chapter, we focus only on queries. Mutations will be covered in chapter 4, where
we will update data in a database. In addition to the Query and Mutation types, there is
a third special GraphQL type that defines entry points, called Subscription
.Subscriptions are GraphQL’s event-publishing functionality and are beyond the
scope of this book.

 The entry points for our API should map to the client requirements of our applica-
tion. In other words, ask yourself, “What operations does the client need to com-
plete?” These needs should guide what Query and Mutation fields we define. Let’s first
focus on read-only requirements in the next listing.

type Query {
allBusinesses: [Business!]!
businessBySearchTerm(search: String!): [Business!]!
userById(id: ID!): User

}

Now that we’ve created our GraphQL type definitions, we can construct some
GraphQL queries that might be used by our application. Consider the query that our

Listing 2.2 Query fields as API entry points

Built-in GraphQL types
The following built-in types are supported by the GraphQL schema language:

 String
 Int
 Float

 Boolean
 ID

By default, every type is nullable, meaning null is a valid value for the field. Use an
exclamation point ! to indicate a type is non-nullable. For example, Int! is a non-
nullable integer.

To indicate a list type, use square brackets []. For example, [Int] is a list of integers.

Brackets and exclamations can be combined. For example, [String!] is a list of
non-nullable strings: every item in the list must have a String value, but the list itself
can be null, while [String]! is a non-nullable list of nullable strings.

34 CHAPTER 2 Graph thinking with GraphQL

application might need to issue to populate a search results page, based on a user-
provided search string, as shown in the following listing.

{
businessBySearchTerm(search: "Library") {

name
avgStars
reviews {

stars
text
user {

name
}

}
}

}

With this query, we can search for “Library” businesses, view the businesses that are a
match, and see the business details necessary for the search results, as well as all the
reviews for the business and the user who wrote them.

 This is great, but there are a few issues with this query. What happens if we have
many matches for “Library” businesses? What if a given business has thousands of
reviews? Our client application will be overwhelmed with data to render. Also, we
probably don’t want to show business results in just any order; we should allow the
search results to be ordered by name, in either ascending or descending order.

ADDING PAGINATION AND ORDERING TO OUR API
GraphQL does not have semantics for filtering, pagination, or ordering out of the
box; instead, it is up to the API designer to add these to the GraphQL schema as they
deem necessary and relevant for the requirements of the application.

 For pagination, we will add a first (think limit) argument to our API to allow the
client to specify the number of objects to be returned. We do this both at the root
Query field and for any relationship fields—those describing a one-to-many relation-
ship. In addition, an offset argument (think skip), which specifies the number of
records to skip before returning results, allows the client to implement pagination.

Listing 2.3 GraphQL query to search for businesses and reviews

Arguments vs. fields
It is important to understand the distinction between arguments and fields. For exam-
ple, first and offset are arguments, whereas name and address are fields. Argu-
ments appear inside parentheses after a field name and are passed to resolver
functions. Fields appear inside braces after an object name and represent attributes
of an object. Fields can be thought of as holding values, while arguments are used
more as selectors and are passed in GraphQL operations.

352.2 Graphs in GraphQL

type Business {
businessId: ID!
name: String
address: String
avgStars: Float
photos(first: Int = 3, offset: Int = 0): [Photo!]!
reviews(first: Int = 3, offset: Int = 0): [Review!]!

}

type Query {
allBusinesses(first: Int = 10, offset: Int = 0): [Business!]!
businessBySearchTerm(

search: String
first: Int = 10
offset: Int = 0

): [Business]
userById(id: ID!): User

}

That solves pagination for us, but what about ordering? This is needed when showing
search results—we want to present the user with the businesses in an order that makes
sense. To accomplish this, we will add an ordering enum that will enumerate the
options for ordering fields of type [Business] in our GraphQL API.

enum BusinessOrdering {
name_asc
name_desc

}

Typically, the convention is to set enums in uppercase (e.g., NAME_ASC); however, since
in this case our enum values describe field names, we make an exception and keep the
naming of the enums consistent with our field names. Now, we need to add this field
as an optional argument to our Query field for searching for businesses, as shown in
the next listing.

Listing 2.4 Updated query and business type definitions with first and offset arguments

Listing 2.5 Business ordering enum

Here we add first and offset
arguments to the reviews
field on the Business type.
This means we can control
pagination on the nested
connected Review objects
for each business returned
in our query.

Here we add the first and offset arguments to the
allBusinesses field, allowing the client to specify skip

 and limit values for the query, controlling the number and
offset of the businesses returned. Note that we assign default
values, and if not specified, the value of 10 and offset of 0 will

be assigned first, ensuring we receive the first 10 results.

There is no need to add first and offset arguments to the userById
field because it is guaranteed to return at most one result.

Pagination options
There are several patterns for implementing pagination in GraphQL. Here we focus
on a fairly simple first/offset pattern. Other options include numbered pages and
cursor-based pagination, such as Relay Cursor Connections. Cursor-based pagination
using the Relay Cursor Connection specification is covered in chapter 9.

enum is a built-in GraphQL type that is
restricted to a set of allowed values.

We add two enum options for each field on which we want to
support ordering: one field for ascending ordering, ending in
_asc, and another field for descending ordering, ending in _desc.

36 CHAPTER 2 Graph thinking with GraphQL

type Query {
allBusinesses(first: Int = 10, offset: Int = 0): [Business!]!
businessBySearchTerm(

search: String!
first: Int = 10
offset: Int = 0
orderBy: BusinessOrdering = name_asc

): [Business!]!
userById(id: ID!): User

}

Now, we are ready to use our new pagination and ordering arguments. In the next list-
ing, let’s update our earlier query, in which we were searching for businesses with
“Library” in the name to return only the top five rated businesses and two reviews for
each business.

{
businessBySearchTerm(search: "Library", first: 5, orderBy: name_desc) {

name
avgStars
reviews(first: 2) {

stars
text
user {

name
}

}
}

}

Typically, when using argument values in our application queries, we want to use vari-
ables with values that can be substituted at query time, so we don’t end up construct-
ing query strings in our application. Instead, we want to pass our parameterized
GraphQL query string and an object with the variable values. We can do this in
GraphQL by first declaring the variables we plan to use as well as their type, and then
including them in the query, prefixed by the $ character. The following listing shows
how our query would look using GraphQL variables.

query businessSearch(
$searchTerm: String!
$businessLimit: Int
$businessSkip: Int
$businessOrder: BusinessOrdering
$reviewLimit: Int

) {

Listing 2.6 Adding ordering for business search results

Listing 2.7 GraphQL query to search for businesses and reviews

Listing 2.8 GraphQL query to search for businesses and reviews using pagination

Here we’ve added the orderBy argument to
the businessBySearchTerm field, which is of
type BusinessOrdering.

372.2 Graphs in GraphQL

businessBySearchTerm(
search: $searchTerm
first: $businessLimit
offset: $businessSkip
orderBy: $businessOrder

) {
name
avgStars
reviews(first: $reviewLimit) {

stars
text
user {

name
}

}
}

}

Note that this query now includes some additional information, along with our
GraphQL variable declaration. We are explicitly specifying the GraphQL operation type
and operation name. The operation type is query, mutation, or subscription. Previ-
ously, we used a shorthand that excluded the operation type and treated query as the
default operation type. We’ll cover mutation types later in the book. The operation
type is not required, unless specifying an operation name or variable definitions, or
using a type other than query.

 The other additional piece of information here is the operation name—in this
case, businessSearch. The operation name is an explicit name for the operation that
can be helpful for debugging and logging. It can be much easier to find queries using
the operation name while looking through logs when there is a problem or when
troubleshooting. Along with the GraphQL query, we would also pass an object that
contains the variable values:

{
searchTerm: "Library",
businessLimit: 5,
businessOrder: "name_desc",
reviewLimit: 2

}

Of course, we don’t have a way to query our nonexistent API at this point, so let’s fix
that by implementing some resolvers for data fetching!

2.2.2 Resolving data with resolvers

Following our GraphQL-first development approach, the next step we need to com-
plete is implementing the code to actually fetch this data from the data layer. We do this
by writing functions called resolvers, which contain logic for how to resolve data from
the data layer. Resolvers are standalone functions with the purpose of fetching data for
a single field of a GraphQL type, and they can be thought of as the primary unit of

38 CHAPTER 2 Graph thinking with GraphQL

execution in a GraphQL service. Resolvers are called in a nested fashion, starting with
the root-level resolver (a field on the query, mutation, or subscription types) in a depth-
first execution, until all requested fields have been resolved. Data resolved in a previous
resolver is passed on to nested resolvers via the obj parameter.

 You can think of resolvers as functions that go alongside the GraphQL type defini-
tions defined in SDL and, effectively, make the GraphQL schema executable. A
GraphQL schema must have resolver functions for all fields (a default resolver is used
for any resolver functions not explicitly defined), so a collection of resolver functions
corresponds to the type definitions and is known as a resolver map.

THE RESOLVER FUNCTION SIGNATURE

Each resolver function receives four arguments:

 obj—The previously resolved object. Not used for a root query field resolver.
 args—The arguments for the field used in the GraphQL query.
 context—An object that can hold contextual data, such as authorization infor-

mation or a database connection.
 info—The GraphQLResolveInfo object contains a version of the GraphQL

query as well as the full GraphQL schema and other metadata about the query
and schema.

Valid results returned by resolver functions include the following, depending on the
GraphQL type definition of the field being resolved:

 A scalar or object value
 An array
 A promise
 undefined or null

DEFAULT RESOLVERS

If a resolver is not provided for a field requested in a GraphQL query, then a default
resolver will be called, passing in the data resolved so far (the obj mentioned previ-
ously). This default resolver will return a property from the obj parameter with the
field name. For example, a default resolver for the name field on the Business type
would look something like the following code:

Business: {
name: (obj, args, context, info) => {

return obj.name
}

}

2.2.3 Our first resolver

Let’s implement resolvers for the type definitions we’ve created (see listing 2.9). The
first thing we need is some data to return, so let’s create some static data that will rep-
resent our data layer. We’ll simply create some object literals and store these in an

392.2 Graphs in GraphQL

object called db, which we can think of as a mock for a database that we would query
in our resolver functions. We will inject this db object with our fake data into the con-
text object, ensuring it is available in each resolver.

const businesses = [
{

businessId: "b1",
name: "Missoula Public Library",
address: "301 E Main St, Missoula, MT 59802",
reviewIds: ["r1", "r2"],

},
{

businessId: "b2",
name: "San Mateo Public Library",
address: "55 W 3rd Ave, San Mateo, CA 94402",
reviewIds: ["r3"],

},
];

const reviews = [
{

reviewId: "r1",
stars: 3,
text: "Friendly staff. Interlibrary loan is super fast",
businessId: "b1",
userId: "u1",

},
{

reviewId: "r2",
stars: 4,
text: "Easy downtown access, lots of free parking",
businessId: "b1",
userId: "u2",

},
{

reviewId: "r3",
stars: 5,
text: "Lots of glass and sunlight for reading.",
businessId: "b1",
userId: "u1",

},
];

const users = [
{

userId: "u1",
name: "Will",
reviewIds: ["r1", "r2"],

},
{

userId: "u2",
name: "Bob",

Listing 2.9 Sample data for businesses, reviews, and users representing our data layer

40 CHAPTER 2 Graph thinking with GraphQL

reviewIds: ["r3"],
},

];

const db = { businesses, reviews, users };

We’ll assume these objects are passed to the resolvers in the context object like we
would pass a database connection object.

Based on our GraphQL type definitions, our initial resolver map would look like the
following listing.

const resolvers = {
Query: {

allBusinesses: (obj, args, context, info) => {
// TODO: return all businesses

},
businessBySearchTerm: (obj, args, context, info) => {

// TODO: search businesses for matching search term
}

},
Business: {

reviews: (obj, args, context, info) => {
// TODO: find reviews for a particular business

},
avgStars: (obj, args, context, info) => {

// TODO: calculate average stars aggregation
}

},
Review: {

user: (obj, args, context, info) => {
// TODO: find the user who wrote this review

},
business: (obj, args, context, info) => {

// TODO: find the business for this review
}

},
User: {

Listing 2.10 Resolver map skeleton

Mocking GraphQL data
Rather than creating a static object to use as an example, we could use the mocking
functionality of Apollo Server to create resolvers that return mocked data. This mock-
ing functionality is useful for testing UI and frontend code and enabling frontend and
backend teams to work concurrently. We can be sure this data is relevant because it
uses schema introspection and the GraphQL type system to ensure the mocked data
is the same form as we’ve defined in our GraphQL type definitions. Learn more about
data mocking with Apollo Server in the documentation: http://mng.bz/Pnlw.

http://mng.bz/Pnlw

412.3 Combining type definitions and resolvers with Apollo Server

reviews: (obj, args, context, info) => {
// TODO: find all reviews written by a user

}
}

};

Note that we don’t need to bother implementing trivial resolvers that will be handled
by the default resolver, such as Business.name. Let’s start by implementing the all-
Businesses resolver (see listing 2.11). This resolver simply fetches all businesses from
our data layer and returns them, without worrying about pagination or ordering.
Remember that for this example, our data layer consists of a nested object exposed via
the context object in each resolver. (We’ll cover how to actually inject this object in
the next section.)

Query: {
allBusinesses: (obj, args, context, info) => {

return context.db.businesses;
}

}

Now that we have our first resolver function implemented, let’s see how we can com-
bine our GraphQL type definitions and resolvers to serve a GraphQL API, using
Apollo Server.

2.3 Combining type definitions and resolvers with Apollo Server
We’ve created our GraphQL type definitions and our first resolver function to query
our data layer, so now it’s time to put them together and spin up a GraphQL server
with Apollo Server. Apollo Server is available as an npm package, so let’s install that
with npm:

npm install apollo-server graphql

2.3.1 Using Apollo Server

In the next listing, we create index.js, which will use the type definitions and resolvers
we previously defined as well as Apollo Server to serve a GraphQL API based on these
type definitions.

Listing 2.11 Root-level resolver: allBusinesses

We are resolving a field on the
Query type, so this resolver is a
function under the Query key in
our resolver map.

Here we see the standard signature for resolver functions. obj will
be empty here, since this is the root level resolver—no data has
been resolved yet. args will also be an empty object, since this field
does not accept any arguments. context, however, will contain our
static data object.

We return the businesses array on the db
object, accessed via the context object.

42 CHAPTER 2 Graph thinking with GraphQL

const ApolloServer = require('apollo-server');

const server = new ApolloServer({
typeDefs,
resolvers,
context: { db }

});

server.listen().then(({ url }) => {
console.log(`Server ready at ${url}`);

});

2.3.2 Apollo Studio

By default, Apollo Server will serve the GraphQL endpoint for POST requests, but for a
GET request from a web browser at the same URL (http://localhost:4000, in our case),
Apollo Server will redirect to the Apollo Studio in-browser tool (see figure 2.3).

Listing 2.12 index.js GraphQL server created with Apollo Server

Import ApolloServer from the
package we just installed.

Create
 a server
instance. We pass in our type

definitions that we
defined above.

Our
resolvers

were
defined

previously.

db is our mock data object and is injected into the
context. This object will be available in each resolver.

Here we start the server and begin listening
for incoming GraphQL requests.

Figure 2.3 Querying with Apollo Studio

432.3 Combining type definitions and resolvers with Apollo Server

Apollo Studio can be used to view the type definitions and schema of the GraphQL
API as well as execute queries and mutations and view the results. So far, the only
Query field resolver we’ve implemented is allBusinesses. Let’s test that by running
the following query in Apollo Studio:

{
allBusinesses {

name
}

}

This will result in a call to the Query field resolver allBusinesses, which will return
the businesses object from our mocked database. Then, since we are requesting just
the name field on the Business type, the default resolver for name will be used to return
the name of each business (see figure 2.4).

If you experiment by adjusting the query in Apollo Studio, you can see pretty quickly
that we need to implement the rest of our resolvers. Let’s return to our resolver map
skeleton and complete the resolvers.

2.3.3 Implementing resolvers

We’ve created some fake data to work with and have written our first resolver, all-
Businesses, which simply returns all the businesses in our mock database. Now, it’s
time to implement more complex resolvers, such as businessBySearchTerm, which
will allow us to filter results based on a user’s search term, and array resolvers, such as
Business.reviews, that will be responsible for resolving connections between busi-
nesses and reviews.

Figure 2.4 A simple query, using Apollo Studio

44 CHAPTER 2 Graph thinking with GraphQL

ROOT-LEVEL RESOLVER: BUSINESSBYSEARCHTERM

Root-level resolvers are those that map to the entry points for our API. Looking back
at our GraphQL type definitions, we have the following entry points, as defined in the
Query type:

type Query {
allBusinesses: [Business!]!
businessBySearchTerm(

search: String!
first: Int = 10
offset: Int = 0
orderBy: BusinessOrdering = name_asc

): [Business!]!
userById(id: ID!): User

}

enum BusinessOrdering {
name_asc
name_desc

}

We already implemented the allBusinesses root-level resolver in the previous sec-
tion. That example was fairly simple, since we didn’t have to deal with any arguments.
Now let’s implement the businessesBySearchTerm resolver, which takes a search
string, ordering, and pagination arguments, as shown in the next listing.

businessBySearchTerm: (obj, args, context, info) => {
const compare = (a, b) => {

const [orderField, order] = args.orderBy.split("_");
const left = a[orderField],

right = b[orderField];

if (left < right) {
return order === "asc" ? -1 : 1;

} else if (left > right) {
return order === "desc" ? -1 : 1;

} else {
return 0;

}
};
return context.db.businesses

.filter(v => {
return v["name"].indexOf(args.search) !== -1;

})

Listing 2.13 Root-level resolver: businessBySearchTerm

Since this is a root-level resolver, the obj parameter will be empty, but we will make
use of the args object, which will contain the GraphQL query arguments—in this
case, orderBy, search, first, and offset. Since our type definitions made use of default
values for orderBy, first, and offset, and search is a required field, we can be sure
these values will be defined.

Here we define a comparator function
to use for ordering, making use of our
BusinessOrdering enum. We split the

orderBy value on underscore to identify
the field name and direction of ordering
(e.g., name_asc means we will order by

the name field in ascending order).

Here we filter for
businesses, where the
name property contains
the search term passed
in the GraphQL query.

452.3 Combining type definitions and resolvers with Apollo Server

.slice(args.offset, args.first)

.sort(compare);
}

ARRAY RESOLVER: BUSINESS.REVIEWS

Our previous root-level resolvers returned arrays of objects, but we can also return
arrays of objects from resolvers for non-root-level resolvers if the field is a list field
(e.g., Business.reviews, which is of type [Review], or a list of Review objects). With
non-root level resolvers, the obj parameter will include any previously resolved data.
For example, if we first execute the Query.businessBySearchTerm resolver to fetch
businesses, the results of that resolver will be passed to the Business.reviews
resolver. Let’s make use of that data to implement the Business.reviews resolver in
the next listing.

Business: {
reviews: (obj, args, context, info) => {

return obj.reviewIds.map(v => {
return context.db.reviews.find(review => {

return review.reviewId === v;
});

});
},

}

SCALAR RESOLVER: BUSINESS.AVGSTARS

We talked about default resolvers that simply return an object property with the same
name as the field from the obj parameter, but there are cases when we need to imple-
ment resolvers that return scalar values and the default resolver is not used. Aggrega-
tions are a good example of that. The Business.avgStars field is an aggregation
field, and we need to find all reviews for a particular business and then calculate the
average of the stars for these reviews, returning a single scalar value.

avgStars: (obj, args, context, info) => {
const reviews = obj.reviewIds.map(v => {

return context.db.reviews.find(review => {
return review.reviewId === v;

});
});

return (
reviews.reduce((acc, review) => {

return acc + review.stars;

Listing 2.14 Root-level resolver

Listing 2.15 Scalar field resolver

We make use of the slice function to
implement first/offset pagination.

Here we apply our compare function to order the results according to the value specified
in the orderBy argument. If no orderBy argument is specified, then name_asc will be used,
since it is specified as the default value in the GraphQL type definitions.

46 CHAPTER 2 Graph thinking with GraphQL

}, 0) / reviews.length
);

}

OBJECT RESOLVER: REVIEW.USER

So far, we’ve seen resolvers that return scalar values and arrays; now, let’s implement a
resolver that returns a single object, as the next listing shows. In our type definitions, a
Review is connected to a single User, which means that Review.user is an object field,
not a list field.

Review: {
user: (obj, args, context, info) => {

return context.db.users.find(user => {
return user.userId === obj.userId;

});
}

}

And with that last resolver implementation, we can now return to querying our
GraphQL API using Apollo Studio.

2.3.4 Querying using Apollo Studio

Now that we’ve implemented the rest of our resolver functions, let’s return to Apollo
Studio by opening http://localhost:4000/ in a web browser. First, let’s search for busi-
nesses using the search term “Library” (see figure 2.5).

And now let’s retrieve reviews for each business matching our search results (see fig-
ure 2.6).

Listing 2.16 Object field resolver resolver

Figure 2.5 Querying for businesses by search term

472.4 Exercises

You can find the code for the completed example GraphQL API in this book’s GitHub
repository: http://mng.bz/J2jo. In the next chapter, we will introduce the Neo4j
graph database and learn how to model, store, and query data using the Cypher query
language.

2.4 Exercises
1 Consider some of the other requirements of our business reviews application

that we didn’t implement. Can you write GraphQL queries to address these
requirements? What are the results?

2 What other fields should make use of pagination and ordering in our API?
Update the type definitions to include the appropriate ordering and pagination
fields and update the resolvers to handle these pagination arguments.

3 Implement the root-level resolver for usersById.
4 Our example GraphQL API conspicuously lacks business categories. Update

the sample data, GraphQL type definitions, and resolvers to take advantage of
business categories. Consider how you would model categories in the API, given
that searching by category was specifically identified as a business requirement.

You can find solutions to the exercises as well as code samples in the GitHub reposi-
tory for this book: github.com/johnymontana/fullstack-graphql-book.

Figure 2.6 Adding business reviews to the query

http://mng.bz/J2jo
https://github.com/johnymontana/fullstack-graphql-book

48 CHAPTER 2 Graph thinking with GraphQL

Summary
 API data modeling can be approached using the business requirements of the

application. When done this way—mapping out the mental model of the data—
a graph is created, nodes are the entities, and relationships connect them.

 GraphQL type definitions are used to define the data, relationships, and entry
points of a GraphQL API. Type definitions can be defined using the Schema
Definition Language (SDL), a language-agnostic notation for specifying
GraphQL types. In addition to the built-in GraphQL types (ID, String, Int,
Float, Bool, etc.), custom user-defined scalars and types can be defined as well.

 Resolvers are functions that contain the data-fetching logic for a GraphQL API.
Resolvers are called in a nested fashion, depending on what fields have been
requested in the GraphQL query. Each resolver is passed a context object,
which can contain database connections or other helper objects for accessing
data.

 Apollo Server is used to combine GraphQL type definitions and resolvers into
an executable GraphQL schema and serve the GraphQL API.

 Apollo Studio can be used for viewing the schema of a GraphQL API as well as
for executing queries and viewing the results.

49

Graphs in the database

Fundamentally, a graph database is a software tool that allows the user to model,
store, and query data as a graph. Working with a graph at the database level is often
more intuitive for modeling complex connected data and can be more performant
when working with complex queries that require traversing many connected entities.

 In this chapter, we begin the process of creating a property graph data model
using the business requirements from the previous chapter and compare it to the
GraphQL schema created in the previous chapter. We then explore the Cypher
query language, focusing on how to write Cypher queries to address the require-
ments of our application. Along the way, we show how to install Neo4j, use Neo4j
Desktop to create new Neo4j projects locally, and use Neo4j Browser to query

This chapter covers
 An introduction to graph databases with a focus

on Neo4j

 The property graph data model

 Using the Cypher query language to create and
query data in Neo4j

 Using client drivers for Neo4j, specifically the
JavaScript Node.js driver

50 CHAPTER 3 Graphs in the database

Neo4j and visualize the results. Finally, we show how to use the Neo4j JavaScript client
driver to create a simple Node.js application that queries Neo4j.

3.1 Neo4j overview
Neo4j is a native graph database that uses the property graph model for modeling data
and the Cypher query language for interacting with the database. Neo4j is a transac-
tional database with full ACID guarantees necessary for operational workloads and can
also be used for graph analytics. Graph databases like Neo4j are optimized for working
with highly connected data and queries that traverse the graph (think of the equivalent
of multiple JOINs in a relational database) and, therefore, are the perfect backend for
GraphQL APIs, which describe connected data and often result in complex, nested que-
ries. Neo4j is open source and can be downloaded from neo4j.com/download.

 We will make use of Neo4j Desktop and Neo4j Browser in this chapter as we learn
how to create and query data in Neo4j, but first, let’s dig into the property graph
model used by Neo4j and see how it relates to the model used to describe GraphQL
APIs that we reviewed in the previous chapter.

3.2 Graph data modeling with Neo4j
Unlike other databases that use tables or documents to model data, graph databases
like Neo4j model, store, and allow the user to query data as a graph. In a graph, nodes
are the entities, and relationships connect them. In a relational database, we repre-
sent relationships with foreign keys and join tables. In a document database, we refer-
ence other entities using IDs or even denormalizing and embedding other entities in
a single document (see figure 3.1).

Relational GraphDocument

Person
name:
Bob

age: 42

Hobby
name:
Golf

Person
name:
Carla

age: 36

{
 "id": 1,
 "name": "Bob",
 "age": 42,
 "friends": [1],
 "hobbies": ["golf"]
},
 "id": 2,
 "name": "Carla",
 "age": 36,
 "friends": [2],
 "hobbies": ["skiing"]
}

id name age

1 Bob 42

2 Carla 36

id person1_id person2_id

3 1 2

4 2 1

id person_id name

5 1 golf
6 2 skiing

Hobbies table

Friends table

Person table

People collection

Hobby
name:
Skiing

HAS_FRIEND

HAS_HOBBY

HAS_HOBBY

Figure 3.1 Comparing relational, document, and graph data models

https://neo4j.com/download/

513.2 Graph data modeling with Neo4j

The first step when working with a database is to determine the data model that will be
used. In our case, our data model will be driven from the business requirements we
defined in the previous chapter—working with businesses, users, and reviews. Review the
requirements listed in the first section of the previous chapter for a refresher. Let’s take
those requirements and our knowledge of the domain to create a whiteboard model.

How do we translate this mental model from the whiteboard model to the physical data
model used by the database? In other systems, this might involve creating an entity-
relationship (ER) diagram or defining the schema of the database. Neo4j is said to be
schema optional. While we can create database constraints to enforce constraints, such as
property uniqueness, we can also use Neo4j without these constraints or a schema. But
the first step is to define a model using the property graph data model, which is the
model used by Neo4j and other graph databases. Let’s convert our simple whiteboard
model, shown previously, into a property graph model we can use in the database.

3.2.1 The property graph model

We gave a brief overview of the property graph data model in chapter 1. Next, we will
go through the process of taking our whiteboard model and converting it to a prop-
erty graph model used by the database.

Whiteboard model
We will use the term whiteboard model to refer to the diagram typically created when
first reasoning about a domain, which is often a graph of entities and how they relate,
drawn on a whiteboard (see the following figure).

User Business

Review

Building the property graph
model: whiteboard model

The property graph data model
The property graph model is composed of

 Node labels—Nodes are the entities or objects in our data model. Nodes can
have one or more labels that describe how nodes are grouped (think type of
entity).

 Relationships—Relationships connect two nodes and have a single type and
direction.

 Properties—These are arbitrary key-value pair attributes that are stored on
either nodes or relationships.

52 CHAPTER 3 Graphs in the database

NODE LABELS

Nodes represent the objects in our whiteboard model. Each node can have one or
more labels, which is a way of grouping nodes. Adding node labels to a whiteboard
model is usually a simple process, since some grouping will already have been defined
during the whiteboard process. Here we formalize the descriptors used to refer to our
nodes into node labels (later, we will add node aliases and multiple labels, so we use a
colon as a separator to indicate the label; see figure 3.2).

The convention used for casing node labels is PascalCase. See the Cypher style guide
for more examples of naming conventions at neo4j.com/developer/cypher/
style-guide/. Nodes can have multiple labels and allow us to represent type hierar-
chies, roles in different contexts, or even multitenancy.

RELATIONSHIPS

Once we’ve identified our nodes labels, the next step is to identify the relationships in
our data model. Relationships have a single type and direction but can be queried in
either direction (see the figure in the following sidebar).

User

Review

Business
Figure 3.2 Building the property
graph model: node labels

Graph data model diagramming tools
There are many tools available for diagramming graph data models. Throughout this
book, we use the Arrows tool, a simple web-based application that allows for creating
graph data models. Arrows is available online at https://arrows.app.

The Arrows user interface is minimal and is designed around creating property graph
data models:

 Create new nodes with the (+ Node) button or by dragging out from an exist-
ing node.

 Drag relationships out of the halo of a node, either to an empty space for a
new node or centered over an existing one to connect them.

 Double-click nodes and relationships to edit them, set names, and set prop-
erties (in a key: value syntax).

 You can export to PNG, SVG, and other formats (including GraphQL type
definitions).

https://arrows.app
https://neo4j.com/developer/cypher/style-guide/
https://neo4j.com/developer/cypher/style-guide/
https://neo4j.com/developer/cypher/style-guide/

533.2 Graph data modeling with Neo4j

A good guideline for naming relationships is that the traversal from a node along a
relationship to another node should read as a somewhat comprehensible sentence
(e.g., “User wrote review” or “Review reviews business”). You can read more about best
practices for naming and conventions in the Cypher Style Guide : neo4j.com/developer/
cypher-style-guide.

PROPERTIES

Properties are arbitrary key-value pairs stored on nodes and relationships. These are
the attributes or fields of entities in our data model. Here we store userId and name as
string properties on the User node, as well as other relevant properties on the Review
and Business nodes.

Dealing with undirected relationships
While every relationship has a single direction, we can treat the relationship as undi-
rected at query time by not specifying a direction in the Cypher query.

Building the property graph model:
relationship types

WR
OT
E

REVIEWS

User

Review

Business

Property types
The following property types are supported by Neo4j (see the following figure):

 String Date, DateTime, and other temporal types
 Float Point

 Long Lists of the previous types

Building the property graph model: properties

WR
OT
E

REVIEWS

User

userID:String
name:String

Review

reviewId:String
 stars:Float
 text:String

Business

businessId:String
name:String

address:String

https://neo4j.com/developer/cypher/style-guide/
https://neo4j.com/developer/cypher/style-guide/
https://neo4j.com/developer/cypher/style-guide/

54 CHAPTER 3 Graphs in the database

3.2.2 Database constraints and indexes

Now that we’ve defined our data model, how do we make use of it in the database? As
mentioned earlier, unlike other databases that require us to define a complete
schema before inserting data, Neo4j is said to be schema optional and does not
require the use of a pre-defined schema. Instead, we can define database constraints
that ensure the data adheres to the rules of the domain. We can create uniqueness
constraints that ensure property values are unique across a node label (e.g., guaran-
teeing that no two users have a duplicate ID property value), property existence con-
straints (e.g., ensuring that a set of properties exist when a node or relationship is
created or modified), and node key constraints, which are similar to a composite key
and create a constraint using multiple properties.

 Database constraints are backed by indexes, which can be created separately as
well. In a graph database, indexes are used to find the starting point for a traversal,
not to traverse the graph. We will cover database constraints and indexes in more
detail in the following section, which introduces Cypher.

3.3 Data modeling considerations
Graph data modeling can be an iterative process. In general, this is the process
followed:

1 What are the entities? How are they grouped? These become nodes and node
labels.

2 How are these entities connected? These become relationships.
3 What are the attributes of the nodes and relationships? These become

properties.
4 Can you identify the graph traversal that answers your questions? These become

Cypher queries. If not, iterate on the graph model.

However, there are often some nuances not covered by this general approach. We
address some common graph data modeling questions in the following section.

3.3.1 Node vs. property

Sometimes, it can be difficult to determine whether a value should be modeled as a
node or a property on the node. A good guideline to follow here is to ask yourself the
question, “Could I discover something useful by traversing through this value if it was
a node?” If the answer is yes, then it should be modeled as a node; if not, then treat it
as a property. For example, consider if we were to add the category of business to our
model. Finding businesses with overlapping categories is potentially useful and easier
to discover if the category is modeled as a node. On the other hand, consider a busi-
ness address. If we modeled the address as a node instead of a property, would it be
useful to traverse through the address node? Most likely, that is not useful, and we
should model the address as a property.

553.4 Tooling: Neo4j desktop

3.3.2 Node vs. relationship

In the case where we have a piece of data that seemingly connects two nodes (e.g., a
review of a business, written by a user), should we model this data as a node or as a
relationship? At first glance, it seems like we might want to just create a REVIEWS rela-
tionship connecting the user and business, storing the review information, such as
stars and text, as relationship properties. However, we might want to extract data
from the review, such as keywords mentioned, through some natural language pro-
cessing technique, and connect that extracted data to the review. Or perhaps we want
to use the review nodes as the starting point for a traversal query. These are two exam-
ples of why we may want to choose to model this data as an intermediate node instead
of as a relationship.

3.3.3 Indexes

Indexes are used in graph databases to find the starting point of a traversal, not
during the actual traversal. This is an important performance characteristic of graph
databases like Neo4j, known as index-free adjacency. Only create indexes for properties
that will be used to find the starting point of a traversal, such as a user name or busi-
ness ID.

3.3.4 Specificity of relationship types

Relationship types are a way of grouping relationships and should convey just enough
information to make it clear how two nodes are connected without being overly spe-
cific. For example, REVIEWS is a good relationship type connecting Review and Busi-
ness nodes. REVIEW_WRITTEN_BY_BOB_FOR_PIZZA is an overly specific relationship
type; the name of the user and restaurant are stored elsewhere and do not need to be
duplicated in the relationship type.

3.3.5 Choosing a relationship direction

All relationships in the property graph model have a single direction but can be que-
ried in either direction or queried without consideration of direction. There is no
need to create duplicate relationships to model bidirectionality. In general, you
should choose relationship directions that allow for a consistent reading of the data
model.

3.4 Tooling: Neo4j desktop
Now that we understand the property graph data model and have defined a simple
version of the model we will use for our business reviews application, let’s create a
Neo4j database and start executing some Cypher queries. To do this, we will make use
of Neo4j Desktop, which is the mission control center for Neo4j (see figure 3.3). In
Neo4j Desktop, we can create projects and instances of Neo4j. We can start, stop, and

56 CHAPTER 3 Graphs in the database

configure Neo4j database instances in Neo4j Desktop, as well as install optional data-
base plugins, such as Graph Data Science and APOC (a standard library of database
procedures for Neo4j). Neo4j Desktop also includes functionality for installing graph
apps, which are applications that run in Neo4j Desktop and connect to the active
Neo4j instance. Neo4j Browser, installed by default, is an example of one of these
graph apps. See install.graphapp.io for examples of other graph apps.

 If you haven’t yet downloaded Neo4j Desktop, do so now at neo4j.com/download.
Neo4j Desktop is available to download for Mac, Windows, and Linux systems.

 Once you have downloaded and installed Neo4j, create a new local Neo4j instance
by selecting Add Graph. You’ll be prompted to enter a database name and password.
The password can be anything you want; just be sure to remember it for later. Once
you’ve created the graph, click the Start button to activate it; then we’ll use Neo4j
Browser to start querying the database we just created.

3.5 Tooling: Neo4j Browser
Neo4j Browser is a query workbench for Neo4j that allows developers to interact with
the database by writing Cypher queries and visualizing the results (see figure 3.4).
Start Neo4j Browser by selecting its application icon in the Application section of Neo4j
Desktop.

 Neo4j Browser allows us to run Cypher queries against Neo4j and work with the
results. Before digging into Neo4j Browser, let’s review the Cypher query language.

Projects are shown here.
Each project can contain
multiple Neo4j DBMSs.

Controls for the selected DBMS (including
starting and stopping) are shown here.

Add a new Neo4j
DBMS to the
project.

Figure 3.3 Neo4j Desktop: Mission control for Neo4j

https://install.graphapp.io/
https://neo4j.com/download/

573.6 Cypher

3.6 Cypher
Cypher is a declarative graph query language with some features that may be familiar
from SQL. In fact, a good way to think of Cypher is as SQL for graphs. Cypher makes use
of pattern matching, using an ASCII-art-like notation for describing graph patterns. In
this section, we will take a look at some basic Cypher functionality for creating and que-
rying data, including making use of predicates and aggregations. We will only cover a
small part of the Cypher language; see the Cypher refcard r.neo4j.com/refcard for a
through reference, or consult the documentation at neo4j.com/docs/cypher-manual/
current/.

3.6.1 Pattern matching

As a declarative graph query language, pattern matching is a fundamental tool used in
Cypher, both for creating and querying data. Instead of telling the database the exact
operations we want it to take (an imperative approach), with Cypher, we describe the
pattern we are looking for or want to create, and the database is responsible for deter-
mining the series of operations that satisfies the statement in the most efficient way
possible. Describing graph patterns using an ASCII-art-like notation (also called
motifs) is at the heart of this declarative functionality.

NODES

Nodes are defined within parentheses (). Optionally, we can specify node label(s),
using a colon as a separator—for example, (:User).

Use the Cypher query editor
to execute Cypher statements.

A result frame is created
for each executed Cypher
statement.

Results can be shown
as a graph visualization
or table.

Figure 3.4 Neo4j Browser: a query workbench for Cypher and Neo4j

https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-manual/current/

58 CHAPTER 3 Graphs in the database

RELATIONSHIPS

Relationships are defined within square brackets []. Optionally, we can specify type
and direction: (:Review)-[:REVIEWS]->(:Business).

3.6.2 Properties

Properties are specified as comma-separated name: value pairs within braces ‘{}’, like
the name of a business or user.

ALIASES

Graph elements can be bound to aliases or variables that can be referred to later on in
the query. For example, given this pattern (r:Review)-[a:REVIEWS]->(b:Business),
the alias r becomes a variable bound to the review node matched in the graph, a is
bound to the REVIEWS relationship, and b is bound to the business node. These vari-
ables are only in scope for the Cypher query in which they are used. Follow along by
running the following Cypher queries in the Neo4j browser as we introduce Cypher
commands for creating and querying data that matches the data model we’ve built
throughout this chapter.

3.6.3 CREATE

The first thing we need to do is create some data in our database using the CREATE com-
mand. First, to create a single Business node in the graph, we start with the CREATE
command followed by a graph pattern that describes the data to be created:

CREATE
(b

:Business
{name:

"Bob's Pizza"
})

The result of running in Neo4j Browser shows the following:

Added 1 label, created 1 node, set 1 property, completed after 4 ms.

This means we’ve created one node with a new label in the database and set one node
property value—in this case, the name property on a node with the label Business.
Alternatively, we can use the SET command. The following is equivalent:

CREATE (b:Business)
SET b.name = "Bob's Pizza"

The CREATE command is used to
create data in the database.

b becomes an alias that can be used to
refer to this node later in the query.

Here we specify the label of
the node we want to create.

name is a property of the business
node that specifies its value.

This is our graph pattern—in this case, it
is a node identified by the parentheses.

593.6 Cypher

To visualize the data being created, we can add a RETURN clause to the Cypher state-
ment, which will be rendered in Neo4j Browser as a graph visualization. Running

CREATE (b:Business)
SET b.name = "Bob's Pizza"
RETURN b

gives the visualization in Neo4j Browser shown in figure 3.5.

We can specify more complex patterns in the CREATE statement, such as relationships.
Note the ASCII-art notation of defining a relationship using square brackets <-[]-,
including the direction of the relationship (see figure 3.6):

CREATE (b:Business)<-[:REVIEWS]-(r:Review)
SET b.name = "Bob's Pizza",

r.stars = 4,
r.text = "Great pizza"

RETURN b, r

Figure 3.5 Creating a node with Cypher and Neo4j Browser

60 CHAPTER 3 Graphs in the database

We can create arbitrarily complex graph patterns with Cypher. Here we also specify
the user connected to the review in the CREATE statement (see figure 3.7):

CREATE p=(b:Business)<-[:REVIEWS]-(r:Review)<-[:WROTE]-(u:User)
SET b.name = "Bob's Pizza",

r.stars = 4,
r.text = "Great pizza",
u.name = "Willie"

RETURN p

Note that in this Cypher query we bind the entire graph pattern to a variable p and
return that variable. In this case, p takes on the value of the entire path (a combina-
tion of nodes and relationships) being created.

 So far, we’ve only returned the data we’ve created in each Cypher statement. How
do we query and visualize the rest of the data in the database? To do this, we use the
MATCH keyword. Let’s match on all nodes in the database and return them:

MATCH (a) RETURN a

Figure 3.6 Creating two nodes and a relationship

613.6 Cypher

We should see a graph that looks something like figure 3.8.
 Right away we can see that something is wrong; we’ve created lots of duplicate

nodes in our graph! Let’s delete all data in the database:

MATCH (a) DETACH DELETE a

This will match on all nodes and delete both the nodes and any relationships. We
should see output that tells us what we’ve deleted:

Deleted 11 nodes, deleted 4 relationships, completed after 23 ms.

Now, let’s start over and see how to create data in the database without creating
duplicates.

Figure 3.7 Creating a subgraph

62 CHAPTER 3 Graphs in the database

3.6.4 MERGE

To avoid creating duplicates, we can use the MERGE command. MERGE acts as an upsert,
only creating data specified in the pattern if it does not already exist in the database.
When using MERGE, it is best to create a uniqueness constraint on the property that
identifies uniqueness—often an ID field. By creating a uniqueness constraint, this will
also create an index in the database. See the next section for an example of creating
uniqueness constraints. For simple examples, it is fine to use MERGE without these con-
straints, so let’s revisit our Cypher statement that created a business, review, and user,
but this time we will use MERGE:

MERGE (b:Business {name: "Bob's Pizza"})
MERGE (r:Review {stars: 4, text: "Great pizza!"})
MERGE (u:User {name: "Willie"})
MERGE (b)<-[:REVIEWS]-(r)<-[:WROTE]-(u)
RETURN *

Figure 3.9 shows the resulting graph visualization with the data we’ve created.
 The results of this Cypher statement look identical to the previous version using

CREATE; however, there is an important difference: this query is now idempotent. No
matter how many times we run the query, we will not create duplicate nodes because

Figure 3.8 Duplicate nodes were created

633.6 Cypher

we are using MERGE instead of CREATE. We will revisit MERGE again in the next chapter
when we show how to create data in the database via our GraphQL API.

3.6.5 Defining database constraints with cypher

We mentioned database constraints and how they relate to (optionally) defining a
schema in Neo4j earlier in the chapter as we built up our data model. Next, we’ll look
at the Cypher syntax for creating database constraints relevant to our data model.

Figure 3.9 Using MERGE to create data

Indexes in Neo4j
It’s important to understand how indexes are used in a graph database like Neo4j.
We said earlier that Neo4j has a property called index-free adjacency, which means
that traversing from a node to any other connected node does not require an index
lookup. So how are indexes used in Neo4j? Indexes are used to find the starting point
for a traversal only, unlike relational databases, which use an index to compute set
(table) overlap, graph databases are simply computing offsets in the filestore, essen-
tially chasing pointers, which we know computers are very good at doing quickly.

64 CHAPTER 3 Graphs in the database

UNIQUENESS CONSTRAINT

CREATE CONSTRAINT ON (b:Business) ASSERT b.businessId IS UNIQUE;

PROPERTY EXISTENCE CONSTRAINT

CREATE CONSTRAINT ON (b:Business) ASSERT b.businessId IS NOT NULL

NODE KEY CONSTRAINT

CREATE CONSTRAINT ON (p:Person) ASSERT (p.firstName, p.lastName) IS NODE KEY;

Note that if you still have duplicate data in the database that conflicts with any of these
constraints, then you will receive an error message saying the constraint cannot be
created. In that case, you may want to delete all data in the database, and then try cre-
ating the constraint again.

3.6.6 MATCH

Now that we’ve created our data in the graph, we can start to write queries to address
some of the business requirements of our application. The MATCH clause is similar to
CREATE in that it takes a graph pattern; however, we can also use a WHERE clause for
specifying predicates to be applied in the pattern. A MATCH statement is used to find
data in the database that matches a specified graph pattern. For example, here we
search for all user nodes in the database:

MATCH (u:User)
RETURN u

We can, of course, use more complex graph patterns in a MATCH clause:

MATCH (u:User)-[:WROTE]->(r:Review)-[:REVIEWS]->(b:Business)
RETURN u, r, b

This query matches on all users who have written a review of any business. What if,
instead, we only want to query for reviews of a certain business? In that case, we need
to introduce predicates into our query, using a WHERE clause.

WHERE
The WHERE clause can be used to add predicates to a MATCH statement. To search for a
business named Bob’s Pizza, we could write the following Cypher statement:

MATCH (b:Business)
WHERE b.name = "Bob's Pizza"
RETURN b

For equality comparisons, an equivalent shorthand notation is available:

MATCH (b:Business {name: "Bob's Pizza"})
RETURN b

653.7 Using the Neo4j client drivers

3.6.7 Aggregations

Often, we want to compute an aggregation across a set of results. For example, we may
want to calculate the average rating of all the reviews of Bob’s Pizza. To do this, we
make use of the avg aggregation function:

MATCH (b:Business {name: "Bob's Pizza"})<-[:REVIEWS]-(r:Review)
RETURN avg(r.stars)

Now, in Neo4j Browser, we are presented with a table showing the results of our query
instead of a graph visualization because we are not returning graph data, but rather
tabular data:

What if we wanted to calculate the average rating of each business? In SQL, we might
use a GROUP BY operator to group the reviews by business name and calculate the
aggregation across each group, but there is no GROUP BY operator in Cypher. Instead,
with Cypher there is an implicit group by operation applied when returning the results
of an aggregation function along with non-aggregated results. For example, we do the
following to compute the average rating of each business using Cypher:

MATCH (b:Business)<-[:REVIEWS]-(r:Review)
RETURN b.name, avg(r.stars)

The results table is as follows:

Of course, this isn’t very exciting because we only have one business and one review.
In the exercise section of this chapter, we will work with a larger dataset.

3.7 Using the Neo4j client drivers
So far, we have been using Neo4j Browser to execute our Cypher queries, which is use-
ful for ad-hoc analysis or prototyping; however, typically, we want to create an applica-
tion that interacts with the database programmatically. To do this, we make use of the
Neo4j client drivers. These client drivers are available in many languages, such as
JavaScript, Java, Python, .NET, and Go, and they allow the developer to execute
Cypher queries against a Neo4j instance with a consistent API that is idiomatic to the
programming language being used. In chapter 1, we saw an example of using the

╒══════════════╕
│"avg(r.stars)"│
╞══════════════╡
│4.0 │
└──────────────┘

╒═════════════╤══════════════╕
│"b.name" │"avg(r.stars)"│
╞═════════════╪══════════════╡
│"Bob's Pizza"│4.0 │
└─────────────┴──────────────┘

66 CHAPTER 3 Graphs in the database

Neo4j JavaScript driver to execute a Cypher query and work with the results. Refer to
the driver and language guides for more information on Neo4j client drivers: neo4j
.com/developer/language-guides/.

 In the next chapter, we will combine the concepts and tools we have discussed so
far (GraphQL and Neo4j) by building a GraphQL API that uses Neo4j as the data
layer. To do this, we will use the Neo4j GraphQL Library, which simplifies and acceler-
ates the process of building GraphQL APIs backed by Neo4j.

3.8 Exercises
To complete the following exercises, first run the following command in Neo4j
Browser to load a browser guide with embedded Cypher queries: :play grandstack.
This browser guide will walk you through the process of loading a larger, more com-
plete sample dataset of businesses and reviews. After running the query to load the
data in Neo4j, proceed to the following exercises:

1 Run the command CALL db.schema.visualization() to inspect the data
model. What are the node labels used? What are the relationship types?

2 Write a Cypher query to find all the users in the database. How many users are
there? What are their names?

3 Find all the reviews written by the user named Will. What is the average rating
given by this user?

4 Find all the businesses reviewed by the user named Will. What is the most com-
mon category?

5 Write a query to recommend businesses to the user named Will that he has not
previously reviewed.

You can find solutions to the exercises as well as code samples in the GitHub reposi-
tory for this book: github.com/johnymontana/fullstack-graphql-book.

Summary
 A graph database allows the user to model, store, and query data as a graph.
 The property graph data model is used by graph databases and consists of node

labels, relationships, and properties.
 The Cypher query language is a declarative graph query language focused

around pattern matching and is used for querying graph databases, including
Neo4j.

 Client drivers are used for building applications that interact with Neo4j. These
drivers enable applications to send Cypher queries to the database and work
with the results.

https://neo4j.com/developer/language-guides/
https://neo4j.com/developer/language-guides/
https://neo4j.com/developer/language-guides/
https://github.com/johnymontana/fullstack-graphql-book

67

The Neo4j
 GraphQL Library

GraphQL backend implementations commonly run into a set of issues that nega-
tively impact performance and developer productivity. We’ve identified some of
these problems previously (e.g., the n + 1 query problem), and in this chapter, we
take a deeper look at these common issues and discuss how they can be mitigated,

This chapter covers
 Reviewing common issues that arise when building

GraphQL API applications

 Introducing database integrations for GraphQL that
aim to address these common problems, including
the Neo4j GraphQL library

 Building a GraphQL endpoint backed by Neo4j, taking
advantage of the features of the Neo4j GraphQL
library, such as generated query and mutation types,
filtering, and temporal and spatial data types

 Extending the functionality of our autogenerated
GraphQL API with custom logic

 Introspecting a GraphQL schema from an existing
Neo4j database

68 CHAPTER 4 The Neo4j GraphQL Library

using database integrations for GraphQL that make it easier to build efficient
GraphQL APIs backed by databases.

 Specifically, we look at using the Neo4j GraphQL library, a Node.js library
designed to work with JavaScript GraphQL implementations, such as Apollo Server
for building GraphQL APIs backed by Neo4j. The Neo4j GraphQL library allows us to
generate a fully functional GraphQL API from GraphQL type definitions, driving the
database data model from GraphQL and autogenerating resolvers for data fetching
and mutations, including complex filtering, ordering, and pagination. The Neo4j
GraphQL library also enables adding custom logic beyond the generated create, read,
update, and delete operations.

 In this chapter, we look at using the Neo4j GraphQL library to integrate our busi-
ness review GraphQL API with Neo4j, adding a persistence layer to our API. In this
initial look at the Neo4j GraphQL library, we focus on querying existing data using
the sample dataset in Neo4j used in the previous chapter. We will explore creating and
updating data (GraphQL mutations) as well as more complex GraphQL querying
semantics, such as interfaces and fragments, in future chapters, introducing these
concepts in the context of building out our user interface. Figure 4.1 shows how the
Neo4j GraphQL library fits into the larger architecture of our application. The goal of
the Neo4j GraphQL library is to make it easy to build an API backed by Neo4j, not to
the database directly with GraphQL.

4.1 Common GraphQL problems
When building GraphQL APIs, there are two types of problems that developers typi-
cally face: poor performance and writing lots of boilerplate code, which can impact
developer productivity.

4.1.1 Poor performance and the n + 1 query problem

We previously discussed the n + 1 query problem, which can arise when multiple
requests are sent to the data layer to resolve a single GraphQL request. Because of the
nested way GraphQL resolver functions are called, multiple database requests are
often required to resolve a GraphQL query from the data layer. For example, imagine
a query searching for businesses by name as well as all reviews for each business. A
naive implementation would first query the database for all businesses matching the

Library

CypherGraphQL

GraphQL
API

GraphQL
client

Figure 4.1 The Neo4j GraphQL library helps build the API layer between the client and database.

694.3 The Neo4j GraphQL Library

search phrase. Then, for each matching business, it would send an additional query to
the database to find any reviews for the business. Each query to the database would
incur network and query latency, which can significantly impact performance.

 A common solution for this is to use a caching and batching pattern known as
DataLoader. This can alleviate some performance issues; however, it can still require
multiple database requests and cannot be used in all cases, such as when the ID of an
object is not known.

4.1.2 Boilerplate and developer productivity

The term boilerplate is used to describe repetitive code that is written to accomplish a
common task. In the case of implementing GraphQL APIs, writing boilerplate code to
implement data-fetching logic in resolvers is often required. This can negatively
impact developer productivity, slowing down development, as the developer is
required to write simple data-fetching logic for each type and field instead of focusing
on the key components of their application. In the context of our business review
application, this would mean manually writing the logic for finding businesses by
name in the database, finding reviews associated with each business and each user
connected to each review, and so on, until we’ve manually defined the logic for fetch-
ing all fields of our GraphQL schema.

4.2 Introducing GraphQL database integrations
GraphQL integrations for databases are a class of tools that enable building GraphQL
APIs that interact with databases. There are a handful of these tools with different fea-
ture sets and levels of integration—in this book, we focus on the Neo4j GraphQL
library. However, in general, the goal of these GraphQL engines is to address the com-
mon GraphQL problems previously identified in a consistent way by reducing boiler-
plate and addressing data-fetching performance issues.

 Throughout the rest of this chapter, we focus on using the Neo4j GraphQL library
to build a GraphQL API backed by Neo4j. It is important to note that our GraphQL
API serves as a layer between the client and the database—we do not want to directly
query our database from the client. The API layer serves an important function, allow-
ing us to implement features, such as authorization and custom logic, that we don’t
want to expose to the client. Also, since GraphQL is an API query language (not a
database query language), it lacks many semantics (e.g., projections) that we would
expect in a database query language.

4.3 The Neo4j GraphQL Library
The Neo4j GraphQL library is a Node.js library that works with any JavaScript
GraphQL implementation, such as GraphQL.js and Apollo Server, and is designed to
make it as easy as possible to build GraphQL APIs backed by a Neo4j database. The
two main functions of the Neo4j GraphQL library are GraphQL schema generation and
GraphQL to Cypher translation. You may wish to refer to the project’s documentation at
http://mng.bz/woNO.

http://mng.bz/woNO

70 CHAPTER 4 The Neo4j GraphQL Library

 GraphQL to Cypher translation enables the following:

 Generating a single database query at runtime from arbitrary GraphQL
requests

 Handling custom logic defined in the GraphQL schema as subqueries in the
generated database queries

The GraphQL schema generation process takes GraphQL type definitions and gener-
ates a GraphQL API with create, read, update, delete (CRUD) operations for the
types defined. In GraphQL semantics, this includes adding a Query and Mutation type
to the schema and generating resolvers for these queries and mutations. The gener-
ated API includes support for filtering, ordering, pagination, and native database
types, such as spatial and temporal types, without having to define these manually in
the type definitions. The result of this process is a GraphQL executable schema
object, which can then be passed to a GraphQL server implementation, such as
Apollo Server, to serve the API and handle networking and GraphQL execution pro-
cesses. The schema generation process eliminates the need to write boilerplate code
for data fetching and mapping the GraphQL and database schemas.

 The GraphQL translation process happens at query time. When a GraphQL
request is received, a single Cypher query is generated, which can resolve the request
and is sent to the database. Generating a single database query for any arbitrary
GraphQL operation solves the n + 1 query problem, assuring only one round trip to
the database per GraphQL request. You can find the documentation and other
resources for the Neo4j GraphQL library at dev.neo4j.com/graphql.

4.3.1 Project setup

Throughout the rest of the chapter, we will explore the features of the Neo4j
GraphQL library by creating a new GraphQL API for Neo4j, using the sample dataset
of businesses and reviews from the Exercise section of the previous chapter. We will first
create a new Node.js project that makes use of the Neo4j GraphQL library and the
Neo4j JavaScript driver to fetch data from Neo4j. Then, we will explore the various
features of the Neo4j GraphQL library, adding additional code to our GraphQL API
application as we move along.

NEO4J

First, make sure a Neo4j instance is running (you can use Neo4j Desktop, Neo4j Sand-
box, or Neo4j Aura, but we will assume you are using Neo4j Desktop for the purposes
of this chapter). If using Neo4j Desktop, you will need to install the APOC standard
library plugin. Don’t worry about this step if you’re using Neo4j Sandbox or Neo4j
Aura; APOC is included by default in those services. To install APOC in Neo4j Desk-
top, click the Plugins tab in your project, and then look for APOC in the list of avail-
able plugins, and click Install. Next, make sure your Neo4j database is empty by
running the Cypher statement (see listing 4.1).

https://neo4j.com/product/graphql-library/

714.3 The Neo4j GraphQL Library

WARNING This statement will delete all data in your Neo4j database, so make
sure this is the instance you want to use, not a database you don’t want to
delete.

MATCH (a) DETACH DELETE a;

Now, we’re ready to load our sample dataset, which you may have done already if you
completed the exercise section in the previous chapter. Run the following command
in Neo4j Browser (see figure 4.2):

:play grandstack

This will load a sample dataset into Neo4j that we will use as the basis for our
GraphQL API. In the next listing, we can explore the data a bit by running a com-
mand, which will give us a visual overview of the data included in the sample dataset
(see figure 4.3).

CALL db.schema.visualization();

We see that we have four node labels—Business, Review, Category, and User—
connected by three relationship types: IN_CATEGORY (connecting businesses to the
categories to which they belong), REVIEWS (connecting reviews to businesses), and

Listing 4.1 Clearing out our Neo4j database

Listing 4.2 Visualizing the graph schema in Neo4j

2. Once the query is loaded into the
 editor, click the play button to run
 it and load the sample dataset.

1. Click the embedded
 Cypher query to load it
 into the query editor.

Figure 4.2 Loading the sample dataset into Neo4j

72 CHAPTER 4 The Neo4j GraphQL Library

WROTE (connecting users to reviews they have authored). We can also view the node
properties stored on the various node labels, as shown in the next listing.

CALL db.schema.nodeTypeProperties()

This command will render a table, showing us the property names, their types, and
whether or not they are found on all nodes of that label:

Listing 4.3 Inspecting the node properties stored in Neo4j

Figure 4.3 The graph schema of our sample dataset

734.3 The Neo4j GraphQL Library

We will make use of this table in a few moments when we construct GraphQL type
definitions that describe this graph.

NODE.JS APP

Now that we have our Neo4j database loaded with our sample dataset, let’s set up a
new Node.js project for our GraphQL API:

npm init -y

We will also install our dependencies:

 @neo4j/graphql—A package to make it easier to use GraphQL and Neo4j
together. The Neo4j GraphQL library translates GraphQL queries to a single
Cypher query, eliminating the need to write queries in GraphQL resolvers and
for batching queries. It also exposes the Cypher query language through
GraphQL via the @cypher schema directive.

 apollo-server—Apollo Server is an open source GraphQL server that works
with any GraphQL schema built with graphql.js, including the Neo4j GraphQL
library. It also has options for working with many different Node.js webserver
frameworks or the default Express.js.

╒═════════════╤════════════╤══════════════╤═══════════════╤═══════════╕
│"nodeType" │"nodeLabels"│"propertyName"│"propertyTypes"│"mandatory"│
╞═════════════╪════════════╪══════════════╪═══════════════╪═══════════╡
│":`User`" │["User"] │"name" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`User`" │["User"] │"userId" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Review`" │["Review"] │"reviewId" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Review`" │["Review"] │"text" │["String"] │false │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Review`" │["Review"] │"stars" │["Double"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Review`" │["Review"] │"date" │["Date"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Category`"│["Category"]│"name" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Business`"│["Business"]│"name" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Business`"│["Business"]│"city" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Business`"│["Business"]│"state" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Business`"│["Business"]│"address" │["String"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Business`"│["Business"]│"location" │["Point"] │true │
├─────────────┼────────────┼──────────────┼───────────────┼───────────┤
│":`Business`"│["Business"]│"businessId" │["String"] │true │
└─────────────┴────────────┴──────────────┴───────────────┴───────────┘

74 CHAPTER 4 The Neo4j GraphQL Library

 graphql—The GraphQL.js reference implementation for JavaScript is a peer
dependency of both @neo4j/graphql and apollo-server. As of this writing, the
@neo4j/graphql package is compatible with version 15.x of graphql; therefore,
we will install the latest v15.x release.

 neo4j-driver—The Neo4j client drivers allow for connecting to a Neo4j
instance, either local or remote, and executing Cypher queries over the Bolt
protocol. Neo4j drivers are available in many different languages, and here we
use the Neo4j JavaScript driver:

npm i @neo4j/graphql graphql neo4j-driver apollo-server

Now, create a new file called index.js, and let’s add some initial code in the next listing.

const { ApolloServer } = require("apollo-server");
const neo4j = require("neo4j-driver");
const { Neo4jGraphQL } = require("@neo4j/graphql");

const driver = neo4j.driver(
"bolt://localhost:7687",
neo4j.auth.basic("neo4j", "letmein")

);

const typeDefs = /* GraphQL */ ``;

const neoSchema = new Neo4jGraphQL({ typeDefs, driver });

neoSchema.getSchema().then((schema) => {
const server = new ApolloServer({

schema
});
server.listen().then(({url}) => {

console.log(`GraphQL server ready at ${url}`);
});

});

This is the basic structure for our GraphQL API application code. The credentials used
when constructing the Neo4j driver instance will depend on whether you are using
Neo4j Desktop, Neo4j Sandbox, or Neo4j Aura, as well as on your initial chosen pass-
word. Be sure to adjust the connection credentials for your specific Neo4j instance.

 If we tried to run our GraphQL API application now, we would quickly see an error
message complaining that we haven’t provided GraphQL type definitions. We must
provide GraphQL type definitions that define the GraphQL API, so the next step is to
fill in our GraphQL type definitions.

4.3.2 Generated GraphQL schema from type definitions

Following the GraphQL-first approach described previously, our GraphQL type defi-
nitions will drive the API specification. In this case, we know what data we want to
expose (our sample dataset loaded in Neo4j), so we can refer to the table of node

Listing 4.4 index.js: Initial GraphQL API code

Importing our dependencies

Creating a connection
to our Neo4j database

This line serves as a placeholder for our
GraphQL type definitions to be filled in later.

Passing our GraphQL
type definitions and
database connection
as we instantiate the
Neo4jGraphQL class

Our generated
GraphQL schema is
passed to Apollo
Server.

Here we start the
GraphQL server.

754.3 The Neo4j GraphQL Library

properties shown previously and apply a simple rule as we create our GraphQL type
definitions: Node labels become types, taking on the node properties as fields. We also
need to define relationship fields in our GraphQL type definitions. Let’s first look at
the complete type definitions in the next listing and then explore how we define rela-
tionship fields.

const typeDefs = /* GraphQL */ `
type Business {
businessId: ID!
name: String!
city: String!
state: String!
address: String!
location: Point!
reviews: [Review!]! @relationship(type: "REVIEWS", direction: IN)
categories: [Category!]!

@relationship(type: "IN_CATEGORY", direction: OUT)
}

type User {
userID: ID!
name: String!
reviews: [Review!]! @relationship(type: "WROTE", direction: OUT)

}

type Review {
reviewId: ID!
stars: Float!
date: Date!
text: String
user: User! @relationship(type: "WROTE", direction: IN)
business: Business! @relationship(type: "REVIEWS", direction: OUT)

}

type Category {
name: String!
businesses: [Business!]!

@relationship(type: "IN_CATEGORY", direction: IN)
}
`;

@RELATIONSHIP GRAPHQL SCHEMA DIRECTIVE

In the property graph model used by Neo4j, every relationship has a direction and
type. To represent this in GraphQL, we make use of GraphQL schema directives—
specifically, the @relationship schema directive. A directive is similar to an annota-
tion in our GraphQL type definitions. It is an identifier preceded by the @ character,
and may then, optionally, contain a list of named arguments. Schema directives are
GraphQL’s built-in extension mechanism, indicating some custom logic for the
GraphQL server implementation.

Listing 4.5 index.js: GraphQL type definitions

76 CHAPTER 4 The Neo4j GraphQL Library

 When defining relationship fields using the @relationship directive, the type
argument indicates the relationship type stored in Neo4j, and the direction argu-
ment indicates the relationship direction. In addition to schema directives, directives
can also be used in GraphQL queries to indicate specific behavior. We will see some
examples of query directives when we explore managing client state using Apollo Cli-
ent in our React application.

 Now, let’s run our API application:

node index.js

As output, we should see the address at which our API application is listening—in this
case, on port 4000 on localhost:

? node index.js
GraphQL server ready at http://localhost:4000/

Navigate to http://localhost:4000 in your web browser, and you should see the Apollo
Studio landing page. Click the Schema icon in the upper-left corner of Apollo Studio
in GraphQL to see the fully generated API (see figure 4.4). Spend a few minutes look-
ing through the query field descriptions, and you’ll notice arguments have been
added to types for things like ordering, pagination, and filtering. You can also toggle
between Reference and SDL views to see the full generated GraphQL SDL, based on our
initial GraphQL type definitions.

Figure 4.4 Apollo Studio showing our generated API

774.4 Basic GraphQL queries

4.4 Basic GraphQL queries
Now that we have our GraphQL server powered by Apollo Server and the Neo4j
GraphQL library up and running, let’s start querying our API using Apollo Studio.
Looking at the Schema tab in Apollo Studio, we can see the API entry points (in
GraphQL parlance, each Query type field is an entry point to the API) available to us:
Business, User, Review, and Category—one for each type defined in our type
definitions. Let’s start by querying for all businesses and returning only the name
field, as the next listing shows.

{
businesses {

name
}

}

If we run this query in Apollo Studio, we should see a list of businesses names:

{
"data": {

"businesses": [
{

"name": "Missoula Public Library"
},
{

"name": "Ninja Mike's"
},
{

"name": "KettleHouse Brewing Co."
},
{

"name": "Imagine Nation Brewing"
},
{

"name": "Market on Front"
},
{

"name": "Hanabi"
},
{

"name": "Zootown Brew"
},
{

"name": "Ducky's Car Wash"
},
{

"name": "Neo4j"
}

]
}

}

Listing 4.6 GraphQL query to find all businesses

78 CHAPTER 4 The Neo4j GraphQL Library

Neat! This data has been fetched from our Neo4j instance for us, and we didn’t even
need to write any resolvers!

 Let’s turn on debug logging for the Neo4j GraphQL library so we can see the
generated Cypher queries being sent to the database. To do this, we’ll need to set a
DEBUG environment variable. Let’s stop our GraphQL server by pressing Ctrl-C in the
terminal, and now when we start the GraphQL API application again, we’ll set the
DEBUG environment variable:

DEBUG=@neo4j/graphql:* node index.js

If we run our GraphQL query again and check the console output in the terminal, we can
see the generated Cypher query logged to the terminal, as shown in the following listing.

MATCH (`business`:`Business`)
RETURN `business` { .name } AS `business`

We can add additional fields to the GraphQL query, and those fields will be added to
the generated Cypher query, returning only the data needed. For example, the
GraphQL query adds the address of the business and the name field, as the next list-
ing shows.

{
businesses {

name
address

}
}

The Cypher translation of the GraphQL query now includes the address field as well,
as shown in the following listing.

MATCH (`business`:`Business`)
RETURN `business` { .name , .address } AS `business`

And finally, when we examine the results of the GraphQL query, we now see an
address listed for each business:

{
"data": {

"businesses": [
{

"name": "Missoula Public Library",

Listing 4.7 Generated Cypher query

Listing 4.8 GraphQL query to return business name and address

Listing 4.9 Generated Cypher query including address property

794.5 Ordering and pagination

"address": "301 E Main St"
},
{

"name": "Ninja Mike's",
"address": "200 W Pine St"

},
{

"name": "KettleHouse Brewing Co.",
"address": "313 N 1st St W"

},
{

"name": "Imagine Nation Brewing",
"address": "1151 W Broadway St"

},
{

"name": "Market on Front",
"address": "201 E Front St"

},
{

"name": "Hanabi",
"address": "723 California Dr"

},
{

"name": "Zootown Brew",
"address": "121 W Broadway St"

},
{

"name": "Ducky's Car Wash",
"address": "716 N San Mateo Dr"

},
{

"name": "Neo4j",
"address": "111 E 5th Ave"

}
]

}
}

Next, let’s take advantage of some of the features of the generated GraphQL API.

4.5 Ordering and pagination
Each query field includes an input object argument options. We can specify values for
limit and sort in this options argument to facilitate ordering and pagination. Here
we search for the first three businesses ordered by the value of the name field.

{
businesses(options: { limit: 3, sort: { name: ASC } }) {

name
}

}

Listing 4.10 Initial GraphQL API code including sort and limit

80 CHAPTER 4 The Neo4j GraphQL Library

Ordering enums are generated for each type, offering ascending and descending
options for each field. Running our query returns businesses now ordered by name, as
shown in the next listing.

{
"data": {

"businesses": [
{

"name": "Ducky's Car Wash"
},
{

"name": "Hanabi"
},
{

"name": "Imagine Nation Brewing"
}

]
}

}

If we switch to the terminal, we can see the Cypher query generated from our
GraphQL query, which now includes ORDER BY and LIMIT clauses that map to our
first and orderBy GraphQL arguments, as the following listing shows. This means
that the ordering and limiting is executed in the database, rather than in the client, so
only the necessary data is returned from the database query.

MATCH (`business`:`Business`)
WITH `business`
ORDER BY business.name ASC
RETURN `business` { .name } AS `business`
LIMIT toInteger($first)

Note that this query includes a $first parameter, rather than the value 3 inline in the
query. Parameter usage is important here because it ensures a user is not able to inject
potentially malicious Cypher code into the generated query and also ensures the query
plan generated by Neo4j can be reused, increasing performance. To run this query in
Neo4j Browser, first set a value for the first parameter with the :param command:

:param first => 3

4.6 Nested queries
Cypher can easily express the types of graph traversals in our GraphQL queries, and
the Neo4j GraphQL library is capable of generating the equivalent Cypher queries for

Listing 4.11 Paginated results

Listing 4.12 Generated Cypher query including sort and limit

814.6 Nested queries

arbitrary GraphQL requests, including nested queries. Now we traverse from busi-
nesses to their categories, as the next listing shows.

{
businesses(options: { limit: 3, sort: { name: ASC } }) {

name
categories {

name
}

}
}

And the result shows each business is connected to one or more categories:

{
"data": {

"businesses": [
{

"name": "Ducky's Car Wash",
"categories": [
{

"name": "Car Wash"
}

]
},
{

"name": "Hanabi",
"categories": [
{

"name": "Ramen"
},
{

"name": "Restaurant"
}

]
},
{

"name": "Imagine Nation Brewing",
"categories": [
{

"name": "Beer"
},
{

"name": "Brewery"
}

]
}

]
}

}

Listing 4.13 GraphQL query including nested selection set

82 CHAPTER 4 The Neo4j GraphQL Library

4.7 Filtering
The filter functionality is exposed by adding a where argument with associated inputs
based on the GraphQL type definitions that expose filtering criteria. You can see the
full list of filtering criteria in the documentation at neo4j.com/docs/graphql-manual/
current/filtering/.

4.7.1 where argument

In the next listing, we use the where argument to search for businesses with names
that contain Brew.

{
businesses(where: { name_CONTAINS: "Brew" }) {

name
address

}
}

Our results now show businesses that match the filtering criteria, and only businesses
that contain the string Brew in their name are returned:

{
"data": {

"businesses": [
{

"name": "KettleHouse Brewing Co.",
"address": "313 N 1st St W"

},
{

"name": "Imagine Nation Brewing",
"address": "1151 W Broadway St"

},
{

"name": "Zootown Brew",
"address": "121 W Broadway St"

}
]

}
}

4.7.2 Nested filter

To filter based on the results of nested fields applied to the root, we can nest our filter
arguments. In the next listing, we search for businesses that contain the name Brew
and that have at least one review with at least a 4.75 rating.

Listing 4.14 GraphQL query filter for business names containing Brew

https://neo4j.com/docs/graphql-manual/current/filtering/
https://neo4j.com/docs/graphql-manual/current/filtering/
https://neo4j.com/docs/graphql-manual/current/filtering/

834.7 Filtering

{
businesses(

where: { name_CONTAINS: "Brew", reviews_SOME: { stars_GTE: 4.75 } }
) {

name
address

}
}

If we inspect the results of this GraphQL query, we can see two matching businesses:

{
"data": {

"businesses": [
{

"name": "KettleHouse Brewing Co.",
"address": "313 N 1st St W"

},
{

"name": "Zootown Brew",
"address": "121 W Broadway St"

}
]

}
}

4.7.3 Logical operators: AND, OR

Filters can be wrapped in logical operators OR and AND. For example, we can search for
businesses in either the Coffee or Breakfast category by using an OR operator in the
filter argument, as shown in the next listing.

{
businesses(

where: {
OR: [

{ categories_SOME: { name: "Coffee" } }
{ categories_SOME: { name: "Breakfast" } }

]
}

) {
name
address
categories {

name
}

}
}

Listing 4.15 GraphQL query using a nested filter

Listing 4.16 GraphQL query with a filter using logical operators

84 CHAPTER 4 The Neo4j GraphQL Library

This GraphQL query yields businesses that are connected to either the Coffee or
Breakfast category:

{
"data": {

"businesses": [
{

"name": "Market on Front",
"address": "201 E Front St",
"categories": [
{

"name": "Restaurant"
},
{

"name": "Cafe"
},
{

"name": "Coffee"
},
{

"name": "Deli"
},
{

"name": "Breakfast"
}

]
},
{

"name": "Ninja Mike's",
"address": "200 W Pine St",
"categories": [
{

"name": "Restaurant"
},
{

"name": "Breakfast"
}

]
},
{

"name": "Zootown Brew",
"address": "121 W Broadway St",
"categories": [
{

"name": "Coffee"
}

]
}

]
}

}

854.7 Filtering

4.7.4 Filtering in selections

Filters can also be used throughout the selection set to apply the filter at the level of
the selection. For example, let’s say that in the next listing, we want to find all Coffee
or Breakfast businesses but only view reviews containing the phrase breakfast
sandwich.

{
businesses(

where: {
OR: [

{ categories_SOME: { name: "Coffee" } }
{ categories_SOME: { name: "Breakfast" } }

]
}

) {
name
address
reviews(where: { text_CONTAINS: "breakfast sandwich" }) {

stars
text

}
}

}

Since the filter was applied at the reviews selection, businesses that do not have any
reviews containing the phrase breakfast sandwich are still shown in the results; how-
ever, only reviews containing that phrase are shown:

{
"data": {

"businesses": [
{

"name": "Market on Front",
"address": "201 E Front St",
"reviews": []

},
{

"name": "Ninja Mike's",
"address": "200 W Pine St",
"reviews": [
{

"stars": 4,
"text": "Best breakfast sandwich at the Farmer's Market."

}
]

},
{

"name": "Zootown Brew",
"address": "121 W Broadway St",

Listing 4.17 GraphQL query with filter argument in the selection set

86 CHAPTER 4 The Neo4j GraphQL Library

"reviews": []
}

]
}

}

4.8 Working with temporal fields
Neo4j supports native temporal types as properties on nodes and relationships. These
types include Date, DateTime, and LocalDateTime. With the Neo4j GraphQL library,
you can use these temporal types in your GraphQL schema.

4.8.1 Using a Date type in queries

We’re using a Date type on the Review type. The Date type is represented by a string
with the format yyyy-mm-dd but is stored as a native Date type in the database with
support for date operations. Let’s query for the three most recent reviews in the next
listing.

{
reviews(options: { limit: 3, sort: { date: DESC } }) {

stars
date
business {

name
}

}
}

Since we specified the date field in our selection set, we see that in the results:

{
"data": {

"reviews": [
{

"stars": 3,
"date": "2018-09-10",
"business": {
"name": "Imagine Nation Brewing"

}
},
{

"stars": 5,
"date": "2018-08-11",
"business": {
"name": "Zootown Brew"

}
},
{

"stars": 4,

Listing 4.18 GraphQL query using a date field

874.8 Working with temporal fields

"date": "2018-03-24",
"business": {
"name": "Market on Front"

}
}

]
}

}

4.8.2 Date and DateTime filters

Temporal fields are also included in the generated filtering enums, allowing for filtering
using dates and date ranges. In the next listing, let’s search for reviews created before
January 1, 2017.

{
reviews(

where: { date_LTE: "2017-01-01" }
options: { limit: 3, sort: { date: DESC } }

) {
stars
date
business {

name
}

}
}

We can see that the results are now ordered by the date field:

{
"data": {

"reviews": [
{

"stars": 5,
"date": "2016-11-21",
"business": {
"name": "Hanabi"

}
},
{

"stars": 5,
"date": "2016-07-14",
"business": {
"name": "KettleHouse Brewing Co."

}
},
{

"stars": 5,
"date": "2016-03-04",
"business": {

Listing 4.19 GraphQL query using a date filter

88 CHAPTER 4 The Neo4j GraphQL Library

"name": "Ducky's Car Wash"
}

}
]

}
}

4.9 Working with spatial data
Neo4j currently supports the spatial point type, which can represent both 2D (e.g., lat-
itude and longitude) and 3D (e.g., x,y,z or latitude, longitude, height) points, using
both geographic coordinate reference systems (e.g., latitude and longitude) and Car-
tesian coordinate reference systems. The Neo4j GraphQL library makes available two
spatial types: Point, for points using the geographic coordinate reference system, and
CartesianPoint, for points using the Cartesian coordinate reference system. You can
read more about working with spatial data in the Neo4j GraphQL library in this docu-
mentation: http://mng.bz/qYKA.

4.9.1 The Point type in selections

Point type fields are object fields in the GraphQL schema, so let’s retrieve the latitude
and longitude fields for our matching businesses by adding those fields to our selec-
tion set in the next listing.

{
businesses(options: { limit: 3, sort: { name: ASC } }) {

name
location {

latitude
longitude

}
}

}

Now, in the GraphQL query result, we see longitude and latitude included for each
business:

{
"data": {

"businesses": [
{

"name": "Ducky's Car Wash",
"location": {
"latitude": 37.575968,
"longitude": -122.336041

}
},
{

"name": "Hanabi",

Listing 4.20 GraphQL query using a Point field

http://mng.bz/qYKA

894.9 Working with spatial data

"location": {
"latitude": 37.582598,
"longitude": -122.351519

}
},
{

"name": "Imagine Nation Brewing",
"location": {
"latitude": 46.876672,
"longitude": -114.009628

}
}

]
}

}

4.9.2 Distance filter

When querying using point data, we often want to find things that are close to other
things. For example, what businesses are within 1.5 km of me? We can accomplish this
using the generated where argument, as the following listing shows.

{
businesses(

where: {
location_LT: {

distance: 3500
point: { latitude: 37.563675, longitude: -122.322243 }

}
}

) {
name
address
city
state

}
}

For points using the geographic coordinate reference system (latitude and longi-
tude), distance is measured in meters:

{
"data": {

"businesses": [
{

"name": "Hanabi",
"address": "723 California Dr",
"city": "Burlingame",
"state": "CA"

},
{

Listing 4.21 GraphQL query using a distance filter

90 CHAPTER 4 The Neo4j GraphQL Library

"name": "Ducky's Car Wash",
"address": "716 N San Mateo Dr",
"city": "San Mateo",
"state": "CA"

},
{

"name": "Neo4j",
"address": "111 E 5th Ave",
"city": "San Mateo",
"state": "CA"

}
]

}
}

4.10 Adding custom logic to our GraphQL API
So far, we’ve seen basic querying operations created by the Neo4j GraphQL library.
Often, we want to add custom logic to our API. For example, we may want to calculate
the most popular business or recommend businesses to users. There are two options
for adding custom logic to your API using the Neo4j GraphQL library: the @cypher
schema directive or implementing custom resolvers.

4.10.1 The @cypher GraphQL schema directive

The Neo4j GraphQL library exposes Cypher through GraphQL via the @cypher
GraphQL schema directive. Annotate a field in your schema with the @cypher direc-
tive to map the results of that query to the annotated GraphQL field. The @cypher
directive takes a single argument statement, which is a Cypher statement. Parameters
are passed into this query at runtime, including this, which is the currently resolved
node, as well as any field-level arguments defined in the GraphQL type definition.

NOTE The @cypher directive and other features of the Neo4j GraphQL
library require the use of the APOC standard library plugin. Be sure you’ve
followed the steps to install APOC in the Project Setup section of this chapter.

COMPUTED SCALAR FIELDS

We can use the @cypher directive to define a custom scalar field, creating a computed
field in our schema. In the next listing, we add an averageStars field to the Business
type, which calculates the average stars of all reviews for the business, using the this
variable.

type Business {
businessId: ID!
averageStars: Float!

@cypher(
statement: "MATCH (this)<-[:REVIEWS]-(r:Review) RETURN avg(r.stars)"

)

Listing 4.22 index.js: Adding the averageStars field

914.10 Adding custom logic to our GraphQL API

name: String!
city: String!
state: String!
address: String!
location: Point!
reviews: [Review!]! @relationship(type: "REVIEWS", direction: IN)
categories: [Category!]!

@relationship(type: "IN_CATEGORY", direction: OUT)
}

We need to restart our GraphQL server, since we have modified the type definitions:

DEBUG=@neo4j/graphql:* node index.js

Now let’s include the averageStars field in our GraphQL query in the next listing.

{
businesses {

name
averageStars

}
}

We can see in the results that the computed value for averageStars is now included:

{
"data": {

"Business": [
{

"name": "Hanabi",
"averageStars": 5

},
{

"name": "Zootown Brew",
"averageStars": 5

},
{

"name": "Ninja Mike's",
"averageStars": 4.5

}
]

}
}

If we check the terminal output to see the generated Cypher query, we will notice that
the generated Cypher query includes the annotated Cypher query from our @cypher
directive as a subquery, preserving the single database call to resolve the GraphQL
request but still including our custom logic!

Listing 4.23 GraphQL query, including averageStars field

92 CHAPTER 4 The Neo4j GraphQL Library

COMPUTED OBJECT AND ARRAY FIELDS

We can also use the @cypher schema directive to resolve object and array fields. Let’s
add a recommended business field to the Business type. We’ll use a simple Cypher
query to find common businesses that other users reviewed. For example, if a user
likes Market on Front, we could recommend other businesses that were also reviewed
by users who reviewed Market on Front.

MATCH (b:Business)<-[:REVIEWS]-(:Review)<-[:WROTE]-(u:User)
WHERE b.name = "Market on Front"
MATCH (u)-[:WROTE]->(:Review)-[:REVIEWS]->(rec:Business)
WITH rec, COUNT(*) AS score
RETURN rec ORDER BY score DESC

We can make use of this Cypher query in our GraphQL schema by including it in a
@cypher directive on the recommended field in our Business type definition.

type Business {
businessId: ID!
averageStars: Float!

@cypher(
statement: "MATCH (this)<-[:REVIEWS]-(r:Review) RETURN avg(r.stars)"

)
recommended(first: Int = 1): [Business!]!

@cypher(
statement: """
MATCH (this)<-[:REVIEWS]-(:Review)<-[:WROTE]-(u:User)
MATCH (u)-[:WROTE]->(:Review)-[:REVIEWS]->(rec:Business)
WITH rec, COUNT(*) AS score
RETURN rec ORDER BY score DESC LIMIT $first
"""

)
name: String!
city: String!
state: String!
address: String!
location: Point!
reviews: [Review!]! @relationship(type: "REVIEWS", direction: IN)
categories: [Category!]!

@relationship(type: "IN_CATEGORY", direction: OUT)
}

We also define a first field argument, which is passed to the Cypher query included
in the @cypher directive as a Cypher parameter and acts as a limit on the number of
recommended businesses returned.

Listing 4.24 Cypher query to find recommended businesses

Listing 4.25 index.js: Adding the recommended field

934.10 Adding custom logic to our GraphQL API

CUSTOM TOP-LEVEL QUERY FIELDS

Another helpful way to use the @cypher directive is as a custom query or mutation
field. For example, let’s see how we can add full-text query support to search for busi-
nesses. Applications often use full-text search to correct for things like misspellings in
user input using fuzzy matching. In Neo4j, we can use full-text search by first creating
a full-text index.

CREATE FULLTEXT INDEX businessNameIndex FOR (b:Business) ON EACH [b.name]

Then, to query the index in this case we misspell libary, but including the ~ character
enables fuzzy matching, ensuring we still find what we’re looking for.

CALL db.index.fulltext.queryNodes("businessNameIndex", "libary~")

Wouldn’t it be nice to include this fuzzy-matching full-text search in our GraphQL
API? To do that, let’s create a query field, called fuzzyBusinessByName, which takes a
search string and searches for businesses, as shown in the following listing.

type Query {
fuzzyBusinessByName(searchString: String): [Business]

@cypher(
statement: """
CALL
db.index.fulltext.queryNodes('businessNameIndex', $searchString+'~')
YIELD node RETURN node
"""

)
}

Again, since we’ve updated the type definitions, we must restart the GraphQL API
application:

DEBUG=@neo4j/graphql:* node index.js

If we check the Schema tab in Apollo Studio, we will see a new Query field, fuzzyBusi-
nessByName, and we can now search for business names using this fuzzy matching, as
the next listing shows.

Listing 4.26 Cypher: Creating full-text index

Listing 4.27 Cypher: Querying the full-text index

Listing 4.28 index.js: Adding a custom Query field

94 CHAPTER 4 The Neo4j GraphQL Library

{
fuzzyBusinessByName(searchString: "libary") {

name
}

}

Since we are using full-text search, even though we spelled libary incorrectly, we still
find matching results:

{
"data": {

"fuzzyBusinessByName": [
{

"name": "Missoula Public Library"
}

]
}

}

The @cypher schema directive is a powerful way to add custom logic and advanced
functionality to our GraphQL API. We can also use the @cypher directive for authori-
zation features, accessing values, such as authorization tokens, from the request
object—a pattern that will be discussed in a later chapter when we explore different
options for adding authorization to our API. You can read more about the @cypher
GraphQL schema directive in the documentation: http://mng.bz/7yom.

4.10.2 Implementing custom resolvers

While the @cypher directive is one way to add custom logic, in some cases we may
need to implement custom resolvers that implement logic that is unable to be
expressed in Cypher. For example, we may need to fetch data from another system or
apply some custom validation rules. In these cases, we can implement a custom
resolver and attach it to the GraphQL schema, so that resolver is called to resolve our
custom field instead of relying on the Cypher query generated by the Neo4j GraphQL
library to resolve the field.

 In our example, let’s imagine there is an external system that can be used to deter-
mine current wait times at businesses. We want to add an additional waitTime field to
the Business type in our schema and implement the resolver logic for this field to use
this external system.

 To do this, we first add the field to our schema, adding the @ignore directive to
ensure the field is excluded from the generated Cypher query, as the next listing
shows. This is our way of telling the Neo4j GraphQL library that a custom resolver will
be responsible for resolving this field, and we don’t expect it to be fetched from the
database automatically.

Listing 4.29 GraphQL query using our custom Query field

http://mng.bz/7yom

954.10 Adding custom logic to our GraphQL API

type Business {
businessId: ID!
waitTime: Int! @ignore
averageStars: Float!

@cypher(
statement: "MATCH (this)<-[:REVIEWS]-(r:Review) RETURN avg(r.stars)"

)
name: String!
city: String!
state: String!
address: String!
location: Point!
reviews: [Review!]! @relationship(type: "REVIEWS", direction: IN)
categories: [Category!]! @relationship(type: "IN_CATEGORY", direction: OUT)

}

Next, we create a resolver map with our custom resolver, as shown in listing 4.31. We
didn’t have to create this previously because the Neo4j GraphQL library generated
our resolvers for us. Our wait time calculation will involve just selecting a value at ran-
dom, but we could implement any custom logic here to determine the waitTime
value, such as making a request to a third-party API.

const resolvers = {
Business: {

waitTime: (obj, args, context, info) => {
const options = [0, 5, 10, 15, 30, 45];
return options[Math.floor(Math.random() * options.length)];

}
}

};

Then, we add this resolver map to the parameters passed to the Neo4jGraphQL
constructor, as the following listing shows.

const neoSchema = new Neo4jGraphQL({typeDefs, resolvers, driver})

Now, we restart the GraphQL API application, since we’ve updated the code:

DEBUG=@neo4j/graphql:* node index.js

After restarting, in Apollo Studio, if we check the schema for the business type, we will
see our new field waitTime on the Business type. In the next listing, let’s search for
restaurants and see what their wait times are by including the waitTime field in the
selection set.

Listing 4.30 index.js: Adding the waitTime field

Listing 4.31 index.js: Creating a resolver map

Listing 4.32 index.js: Generating the GraphQL schema

96 CHAPTER 4 The Neo4j GraphQL Library

{
businesses(where: { categories_SOME: { name: "Restaurant" } }) {

name
waitTime

}
}

In the results, we now see a value for the wait time. Your results will, of course, vary,
since the value is randomized:

{
"data": {

"businesses": [
{

"name": "Ninja Mike's",
"waitTime": 30

},
{

"name": "Market on Front",
"waitTime": 5

},
{

"name": "Hanabi",
"waitTime": 45

}
]

}
}

4.11 Introspecting GraphQL schema from an existing database
Typically, when we start a new application, we don’t have an existing database and fol-
low the GraphQL-first development paradigm by starting with type definitions. How-
ever, in some cases, we may have an existing Neo4j database populated with data. In
those cases, it can be convenient to generate GraphQL type definitions based on the
existing database that can then be fed into the Neo4j GraphQL library to generate a
GraphQL API for the existing database. We can do this with the use of the @neo4j/
introspector package.

 First, we’ll need to install the @neo4j/introspector package:

npm i @neo4j/introspector

This Node.js script will connect to our Neo4j database and introspect the GraphQL
type definitions that describe this data, as shown in the next listing; then we will write
those type definitions to a file named schema.graphql.

Listing 4.33 GraphQL query using field with custom resolver

974.12 Exercises

const { toGraphQLTypeDefs } = require("@neo4j/introspector");
const neo4j = require("neo4j-driver");
const fs = require("fs");
const driver = neo4j.driver(

"neo4j://localhost:7687",
neo4j.auth.basic("neo4j", "letmein")

);
const sessionFactory = () =>

driver.session({ defaultAccessMode: neo4j.session.READ });
// We create a async function here so we can use async/await
async function main() {

const typeDefs = await toGraphQLTypeDefs(sessionFactory);
fs.writeFileSync("schema.graphql", typeDefs);
await driver.close();

}
main();

Then, we can load this schema.graphql file and pass the type definitions to the Neo4j-
GraphQL constructor as the following listing shows.

// Load GraphQL type definitions from schema.graphql file
const typeDefs = fs

.readFileSync(path.join(__dirname, "schema.graphql"))

.toString("utf-8");

So far, all of our GraphQL querying has been done using Apollo Studio, which is great
for testing and development, but typically, our goal is to build an application that que-
ries the GraphQL API. In the next few chapters, we’ll start to build out the user inter-
face for our business reviews application using React and Apollo Client. Along the
way, we will learn more about GraphQL concepts, such as mutations, fragments, inter-
face types, and more!

4.12 Exercises
1 Query the GraphQL API we created in this chapter, using Apollo Studio to find

– Which users have reviewed the business named Hanabi.
– Find any reviews that contain the word comfortable. What businesses are

they reviewing?
– Which users have given no 5-star reviews?

2 Add a @cypher directive field to the Category type that computes the number
of businesses in each category. How many businesses are in the Coffee
category?

Listing 4.34 intropect.js: Introspecting GraphQL type definitions

Listing 4.35 Loading our GraphQL type definitions from schema.graphql

98 CHAPTER 4 The Neo4j GraphQL Library

3 Create a Neo4j Sandbox instance at https://sandbox.neo4j.com, choosing from
any of the prepopulated datasets. Using the @neo4j/introspector package,
create a GraphQL API for this Neo4j Sandbox instance without manually writ-
ing GraphQL type definitions. What data can you query for using GraphQL?

Refer to the book’s GitHub repository to see the exercise solutions: http://mng.bz/
mOYP.

Summary
 Common problems that arise when building GraphQL APIs include the n + 1

query problem, schema duplication, and a large amount of boilerplate data-
fetching code.

 GraphQL database integrations, like the Neo4j GraphQL library, can help miti-
gate these problems by generating database queries from GraphQL requests,
driving database schema from GraphQL type definitions, and autogenerating a
GraphQL API from GraphQL type definitions.

 The Neo4j GraphQL library makes it easy to build GraphQL APIs backed by a
Neo4j database by generating resolvers for data fetching and adding filtering,
ordering, and pagination to the generated API.

 Custom logic can be added to our GraphQL API by using the @cypher schema
directive to define custom logic for fields or by implementing custom resolvers
and attaching them to the GraphQL schema.

 If we have an existing Neo4j database, we can use the @neo4j/introspector
package to generate GraphQL type definitions and a GraphQL API on top of
the existing database.

http://mng.bz/mOYP
http://mng.bz/mOYP
http://mng.bz/mOYP
https://sandbox.neo4j.com

Part 2

Building the frontend

In part 1, we focused on the backend of our application, exploring the Neo4j
graph database and building our GraphQL API using the Neo4j GraphQL
library. Now, it’s time to build the frontend React application.

 In chapter 5, we will look at the React framework and concepts important for
working with React as we begin building our frontend application. Then, in
chapter 6, we add data fetching and client state management with React and
GraphQL as we pull in data from the GraphQL API we built in previous chap-
ters. After completing part 2, we will have a functioning initial version of our
business review application and will be ready to explore adding authorization
and deployment in part 3.

101

Building user interfaces
 with React

So far in the book, we’ve been focused on the backend aspects of our application:
building the GraphQL API and working with the database. Now it’s time to turn
our attention to the frontend. In chapter 1, we got a very brief overview of React
and looked at a minimal code snippet of a React component. In this chapter, we
return to React and begin building a React application that will be a client of our
GraphQL API, searching for businesses and rendering results in the browser. Of
course, it would be impossible to include everything you need to know for an intro-
duction to React in a single chapter, so rather than aiming to provide a comprehen-
sive introduction to React, the goal of this chapter is to explain the fundamental

This chapter covers
 An overview of the fundamental concepts of

React

 Getting started with React, using the Create
React App CLI tool

 Working with state in a React application, using
React Hooks

102 CHAPTER 5 Building user interfaces with React

concepts of React that are necessary to get started building a simple application. We
offer an opinionated approach to getting started, using the Create React App com-
mand-line tool. For more in-depth coverage of React, you may be interested in the
documentation and tutorials found at https://reactjs.org/.

 In this chapter, we will attempt to create the skeleton of our React application,
using Create React App to handle build tooling and configuration. We’ll then update
the template application, creating the components necessary to search for businesses
by category and view the results. Initially, our data will just be hardcoded in the appli-
cation; then, in chapter 6, we’ll add data-fetching logic to the React application, con-
necting the GraphQL API we created in previous chapters using Apollo Client (see
figure 5.1). Let’s get started!

5.1 React overview
React is fundamentally a JavaScript library for building user interfaces (UIs). React
can be used to build UIs for the web (ReactDOM), native mobile applications (React
Native), and other interfaces, such as virtual reality (React VR). React uses the con-
cept of components to encapsulate model data and logic. Components can be reused
and composed together to build complex UIs but provide a standard abstraction to
help developers reason about their applications. Important React concepts to under-
stand include JSX, React elements, props, state, hooks, and component hierarchy.

Request

Web
client

Response
GraphQL API

Apollo
Client

Apollo
Server

Database

Figure 5.1 This chapter focuses on building the React application that will become a client of our
GraphQL API.

https://reactjs.org/

1035.1 React overview

5.1.1 JSX and React elements

In React, an element is the most fundamental building block. Elements should not be
confused with components; rather, components are composed of React elements. You
can think of an element as something you might see visually displayed in the user
interface. For example, consider the simple React element in the following listing.

const element = <h1>Welcome to GRANDstack</h1>;

At first glance, this appears to be an HTML snippet but with hints of JavaScript. In
fact, this is a JSX example. JSX is used to create React elements.

NOTE JSX is not required for working with React; however, using JSX is
highly recommended, and the alternatives will not be covered in this book.

You can think of JSX as a combination of HTML and JavaScript. We can use JavaScript
expressions within JSX by wrapping expressions in curly braces. For example, if we
wanted to personalize our Welcome to GRANDstack greeting, we could use a JavaScript
variable to define the name of the user.

const name = "Bob Loblaw";
const element = <h1>Welcome to GRANDstack, {name}!</h1>

During build time, JSX is compiled into JavaScript and uses the React.create-
Element() JavaScript function to create React elements, which are fundamentally rep-
resented as JavaScript objects that are rendered to the DOM.

 React elements are important because they help React maintain what is called the
virtual DOM—a representation of the DOM that allows React to apply DOM updates
to the desired state. This means that rather than rerendering the entire DOM when
the application changes, React only rerenders the pieces necessary.

5.1.2 React components

React allows us to construct the UI using smaller, reusable, composable pieces called
components. Components are essentially functions that accept an input (props, or prop-
erties) and return React elements that make up the UI and are the building blocks of
a React application. Listing 5.3 shows an example.

NOTE We will only use functional React components. You may see references
to so-called React class components; however, with the introduction of the
React Hooks class, components are no longer required.

Listing 5.1 A simple React element defined with JSX

Listing 5.2 Using JavaScript expressions within JSX

104 CHAPTER 5 Building user interfaces with React

function Greeting(props) {
return <h1>Welcome to GRANDstack, {props.name}</h1>;

}

Components make use of two types of model data: props and state. Props are
immutable; if we need to change values within our component that should trigger a
rerender, then we need to work with state data.

5.1.3 Component hierarchy

React components can be composed of other components. This allows us to encapsu-
late and reuse logical components as we build our UI.

function Greeting(props) {
return <h1>Welcome to GRANDstack, {props.name}</h1>;

}

function Popup() {
const name = "Bob Loblaw";
return <Greeting name={name} />

}

5.2 Create React App
Create React App is a command-line tool for creating React applications. It bundles
together build tooling and requires no initial configuration. It is the easiest way to get
started with React, as it automatically configures webpack, Babel, ESLint, and other
tools, allowing developers to start writing React applications without struggling to set
up and configure build tooling. You can learn more about Create React App at create
-react-app.dev/.

5.2.1 Creating a React application with Create React App

Let’s create a React application using Create React App. We’ll do this in the directory
alongside api, where we’ve been building our GraphQL API. We’ll start by building
some initial functionality for our business review application, starting with a business
search. The initial version of our React application should allow the user to search for
businesses by category and display business details. For now, we’ll hardcode our data
in a JavaScript object; then, in the next chapter, we’ll connect the React application to
our GraphQL API as a data source. To get started with Create React App, run the fol-
lowing command in the terminal at the directory level, alongside the API directory
with our GraphQL API code:

npx create-react-app web-react --use-npm

Listing 5.3 A simple React component

Listing 5.4 Composing React components

https://create-react-app.dev/
https://create-react-app.dev/
https://create-react-app.dev/

1055.2 Create React App

The command npx is included with npm as of version 5.2.0, and can be used for execut-
ing npm packages and commands. One great feature of npx is that it will automatically
download the package for us if we don’t have it installed locally, ensuring that we
always run the latest version.

 So far, we’ve been using npm; by default, Create React App uses the yarn package
manager CLI, so we’ll use the --use-npm command flag when calling create-react-
app. After running this command, we should see output telling us we’ve created a new
React project and some helpful commands we can use to get started with our project:

Success! Created web-react at /Users/lyonwj/business-reviews/web-react
Inside that directory, you can run several commands:

npm start
Starts the development server.

npm run build
Bundles the app into static files for production.

npm test
Starts the test runner.

npm run eject
Removes this tool and copies build dependencies, configuration files
and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

cd web-react
npm start

Happy hacking!

Let’s take a look at what Create React App has created for us:

.
README.md
package-lock.json
package.json
public

favicon.ico
index.html
logo192.png
logo512.png
manifest.json
robots.txt

src
App.css
App.js
App.test.js
index.css
index.js
logo.svg

106 CHAPTER 5 Building user interfaces with React

serviceWorker.js
setupTests.js

node_modules
...

The README.md file contains comprehensive documentation for working with the
React application we’ve just created and Create React App. The node_modules direc-
tory contains all the dependencies of our application, which were installed automati-
cally. Inside the public directory, we can find static content that is served from the root
when our application is started. In the src directory, we’ll find the JavaScript and CSS
code that defines a skeleton React application. First, let’s examine the package.json file
in the next listing to see the dependencies included and the scripts that are available.

{
"name": "web-react",
"version": "0.1.0",
"private": true,
"dependencies": {

"@testing-library/jest-dom": "^5.15.1",
"@testing-library/react": "^11.2.7",
"@testing-library/user-event": "^12.8.3",
"react": "^17.0.2",
"react-dom": "^17.0.2",
"react-scripts": "4.0.3",
"web-vitals": "^1.1.2"

},
"scripts": {

"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test",
"eject": "react-scripts eject"

},
"eslintConfig": {

"extends": [
"react-app",
"react-app/jest"

]
},
"browserslist": {

"production": [
">0.2%",
"not dead",
"not op_mini all"

],
"development": [

"last 1 chrome version",
"last 1 firefox version",
"last 1 safari version"

]
}

}

Listing 5.5 package.json

1075.2 Create React App

We can see the dependencies of our application included so far: the React library as
well as a package called react-scripts. The react-scripts package is used to start,
run, build, and test our application, as we can see in the “scripts” section of the
package.json file. Let’s go ahead and run our application:

cd web-react
npm start

The npm start command creates a development build of the application and starts a
local webserver serving our React application. A watcher is used, so any changes we
make to the source files trigger a live reload of the application; this means we typically
won’t need to restart the web server after making changes to the code to see our
changes reflected in the application:

Compiled successfully!

You can now view web-react in the browser.

Local: http://localhost:3000
On Your Network: http://192.168.1.3:3000

Note that the development build is not optimized.
To create a production build, use npm run build.

If running our application is successful, we see a message telling us how to open our
application in a web browser (see figure 5.2).

Figure 5.2 Our initial React application running in the web

108 CHAPTER 5 Building user interfaces with React

Let’s open that src/App.js file and look at our initial application in the next listing.

import logo from './logo.svg';
import './App.css';

function App() {
return (

<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.

</p>
<a
className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"

>
Learn React

</header>

</div>
);

}

export default App;

We are exporting an App component, but where is it used? If we open src/ index.js, we
can see how the App component is used (see the next listing). It is passed to React-
DOM.render, telling ReactDOM to render the App component in an HTML element
with the ID of root.

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import reportWebVitals from './reportWebVitals';

ReactDOM.render(
<React.StrictMode>

<App />
</React.StrictMode>,
document.getElementById('root')

);

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))

Listing 5.6 src/App.js: Initial code

Listing 5.7 src/index.js

1095.2 Create React App

// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals();

Let’s update the src/App.js file in the next listing. To start off, we’ll create a simple
form with a select dropdown to search for businesses by category.

const businesses = [
{

businessId: "b1",
name: "San Mateo Public Library",
address: "55 W 3rd Ave",
category: "Library",

},
{

businessId: "b2",
name: "Ducky's Car Wash",
address: "716 N San Mateo Dr",
category: "Car Wash",

},
{

businessId: "b3",
name: "Hanabi",
address: "723 California Dr",
category: "Restaurant",

},
];

function App() {
return (

<div>
<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select value="All">

<option value="All">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>
<option value="Car Wash">Car Wash</option>

</select>
</label>
<input type="submit" value="Submit" />

</form>

<h2>Results</h2>
<table>

<thead>
<tr>

<th>Name</th>
<th>Address</th>
<th>Category</th>

</tr>

Listing 5.8 src/App.js: Adding sample data and a simple form

For now, our business data is
defined as a JavaScript array.

Our React component is at the top of the
component hierarchy and is not passed any
props data; therefore, it takes no arguments.

110 CHAPTER 5 Building user interfaces with React

</thead>
<tbody>
{businesses.map((b, i) => (

<tr key={i}>
<td>{b.name}</td>
<td>{b.address}</td>
<td>{b.category}</td>

</tr>
))}

</tbody>
</table>

</div>
);

}

export default App;

For now, we just define our businesses as a JavaScript array, but later we’ll need to pop-
ulate our application with data from our GraphQL API. Initially, all results are dis-
played in a simple HTML table (see figure 5.3).

We render a table, but our form doesn’t really work. We can’t select a category, and
nothing changes in our table when we try. Let’s update our app to filter results based
on the category we’ve selected. To do that, we need to understand state, and along the
way, we’ll learn about props! Since we’re exclusively using functional React compo-
nents, we’ll need to make use of React Hooks to work with state.

5.3 State and React Hooks
React Hooks were introduced in React version 16.8 and provide a way of working with
state (and other React concepts) while keeping React components as functions
instead of classes. Previously, you may have seen React class components that included
calls to a setState function, lifecycle methods, and constructors. With Hooks, none
of that is required; instead, we can manage state through single function calls.

We map over our businesses array,
creating a row in the table for each
business.

Figure 5.3 Our React application
after updating src/App.js

1115.3 State and React Hooks

 We’ll introduce Hooks in a hands-on way, updating our React application to add
filtering functionality to allow us to filter our result table for businesses by category.
Along the way, we’ll see how to use the State React Hook to manage state within our
component.

 Let’s create a new React component that will be responsible for rendering our
result table, called BusinessResults. To do that, first create a new file called Business-
Results.js in the same directory as App.js, as shown in the next listing.

function BusinessResults(props) {
const { businesses } = props;

return (
<div>

<h2>Results</h2>
<table>

<thead>
<tr>

<th>Name</th>
<th>Address</th>
<th>Category</th>

</tr>
</thead>
<tbody>
{businesses.map((b, i) => (

<tr key={i}>
<td>{b.name}</td>
<td>{b.address}</td>
<td>{b.category}</td>

</tr>
))}

</tbody>
</table>

</div>
);

}

export default BusinessResults;

We move the result table into this src/BusinessResults.js file, passing in the businesses
to be rendered by the component as props. Instead of rendering all businesses to the
table, the component renders whatever data is passed through the props argument.
Now, in our App component, we can import this new BusinessResults component
and pass our array of business data as props to the component, as shown next.

import BusinessResults from "./BusinessResults";

const businesses = [

Listing 5.9 src/BusinessResults.js

Listing 5.10 src/App.js: Using the BusinessResults component

The component is passed
props data as an argument.

The props argument contains the business
data to be rendered in the result table.

Importing the BusinessResults
component

112 CHAPTER 5 Building user interfaces with React

{
businessId: "b1",
name: "San Mateo Public Library",
address: "55 W 3rd Ave",
category: "Library",

},
{

businessId: "b2",
name: "Ducky's Car Wash",
address: "716 N San Mateo Dr",
category: "Car Wash",

},
{

businessId: "b3",
name: "Hanabi",
address: "723 California Dr",
category: "Restaurant",

},
];

function App() {
return (

<div>
<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select value="All">

<option value="All">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>
<option value="Car Wash">Car Wash</option>

</select>
</label>
<input type="submit" value="Submit" />

</form>

<BusinessResults businesses={businesses} />
</div>

);
}

export default App;

We’ve imported a new component, BusinessResults, and we’re passing in our busi-
nesses array, so the BusinessResults component can take care of rendering the
results. Our App component now just needs to concern itself with allowing the user to
choose the category to search.

 After making this change, our application looks exactly the same in the web
browser, and our select form still doesn’t work. In the next listing, let’s make our drop-
down actually do something!

Passing the businesses array as
props to the BusinessResults
component

1135.3 State and React Hooks

import React, { useState } from "react";
import BusinessResults from "./BusinessResults";

const businesses = [
{

businessId: "b1",
name: "San Mateo Public Library",
address: "55 W 3rd Ave",
category: "Library",

},
{

businessId: "b2",
name: "Ducky's Car Wash",
address: "716 N San Mateo Dr",
category: "Car Wash",

},
{

businessId: "b3",
name: "Hanabi",
address: "723 California Dr",
category: "Restaurant",

},
];

function App() {

const [selectedCategory, setSelectedCategory] = useState("All");

return (
<div>

<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select
value={selectedCategory}
onChange={(event) => setSelectedCategory(event.target.value)}

>
<option value="All">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>
<option value="Car Wash">Car Wash</option>

</select>
</label>
<input type="submit" value="Submit" />

</form>

<BusinessResults
businesses={
selectedCategory === "All"

? businesses
: businesses.filter((b) => {

return b.category === selectedCategory;

Listing 5.11 src/App.js: Using a state variable

Import the useState hook.

Call the useState hook to create
a new state variable and the
function to update its value.

Bind the selected value of the
dropdown to our new state
variable.

Update the
 value of our state
variable when the
user selects a new

option in the form.

114 CHAPTER 5 Building user interfaces with React

})
}

/>
</div>

);
}

export default App;

First, we import the useState hook and use it to create a new state variable selected-
Category. The call to useState also returns a function (which we call setSelected-
Category) that is used to update the value of selectedCategory. We bind this variable
to the selected option of the select input by passing selectedCategory for the value
prop to the select element and using the setSelectedCategory function to update
the value of selectedCategory when a new option is selected. Now the user can select
a value in the form and see the result table showing only businesses in the selected cat-
egory (see figure 5.4).

Now that we have a very basic React application, our next step will be adding data-
fetching functionality to connect to our GraphQL API. We’ll do that in the next chap-
ter, using Apollo Client React Hooks, and explore more React functionality along the
way!

5.4 Exercises
1 Move the search logic into a new component called BusinessSearch, and ren-

der that component from within the App component.
2 Allow the business search to include filtering by city in addition to the business

category. You’ll need to add the city to the sample data and include it in the
table results.

3 How would you handle searching by multiple categories? Modify the sample
data to include multiple categories. Change form handling to allow selecting
multiple categories. Update the filtering logic to pass the correct business
search results to the BusinessResults component.

Filter the business results passed
to the BusinessResults component
based on the selected category.

Figure 5.4 Our React application after
adding state and filtering functionality

115Summary

Summary
 React is a JavaScript library for creating UIs and uses the concept of compo-

nents to encapsulate logic. Components can be composed to create complex
UIs.

 JSX is a syntax used to create React elements and allows us to use an HTML-like
syntax when working with UI code.

 React components use model data in two forms: props and state. Props (or
properties) are immutable data passed to components as part of React’s one-
way data flow. State data is local and private to a single component and, when
changed, triggers a rerender of the component tree.

 Create React App is a command-line tool for creating React applications. It
bundles together build tooling and requires no initial configuration.

 React Hooks allow the developer to work with state within a component, while
still keeping components as functions.

116

Client-side GraphQL with
 React and Apollo Client

In the previous chapter, we created a React application, using Create React App,
that allowed users to search for businesses by category. We used a single JavaScript
object hardcoded into the application as the source of our data, so our application
had limited functionality. In this chapter, we explore connecting our React applica-
tion to the GraphQL API we created in previous chapters and introduce a new tool
to our GraphQL toolbox: Apollo Client.

 Apollo Client is a data management JavaScript library that enables developers to
manage both local and remote data with GraphQL. It is used to fetch, cache, and

This chapter covers
 Connecting a React application to a GraphQL

endpoint, using Apollo Client

 Caching and updating data on the client, using
Apollo Client

 Updating data in the application, using GraphQL
mutations

 Using Apollo Client to manage React client state
data

1176.1 Apollo Client

modify application data and offers a number of frontend framework integrations,
including React, to enable updating your UI as data changes.

 We’ll use the React Hooks API for Apollo Client to populate our React app with
data from our GraphQL API, issuing data-fetching GraphQL queries using Apollo Cli-
ent. We’ll then explore GraphQL mutation operations for updating data via our
GraphQL API, seeing how to handle changing application data. Finally, we’ll see how
to use Apollo Client for managing the local state of our React application, called client
state management, by adding local-only fields to our GraphQL API. Let’s get started!

6.1 Apollo Client
Apollo Client is much more than just a library that sends and receives graph data. As
the Apollo Client docs say:

Apollo Client is a comprehensive state management library for JavaScript that enables you to
manage both local and remote data with GraphQL. Use it to fetch, cache, and modify
application data, all while automatically updating your UI. … Apollo Client helps you
structure code in an economical, predictable, and declarative way that’s consistent with modern
development practices. The core @apollo/client library provides built-in integration with React,
and the larger Apollo community maintains integrations for other popular view layers.

—https://www.apollographql.com/docs/react/

We’ll take advantage of these features of Apollo Client as we add it to our React appli-
cation, first adding data-fetching logic, and then using Apollo Client to manage local
state data in our React application.

6.1.1 Adding Apollo Client to our React Application

Since we’re using React, we’ll focus on the React-specific integration for Apollo Cli-
ent. First, we’ll install Apollo Client using npm, create an Apollo Client instance con-
nected to our GraphQL API, and then start issuing data-fetching queries in our React
application, using the useQuery React Hook provided by Apollo Client.

 Since we’ll be querying our GraphQL API, make sure that our Neo4j database and
GraphQL API application from previous chapters are both running. If they are not, we’ll
see errors indicating that Apollo Client isn’t able to reach the GraphQL endpoint.

INSTALLING APOLLO CLIENT

As of this writing, Apollo Client 3.5.5 is the latest release of Apollo Client, and most of
the tools we need to add GraphQL support to our React application are included in a
single package. Previous Apollo Client releases bundled React Hooks separately; how-
ever, the React integration is now included by default.

 Open a terminal, make sure you’re in the web-react directory, and run the follow-
ing command to install Apollo Client. We also need to install the graphql.js peer
dependency for Apollo Client. We are using the most recent version of Apollo Client
as of this writing, which is v3.5.5:

npm install @apollo/client graphql

https://www.apollographql.com/docs/react/

118 CHAPTER 6 Client-side GraphQL with React and Apollo Client

Now that Apollo Client is installed, we can create an Apollo Client instance and start
issuing GraphQL queries. First, we’ll see how to do this in a generic way, and then
we’ll add this functionality to our React application.

CREATING AN APOLLO CLIENT INSTANCE

To create a new Apollo Client instance, we need to pass the URI for the GraphQL API
we’d like to connect to as well as the cache we’d like to use to the Apollo Client construc-
tor, as the next listing shows. The most common cache type is Apollo’s InMemoryCache.

import { ApolloClient, InMemoryCache } from "@apollo/client";

const client = new ApolloClient({
uri: "http://localhost:4000",
cache: new InMemoryCache(),

});

We can, then, use this client instance to execute GraphQL operations.

MAKING A QUERY WITH APOLLO CLIENT

First, let’s look at listing 6.2 to see how to execute a GraphQL query using the client
API. In our React application, most of the time we’ll want to take advantage of the
React Hooks API for Apollo Client, so this code won’t be part of our application.

import { ApolloClient, InMemoryCache, gql } from "@apollo/client";

const client = new ApolloClient({
uri: "http://localhost:4000",
cache: new InMemoryCache(),

});

client
.query({

query: gql`
{

businesses {
name

}
}

`
})
.then(result => console.log(result));

Note that we wrap our GraphQL query with the gql template literal tag. The purpose
of this is to parse GraphQL query strings into the standard GraphQL abstract syntax
tree (AST) understood by GraphQL clients. Here we are executing a GraphQL query

Listing 6.1 Creating an Apollo Client instance

Listing 6.2 Executing a query using Apollo Client

1196.1 Apollo Client

operation to fetch businesses, returning only the name of each business and logging
to the console.

 This minimal Apollo Client example is depicted in figure 6.1. Our Apollo Client
instance sends a GraphQL query operation to the GraphQL server, which responds
with data and is then stored in the Apollo Client cache. Subsequent requests for the
same data will read from the cache instead of sending a request to the GraphQL
server. Later in the chapter, we’ll cover how to work with the Apollo Client cache
directly.

Now that we understand the basics of Apollo Client, let’s see how to implement them
in our React application.

INJECTING APOLLO CLIENT INTO THE COMPONENT HIERARCHY

The first thing we’ll need to do is inject the client instance into the React component
hierarchy, making it available in each of our components. To do this, we’ll make a few
changes to the web-react/src/index.js file, which was generated by Create React App.

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import App from "./App";
import reportWebVitals from "./reportWebVitals";
import {

ApolloClient,
InMemoryCache,
ApolloProvider,

} from "@apollo/client";

const client = new ApolloClient({
uri: "http://localhost:4000",
cache: new InMemoryCache(),

});

ReactDOM.render(
<React.StrictMode>

<ApolloProvider client={client}>
<App />

Listing 6.3 web-react/src/index.js: Creating an Apollo Client instance

GraphQL
server application

localhost:4000

CacheApollo
Client

GraphQL operations

Data

Figure 6.1 A minimal
Apollo Client example

Create an Apollo Client instance.

Use the Apollo Provider component
to inject the client instance into the
React component hierarchy.

120 CHAPTER 6 Client-side GraphQL with React and Apollo Client

</ApolloProvider>
</React.StrictMode>,
document.getElementById("root")

);

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals();

Once we create an Apollo Client instance that is connected to our GraphQL API, we
wrap our App component with the Apollo Provider component, passing our client
instance as a prop to the ApolloProvider component. This will allow any of the com-
ponents in our React application to access the client instance and execute GraphQL
operations. We’ll do that via the React Hooks API in any of our components that
require data fetching logic (see figure 6.2).

6.1.2 Apollo Client hooks

The Apollo Client React integration includes React hooks for working with data. The
useQuery React hook is the primary method for executing GraphQL queries. To learn
how to use the useQuery hooks, let’s start updating our App component to search data
in the GraphQL API, instead of using the hardcoded data array.

import React, { useState } from "react";
import BusinessResults from "./BusinessResults";

import { gql, useQuery } from "@apollo/client";

Listing 6.4 web-react/src/App.js: Adding a GraphQL query

GraphQL
server application

localhost:4000

CacheApollo
Client

GraphQL operations

Data

ApolloProvider

App

Figure 6.2 Injecting our Apollo Client instance into the React component hierarchy

Import the useQuery hook.

1216.1 Apollo Client

const GET_BUSINESSES_QUERY = gql`
{

businesses {
businessId
name
address
categories {

name
}

}
}

`;

function App() {
const [selectedCategory, setSelectedCategory] = useState("All");

const { loading, error, data } = useQuery(GET_BUSINESSES_QUERY);

if (error) return <p>Error</p>;
if (loading) return <p>Loading...</p>;

return (
<div>

<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select

value={selectedCategory}
onChange={(event) => setSelectedCategory(event.target.value)}

>
<option value="All">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>
<option value="Car Wash">Car Wash</option>

</select>
</label>
<input type="submit" value="Submit" />

</form>

<BusinessResults businesses={data.businesses} />
</div>

);
}

export default App;

First, we import the useQuery hook and gql template literal tag. Then, we define the
GraphQL query to search for businesses and return the data we need to render the
results in our results table. Next, we pass this GraphQL query to the useQuery hook,
which returns state objects that let us inspect the various states of the GraphQL opera-
tion: loading, error, and data. While the query is loading, we can display an indication
to the user that we’re fetching data. If our GraphQL query returned an error, we can

Define the GraphQL query
to search for businesses.

The useQuery hook exposes
the various lifecycle states

of running the GraphQL
operation.

We pass the GraphQL
response to the
BusinessResults
component.

122 CHAPTER 6 Client-side GraphQL with React and Apollo Client

render some error result to the user. Finally, once the data object is populated, we
know that our GraphQL query has completed successfully, and we can pass that data
as props to the BusinessResults component, which is responsible for rendering our
results table (see figure 6.3).

We’ll also need to make a slight adjustment to the BusinessResults component,
since we now have multiple categories to display per business.

function BusinessResults(props) {
const { businesses } = props;

return (
<div>

<h2>Results</h2>
<table>

<thead>
<tr>

<th>Name</th>
<th>Address</th>
<th>Category</th>

Listing 6.5 web-react/src/BusinessResults.js: Displaying business categories

GraphQL
server application

localhost:4000

CacheApollo
Client

GraphQL operations

Data

ApolloProvider

useQuery

G
E
T
_
B
U
S
I
N
E
S
S
E
S
_
Q
U
E
R
Y

{loading, error, data}

BusinessResults {data.Business}

App

Figure 6.3 Data flows through
our React application using
Apollo Client hooks.

1236.1 Apollo Client

</tr>
</thead>
<tbody>
{businesses.map((b, i) => (

<tr key={i}>
<td>{b.name}</td>
<td>{b.address}</td>
<td>

{b.categories.reduce(
(acc, c, i) => acc + (i === 0 ? " " : ", ") + c.name,
""

)}
</td>

</tr>
))}

</tbody>
</table>

</div>
);

}

export default BusinessResults;

Now, if we take a look at our React application, we should see our business results table
populated with businesses. The data is coming from the GraphQL API (see figure 6.4).

Of course, our application is not yet fully functional, since we’re just showing all busi-
nesses. Instead, we need to filter based on the user input of category. To do that, we’ll
pass the selected category as a GraphQL variable.

We use the reduce function to create
a single string representation of our
categories.

Figure 6.4 Our React application after connecting to our GraphQL API

124 CHAPTER 6 Client-side GraphQL with React and Apollo Client

6.1.3 GraphQL variables

GraphQL variables allow us to pass dynamic arguments as part of our GraphQL opera-
tion. Let’s modify web-react/src/App.js to search for businesses that only match the
category selected by the user, passing the selected category as a GraphQL variable.
We’ll make use of the filtering functionality covered in chapter 4, using the where
argument to filter for businesses with a connection to the user-selected category.

import React, { useState } from "react";
import BusinessResults from "./BusinessResults";

import { gql, useQuery } from "@apollo/client";

const GET_BUSINESSES_QUERY = gql`
query BusinessesByCategory($selectedCategory: String!) {

businesses(
where: { categories_SOME: { name_CONTAINS: $selectedCategory } }

) {
businessId
name
address
categories {

name
}

}
}

`;

function App() {
const [selectedCategory, setSelectedCategory] = useState("");

const { loading, error, data } = useQuery(GET_BUSINESSES_QUERY, {
variables: { selectedCategory },

});

if (error) return <p>Error</p>;
if (loading) return <p>Loading...</p>;

return (
<div>

<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select

value={selectedCategory}
onChange={(event) => setSelectedCategory(event.target.value)}

>
<option value="">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>

Listing 6.6 web-react/src/App.js: Using GraphQL variables

1256.1 Apollo Client

<option value="Car Wash">Car Wash</option>
</select>

</label>
<input type="submit" value="Submit" />

</form>

<BusinessResults businesses={data.businesses} />
</div>

);
}

export default App;

When working with GraphQL variables, we first need to replace the static value with
$selectedCategory. Then, we declare $selectedCategory as one of the variables
accepted by the query. We then pass the value for $selectedCategory in the call to
useQuery. Now, our search results are updated when we change the selected category,
showing only the results for that category (see figure 6.5).

6.1.4 GraphQL fragments

So far, when creating a selection set, we’ve listed all the fields and nested fields we
want to include in the query. Often, different components in our application use the
same (or subsets of) selection sets in GraphQL queries. GraphQL fragments allow us to
reuse selection sets, or pieces of selection sets, across GraphQL queries. To use frag-
ments in our GraphQL queries, we first declare the fragment, assigning it a name and
the type on which it is valid, as shown in the following listing.

fragment businessDetails on Business {
businessId
name
address
categories {

name
}

}

Listing 6.7 Declaring a GraphQL fragment

Figure 6.5 Enabling filtering
by category, using GraphQL

126 CHAPTER 6 Client-side GraphQL with React and Apollo Client

Here we’ve defined a fragment called businessDetails, which can be used to select
fields of the Business type and includes all the fields needed to render our results
table. Then, to use the fragment in a selection set, we include the fragment name in
the selection set, preceded by …., as the next listing shows.

query BusinessesByCategory($selectedCategory: String!) {
businesses(

where: { categories_SOME: { name_CONTAINS: $selectedCategory } }
) {

...businessDetails
}

}
}

Our query results will be the same, but we can now reuse this businessDetails frag-
ment in other queries.

USING FRAGMENTS WITH APOLLO CLIENT

To use fragments with Apollo Client, we can declare our fragments in separate vari-
ables and include them in our GraphQL queries, using placeholders in the template
literal. This allows us to store fragments and share them across components. If we
need to change the fields in the selection set, we only need to do that where we
declare the fragment, and then any queries using that fragment will be updated.

 Next, we declare our businessDetails fragment in a BUSINESS_DETAILS_FRAGMENT
variable, and we then include it in our GraphQL query, using a template literal place-
holder, as shown in the next listing.

...

const BUSINESS_DETAILS_FRAGMENT = gql`
fragment businessDetails on Business {

businessId
name
address
categories {

name
}

}
`;

const GET_BUSINESSES_QUERY = gql`
query BusinessesByCategory($selectedCategory: String!) {

businesses(
where: { categories_SOME: { name_CONTAINS: $selectedCategory } }

) {
...businessDetails

}

Listing 6.8 Using a fragment in a GraphQL query

Listing 6.9 web-react/src/App.js: Using a GraphQL fragment

1276.1 Apollo Client

}

${BUSINESS_DETAILS_FRAGMENT}
`;

...

6.1.5 Caching with Apollo Client

Apollo Client stores GraphQL results in a normalized, in-memory cache. This means
that if the same GraphQL query is run again, instead of sending data to the server, the
results from the cache will be read instead, reducing unnecessary network requests
and improving the perceived performance of the application. We can verify that the
results are cached by opening our browser’s developer tools and inspecting the net-
work tab while selecting different categories from the dropdown.

UPDATING CACHED RESULTS

Caching is great for performance when our application data isn’t changing very often,
but how do we handle updating data that’s been cached? What if we don’t want to use
cached data in our application and instead want to show fresh data from the server?
Fortunately, Apollo Client has options for updating cached results. We’ll explore two
options for updating cached query results: polling and refetching.

 Polling allows for synchronizing results periodically at a specified interval. With
Apollo Client, polling can be enabled on a per-query basis by specifying a value for
pollInterval, specified in milliseconds. Next, we set the query results to update every
500 milliseconds, as shown in the next listing.

const { loading, error, data } = useQuery(GET_BUSINESSES_QUERY, {
variables: { selectedCategory },
pollInterval: 500

});

Instead of updating results at a fixed interval, refetching allows us to update query
results explicitly, often in response to a user action, such as clicking a button or sub-
mitting a form. To use refetching with Apollo client, call the refetch function
returned by the useQuery hook, as the following listing shows.

import React, { useState } from "react";
import BusinessResults from "./BusinessResults";

import { gql, useQuery } from "@apollo/client";

const GET_BUSINESSES_QUERY = gql`
query BusinessesByCategory($selectedCategory: String!) {

Listing 6.10 web-react/src/App.js: Setting a poll interval

Listing 6.11 web-react/src/App.js: Using the refetch function

128 CHAPTER 6 Client-side GraphQL with React and Apollo Client

businesses(
where: { categories_SOME: { name_CONTAINS: $selectedCategory } }

) {
businessId
name
address
categories {

name
}

}
}

`;

function App() {
const [selectedCategory, setSelectedCategory] = useState("");

const { loading, error, data, refetch } = useQuery(
GET_BUSINESSES_QUERY,
{

variables: { selectedCategory },
}

);

if (error) return <p>Error</p>;
if (loading) return <p>Loading...</p>;

return (
<div>

<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select

value={selectedCategory}
onChange={(event) => setSelectedCategory(event.target.value)}

>
<option value="">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>
<option value="Car Wash">Car Wash</option>

</select>
</label>
<input type="button" value="Refetch" onClick={() => refetch()} />

</form>

<BusinessResults businesses={data.businesses} />
</div>

);
}

export default App;

Now that we’re ready to handle changing data in our application, let’s see how to
update our API data using GraphQL mutations.

The refetch function
is returned by the
useQuery hook.

Calling the refetch
function when the

button is clicked

1296.2 GraphQL mutations

6.2 GraphQL mutations
GraphQL mutations are GraphQL operations that can write or update data. We intro-
duced the concept of mutations in chapter 2, but up until now, we haven’t actually used
any mutations. In this section, we’ll explore the mutations generated by the Neo4j
GraphQL library, allowing us to create, update, and delete nodes and relationships.

6.2.1 Creating nodes

A create mutation is generated for each type in our GraphQL type definitions, map-
ping to a node label in Neo4j. To create nodes, we call the appropriate create muta-
tion, passing in the property values for the new node as arguments. Note that if fields
are defined using !, that means that the field is nonnullable and must be included in
order to create the node. Let’s add a new business to the database: Philz Coffee.

mutation {
createBusinesses(

input: {
businessId: "b10"
name: "Philz Coffee"
address: "113. S B St"
city: "San Mateo"
state: "CA"
location: { latitude: 37.567109, longitude: -122.323680 }

}
) {

businesses {
businessId
name
address
city

}
info {

nodesCreated
}

}
}

Running this mutation in Apollo Studio will create a new business node in the
database:

{
"data": {

"createBusinesses": {
"businesses": [

{
"businessId": "b10",
"name": "Philz Coffee",
"address": "113. S B St",
"city": "San Mateo"

Listing 6.12 GraphQL mutation to create business

130 CHAPTER 6 Client-side GraphQL with React and Apollo Client

}
],
"info": {

"nodesCreated": 1
}

}
}

}

6.2.2 Creating relationships

To create relationships in the database, we can use the update operations generated
by the Neo4j GraphQL library. In the next listing, let’s connect our new Philz Coffee
node to the Coffee category node. To do that, we use the IDbusinessID to refer to
the business node in the input for the mutation.

mutation {
updateBusinesses(

where: { businessId: "b10" }
connect: { categories: { where: { node: { name: "Coffee" } } } }

) {
businesses {

name
categories {

name
}

}
info {

relationshipsCreated
}

}
}

Note the use of the connect argument. This argument allows us to create relation-
ships between nodes that already exist. We could also create a new category node by
using the create argument; however, in this case, our coffee category node already
exists in the database. These connect and create arguments are also available when
creating nodes and make up a powerful feature of the Neo4j GraphQL library, called
nested mutations. By nesting create or connect operations, we can execute many write
operations in a single GraphQL mutation:

{
"data": {

"updateBusinesses": {
"businesses": [

{
"name": "Philz Coffee",
"categories": [

{

Listing 6.13 GraphQL mutation to create a relationship

1316.2 GraphQL mutations

"name": "Coffee"
}

]
}

],
"info": {

"relationshipsCreated": 1
}

}
}

}

6.2.3 Updating and deleting

Let’s say the Philz Coffee shop moves from B St. to an address right next door to the
Neo4j office, and we need to update the address. To do that, we use the update-
Businesses mutation, using the businessId field to reference the node and then
passing in any values that need to be updated to the update argument, as shown next.

mutation {
updateBusinesses(

where: { businessId: "b10" }
update: { address: "113 E 5th Ave" }

) {
businesses {

name
address
categories {

name
}

}
}

}

{
"data": {

"updateBusinesses": {
"businesses": [

{
"name": "Philz Coffee",
"address": "113 E 5th Ave",
"categories": [

{
"name": "Coffee"

}
]

}
]

}
}

}

Listing 6.14 GraphQL mutation to update business address

132 CHAPTER 6 Client-side GraphQL with React and Apollo Client

Or if we need to delete the node from the database completely, we can use the
deleteBusinesses mutation, as the following listing shows.

mutation {
deleteBusinesses(where: { businessId: "b10" }) {

nodesDeleted
}

}

{
"data": {

"deleteBusinesses": {
"nodesDeleted": 1

}
}

}

While you execute these mutation operations in Apollo Studio, try the polling and
refetching technique mentioned in the previous section to see how the React applica-
tion reacts to changing backend data as the mutations are executed.

6.3 Client state management with GraphQL
We said earlier that Apollo Client is a comprehensive data management library, and that
includes not only working with data from our GraphQL server, but also managing local
data. Local data can include the state of our React application—for example, user pref-
erences that we don’t want to send to the server because they are only relevant to the client.

 Apollo Client allows us to add local-only fields to our GraphQL queries, which can
then be managed and cached by Apollo Client to help manage the state of our React
application. This is helpful because it allows us to use the same API for working with
local data as we do for remote data: GraphQL!

6.3.1 Local-only fields and reactive variables
In Apollo Client, local-only fields can be defined and included in our GraphQL schema.
These fields are not defined in the server’s schema, but rather are specific to the cli-
ent application only. The values for these fields are computed locally using logic that
we can define, such as storing and reading from localStorage in the browser.

 Reactive variables enable us to read and write local values outside of GraphQL.
These are useful when we want to update their values without executing a GraphQL
operation (e.g., in response to user action) but read local-only fields as part of a
GraphQL data-fetching operation alongside other data-fetching logic from the
GraphQL server. Also, modifying a reactive variable triggers an update of any query
that uses its value.

 Let’s combine a local-only field with a reactive variable to add a starred businesses func-
tion to our application. We’ll add a Stars button next to each business in the results list,

Listing 6.15 GraphQL mutation to delete a business node

1336.3 Client state management with GraphQL

allowing the user to select their starred businesses. When a use has starred a business,
it will show as bold, letting the user know it is one of their preferred businesses.

 As shown in listing 6.16, to do this, we first add a field policy for a local-only field to
the InMemoryCache instance that we’re using in Apollo Client. A field policy specifies
how to compute a local-only field. Here we add an isStarred field that will be a local-
only field. We also create a new reactive variable that will be used to store a list of
starred businesses. In this case, the field policy for the isStarred field checks to see if
the business being resolved is included in the list of starred businesses.

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import App from "./App";
import reportWebVitals from "./reportWebVitals";
import {

ApolloClient,
InMemoryCache,
ApolloProvider,
makeVar,

} from "@apollo/client";

export const starredVar = makeVar([]);

const client = new ApolloClient({
uri: "http://localhost:4000",
cache: new InMemoryCache({

typePolicies: {
Business: {

fields: {
isStarred: {

read(_, { readField }) {
return starredVar().includes(readField("businessId"));

},
},

},
},

},
}),

});

ReactDOM.render(
<React.StrictMode>

<ApolloProvider client={client}>
<App />

</ApolloProvider>
</React.StrictMode>,
document.getElementById("root")

);

// If you want to start measuring performance in your app, pass a function

Listing 6.16 web-react/src/index.js: Using a reactive variable

Import the makeVar
function to create a
new reactive variable.

Create a new reactive
variable, setting the initial
value equal to an empty array.

Include a field policy in the InMemoryCache
constructor arguments.

The field policy defines how the value is
computed for a local-only field called
isStarred on the business type.

Return true if the list of starred
businesses includes the current business.

134 CHAPTER 6 Client-side GraphQL with React and Apollo Client

// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals();

Now, we can include the isStarred field in our GraphQL query, as shown in the next
listing. We’ll need to include the @client directive to indicate this is a local-only field
and won’t be fetched from the GraphQL server.

...

const GET_BUSINESSES_QUERY = gql`
query BusinessesByCategory($selectedCategory: String!) {

businesses(
where: { categories_SOME: { name_CONTAINS: $selectedCategory } }

) {
businessId
name
address
categories {

name
}
isStarred @client

}
}

`;

...

Finally, we need a way to update the starredVar reactive variable. In the next listing,
we add a Star button next to each business. When the user clicks this button, the value
of starredVar is updated to include the businessId of the selected business.

import { starredVar } from "./index";

function BusinessResults(props) {
const { businesses } = props;
const starredItems = starredVar();

return (
<div>

<h2>Results</h2>
<table>

<thead>
<tr>

<th>Name</th>
<th>Address</th>
<th>Category</th>

</tr>
</thead>
<tbody>

Listing 6.17 web-react/src/App.js: Using a local-only GraphQL field

Listing 6.18 web-react/src/BusinessResults.js: Using our reactive variable

Add the isStarred field to the selection
set, indicating this is a local-only field
using the @client directive.

We fetch the value of starredVar
to find all starred businesses.

1356.3 Client state management with GraphQL

{businesses.map((b, i) => (
<tr key={i}>

<td>
<button

onClick={() =>
starredVar([...starredItems, b.businessId])

}
>

Star
</button>

</td>
<td style={b.isStarred ? { fontWeight: "bold" } : null}>

{b.name}
</td>
<td>{b.address}</td>
<td>

{b.categories.reduce(
(acc, c, i) => acc + (i === 0 ? " " : ", ") + c.name,
""

)}
</td>

</tr>
))}

</tbody>
</table>

</div>
);

}

export default BusinessResults;

And because this is a reactive variable, any active query that depends on the
isStarred local-only field is automatically updated in the UI (see figure 6.6)!

When clicked, add the
businessId to the list of

starred businesses.

If the business has been
starred, then use a bold

style for the business name.

Figure 6.6 Our React application after connecting to our GraphQL API

136 CHAPTER 6 Client-side GraphQL with React and Apollo Client

Now that we’ve explored mutations, we need to think about how we can secure our
application, so not just anyone can add data and update our application. In the next
chapter, we explore how to add authentication to secure our application, both on the
frontend and backend.

6.4 Exercises
1 What other GraphQL fragments could we use across our application? Write

some fragments, and try using them in your queries in Apollo Studio. When
would it make sense to use multiple fragments in the same query?

2 Using GraphQL mutations, create relationships connecting business and cate-
gory nodes to add businesses to additional categories. For example, add the
newly created Philz Coffee business to the Restaurant and Breakfast catego-
ries. Add your favorite business and corresponding categories to the graph.

3 Turn the Star button into a toggle. If the business is already starred, remove it
from the starred list.

Summary
 Apollo Client is a data management library that enables developers to manage

both local and remote data with GraphQL and includes integrations for fron-
tend frameworks, like React.

 GraphQL mutations are operations that allow for creating and updating data
and are generated for each type by the Neo4j GraphQL library.

 Apollo Client can be used for managing local state by adding local-only fields to
the GraphQL schema and by defining field policies that specify how to read,
store, and update that local data.

Part 3

Full stack considerations

After building the initial version of our full stack business review applica-
tion, it is now time to turn our attention to securing our application and deploy-
ing it using cloud services. In chapter 7, we will add authorization and
authentication to our GraphQL API and explore using the Auth0 service. In
chapter 8, we will use Netlify, AWS Lambda, and Neo4j AuraDB to deploy our full
stack application. Finally, in chapter 9, we will close the book with a look at how
to leverage abstract types in GraphQL, cursor-based pagination, and handling
relationship properties in GraphQL. After completing this part of the book, we
will have a secure full stack GraphQL application deployed to the cloud.

139

Adding authorization
 and authentication

Authentication (verifying a user’s identity) and authorization (verifying resources
users can access) are needed to secure any application—ensuring users have the
permissions that they should and protecting data and actions of the application,
both on the frontend and backend. So far, both our frontend React application

This chapter covers
 Adding authentication and authorization to our

application, including both the GraphQL API and
our frontend React application

 Using JSON Web Tokens (JWTs) to encode user
identity and permissions

 Expressing and enforcing authorization rules in
our GraphQL schema using the @auth GraphQL
schema directive

 Using Auth0 as a JWT provider and the Auth0
React SDK to add Auth0 support to our
application

140 CHAPTER 7 Adding authorization and authentication

and GraphQL API are open for anyone to access all features and functionality, includ-
ing modifying, creating, and deleting data.

 GraphQL itself is not opinionated about authorization, leaving it up to the devel-
oper to choose the most appropriate approach to implement in their application. In
this chapter, we show how to implement authorization and authentication features in
our application, using JWTs, GraphQL schema directives, and Auth0. First, we’ll take a
look at a naive approach to adding authorization to our GraphQL API by adding an
authorization check in our resolvers. Then, we explore how to use the @auth
GraphQL schema directive with the Neo4j GraphQL library to protect our GraphQL
API, adding authorization rules in the schema. We then add support for the Auth0
authorization service and see how we can make use of JSON Web Tokens to encode
user identity and permissions in our application.

7.1 Authorization in GraphQL: A naive approach
Let’s first take a look at a naive approach to adding authorization to a GraphQL API
in listing 7.1 as a starting point, using just a single static authorization token. When
receiving a request by the GraphQL server, we’ll check for a token contained in the
authorization header of the request. We’ll pass this token through to the GraphQL
resolver, where we’ll check for a certain value of the token to determine whether the
request is properly authenticated and send back the appropriate response only if the
token is valid. Note that this example is meant to convey concepts and does not repre-
sent best practices!

const { ApolloServer } = require("apollo-server");

const peopleArray = [
{

name: "Bob",
},
{

name: "Lindsey",
},

];

const typeDefs = /* GraphQL */ `
type Query {

people: [Person]
}

type Person {
name: String

}
`;

const resolvers = {
Query: {

people: (obj, args, context, info) => {

Listing 7.1 api/naive.js: A naive GraphQL authorization implementation

1417.1 Authorization in GraphQL: A naive approach

if (
context &&
context.headers &&
context.headers.authorization === "Bearer authorized123"

) {
return peopleArray;

} else {
throw new Error("You are not authorized.");

}
},

},
};

const server = new ApolloServer({
resolvers,
typeDefs,
context: ({ req }) => {

return { headers: req.headers };
},

});

server.listen().then(({ url }) => {
console.log(`GraphQL server ready at ${url}`);

});

Our GraphQL server has a single resolver, Query.people, which includes the logic for
checking the value of an authorization token, passed through the context object. This
token comes from the request header and is passed into the context object at query
time (see figure 7.1).

 Let’s give it a try. We can now start the GraphQL server:

node naive.js

In Apollo Studio, let’s issue a GraphQL query to find all Person objects and return the
name field of each:

{
people {

name
}

}

Our request is rejected since we haven’t included the appropriate authorization
token, and our result is an error message: You are not authorized. Let’s add the appropri-
ate authorization header to the GraphQL request with our authorization token. We
can do this in Apollo Studio by clicking Headers in the lower-left corner and selecting
New header with the key Authorization and value Bearer authorized123:

{
"Authorization": "Bearer authorized123"

}

Checking for a specific
auth token value

Adding the HTTP request
headers to the GraphQL
context object

142 CHAPTER 7 Adding authorization and authentication

Now, when we execute the same GraphQL operation—this time with the authoriza-
tion token attached as a header in the request—we see the results we’re expecting:

{
"data": {

"people": [
{
name: "Bob",

},
{
name: "Lindsey",

},
]

}
}

Client GraphQL server

GraphQL request
Context object

Authorization: Bearer
authorized123

people resolver function

Response

Error

"You are not authorized"

Data

Throw error.

Return data.

Authorization: Bearer authorized123

{
 people {
 name
 }
}

Is auth token
authorized123?

{
 people: [
 { name: "Bob"},
 { name: "Lindsey"}
]
}

No

Yes

Figure 7.1 The authorization flow for our naive GraphQL authorization implementation

1437.2 JSON Web Tokens

This naive approach shows a few important concepts, such as how to take the authori-
zation header from a request and pass it through to the context object of the
GraphQL resolver, as well as how to add an authorization header in Apollo Studio.
However, there are a few problems with this approach that we wouldn’t want to imple-
ment in a real-world application:

1 We don’t validate the token. How do we know the user making the request is who
they say they are and if they actually have the permissions they state in the
token? We’re just taking their word for it!

2 Our authorization rules are mixed with data-fetching logic in the GraphQL resolver. This
might seem like something that works for a simple example, but imagine what
will happen as we add more types and authorization rules—it will be difficult to
track and maintain.

We’ll address the first issue by using cryptographically-signed JWTs to encode and vali-
date the users’ identity and permissions expressed in the authorization header. We’ll
address the second issue by using the @auth GraphQL schema directive with the
Neo4j GraphQL library; by adding declarative authorization rules to our schema, we
have a single source of truth for our authorization rules.

7.2 JSON Web Tokens
JSON Web Token, commonly referred to as JWT, is an open standard for cryptograph-
ically signing a JSON object that can be used for trusted communication between par-
ties. A compact token is generated and signed using public/private key pairs to verify
that the token was generated by a party holding the private key, and therefore, the
integrity of the information contained in the token can be cryptographically verified
by decoding it, using the public key counterpart of the private key used to sign it.

 The information encoded in a JWT (the payload) is a series of claims about an
entity, typically a user. Standard claims in a JWT include

 iss—The issuer of the token
 exp—The expiration date of the token
 sub—The subject, usually some sort of ID referencing the user to which these

claims apply
 aud—The audience, often used when authenticating against an API

We can also add additional claims to a JWT to express information about the user,
such as what roles they have in the application (i.e., Is the user an admin or editor?)
or more fine-grained permissions they should be granted, such as the permission to
read, create, update, or delete certain types of data in the application.

 Many identity and access management services support the JWT standard. They
can even be used self-contained, if you choose to provide your own authorization ser-
vice. In this chapter, we will make use of the Auth0 service.

 First, let’s create a JWT to encode some claims about a user, and then we’ll modify
the previous naive GraphQL API to verify the token and ensure the user should be

144 CHAPTER 7 Adding authorization and authentication

given access to the GraphQL API. To do this, we’ll use the online JWT debugger at
https://jwt.io.

 We’ll need a random string to use as the signing key. Later, we’ll use this in our
GraphQL server to verify the incoming JWTs:

Dpwm9XXKqk809WXjCsOmRSZQ5i5fXw8N

Enter this value in the VERIFY SIGNATURE section of the JWT Debugger. Next, we
need to add some claims to the payload of our token (see figure 7.2):

{
"sub": "1234567890",
"name": "William Lyon",
"email": "will@grandstack.io",
"iat": 1638331785

}

After creating our JWT, let’s return to the naive GraphQL server and add support for
verifying the token. First, we’ll install the jsonwebtoken package:

npm install jsonwebtoken

Next, we’ll update the resolver logic to decode the JWT using our random client
secret, as shown in the next listing.

Figure 7.2 Creating a signed JWT using jwt.io

https://jwt.io

1457.2 JSON Web Tokens

const { ApolloServer } = require("apollo-server");
const jwt = require("jsonwebtoken");

const peopleArray = [
{

name: "Bob",
},
{

name: "Lindsey",
},

];

const typeDefs = /* GraphQL */ `
type Query {

people: [Person]
}

type Person {
name: String

}
`;

const resolvers = {
Query: {

people: (obj, args, context, info) => {
if (context.user) {

return peopleArray;
} else {

throw new Error("You are not authorized");
}

},
},

};

const server = new ApolloServer({
resolvers,
typeDefs,
context: ({ req }) => {

let decoded;
if (req && req.headers && req.headers.authorization) {

try {
decoded = jwt.verify(
req.headers.authorization.slice(7),
"Dpwm9XXKqk809WXjCsOmRSZQ5i5fXw8N"

);
} catch (e) {

// token not valid
console.log(e);

}
}
return {

user: decoded,
};

Listing 7.2 api/naive.js: Verifying a JWT in the GraphQL server

Verifying the token using
our random client secret

146 CHAPTER 7 Adding authorization and authentication

},
});

server.listen().then(({ url }) => {
console.log(`GraphQL server ready at ${url}`);

});

If the token can be verified, meaning it was signed by the appropriate key, then we
continue fetching data in the resolver. If the token is not valid, then the resolver
throws an error, and no data is fetched (see figure 7.3).

This example uses the HS256 algorithm, which means the client and server share the
same key. Later, when we switch to Auth0 as the provider for our tokens, we’ll make
use of the more secure RS256 algorithm in which a public/private key pair is used
instead.

Client GraphQL server

GraphQL request

Context object

people resolver function

Throw an error.Response

Response

No

Is the JWT
signature valid?

Yes, decode
JWT payload

{
user: {
 "sub": "1234567890",
 "name": "William Lyon",
 "email": "will@grandstack.io",
 "iat": 1516239022
}
}

Authorization: Bearer eyJhbGciOiJ...

{
 people {
 name
 }
}

Error

"You are not authorized"

Data

{
 people: [
 { name: "Bob"},
 { name: "Lindsey"}
]
}

Figure 7.3 Introducing JWT into our authorization flow

1477.3 The @auth GraphQL schema directive

 After restarting the GraphQL server to pick up our changes, we’ll open Apollo Stu-
dio and add the JWT token to the authorization header. If we try to make the request
without a token or using an invalid token, we receive this error: You are not authorized.
This ensures the GraphQL server only executes valid requests—those containing a
JWT signed using the private key corresponding to the public key (see figure 7.4).

Earlier, we mentioned two issues with our naive approach to authorization. The first
was that we didn’t have a way to validate the authorization token. We’ve solved that
problem by using and validating a JWT, so now, it’s time to address our commingled
authorization rules. We’ll use directives to declare our authorization rules in our
GraphQL schema and ensure they are enforced using the Neo4j GraphQL library.

7.3 The @auth GraphQL schema directive
Let’s leave behind the simple, naive GraphQL server example and return to our busi-
ness reviews application to explore how to add authorization rules to our GraphQL
schema. As we saw previously with the @cypher schema directive, GraphQL schema
directives allow us to indicate that some custom server-side logic should be applied
when resolving the GraphQL request.

 The Neo4j GraphQL library includes the @auth GraphQL schema directive, which
allows for defining authorization rules to protect fields or types in the GraphQL
schema. Before we can use the @auth schema directive, we’ll need to specify the
method used to verify the JWT as well as the secret that should be used to verify the
token. Let’s set an environment variable with the value of our JWT secret:

export JWT_SECRET=Dpwm9XXKqk809WXjCsOmRSZQ5i5fXw8N

Now, we’ll need to update the configuration for the Neo4j GraphQL Library to specify
that this token should be used when verifying authorization tokens, as shown in listing
7.3. To do this, we will read the JWT_SECRET environment variable we just set and pass
this in a plugins object alongside our type definitions and resolvers. We’ll also need
to install the graphql-plugin-auth package to enable the usage of authorization
plugins with the Neo4j GraphQL Library:

npm i @neo4j/graphql-plugin-auth

Figure 7.4 Adding a JWT as an Authorization header in Apollo Studio

148 CHAPTER 7 Adding authorization and authentication

const {
Neo4jGraphQLAuthJWTPlugin,

} = require("@neo4j/graphql-plugin-auth");

const neoSchema = new Neo4jGraphQL({
typeDefs,
resolvers,
driver,
plugins: {

auth: new Neo4jGraphQLAuthJWTPlugin({
secret: process.env.JWT_SECRET,

}),
},

});

We can also configure JWT decoding and verification using a JSON Web Key Set
(JWKS) URL, a more secure approach than using a shared secret. We will use this
method to configure JWT verification with the Neo4j GraphQL library when we use
Auth0, but for now, configuring using the shared secret is fine, as shown in the next
listing. In addition, we also need to pass through the HTTP request object that
includes the authorization header and the user’s auth token.

neoSchema.getSchema().then((schema) => {
const server = new ApolloServer({

schema,
context: ({ req }) => ({ req }),

});
server.listen().then(({ url }) => {

console.log(`GraphQL server ready at ${url}`);
});

});

7.3.1 Rules and operations

When using the @auth GraphQL schema directive, there are two aspects we need to
consider: rules and operations. Both of these are specified as arguments to the @auth
directive. There are several types of authorization rules that can be defined, depend-
ing on how, exactly, we want to protect fields and types. Perhaps we only want certain
fields to be accessible to users who have signed in. Or perhaps we want only adminis-
trators in our application to be able to edit certain types. Or perhaps only authors of a
review should be able to update it. These are all authorization rules that can be speci-
fied using the @auth directive. The following rule types are available with the @auth
schema directive:

 isAuthenticated is the most basic rule we can use. A GraphQL request access-
ing the protected type or field must have a valid JWT.

Listing 7.3 api/index.js: Configuring authorization for the Neo4j GraphQL library

Listing 7.4 api/index.js: Pass through the request object with the auth token

Validate JWTs using a secret.

Pass the HTTP request object to the context
function so the JWT can be decoded in the
resolvers generated by the Neo4j GraphQL
library.

1497.3 The @auth GraphQL schema directive

 The roles rule specifies one or more roles, which must be contained in the
JWT payload.

 The allow rule will compare values from the JWT payload to values in the data-
base, ensuring they are equal for a valid request.

 The bind rule is used to ensure equality between a value in the JWT payload
and in a GraphQL mutation operation before committing to the database.

 The where rule is similar to allow, in that a value from the JWT payload is used;
however, instead of checking for equality, a predicate is added to the generated
database query to filter for data matching the rule.

When adding rules using the @auth directive, one or more operations can be option-
ally specified, indicating which operations the rule should be applied to. If no opera-
tions are specified, then the rule will be applied to all operations. The following
operations can be used:

 CREATE

 READ

 UPDATE

 DELETE

 CONNECT

 DISCONNECT

Let’s see the @auth directive in action to help us understand how these rules and oper-
ations should be used in our business reviews application.

7.3.2 The isAuthenticated authorization rule

The isAuthenticated rule can be used on either GraphQL types or fields and indi-
cates that to access that type or field, the GraphQL request must have a valid JWT
attached. The validity of the JWT is determined by whether or not it can be verified
using the JWT secret value as the key—indicating that the token was signed by the pri-
vate key and created by the appropriate authority. The isAuthenticated logic is used
to gate some area of the application that requires the user to authenticate to the appli-
cation but does not require any specific permissions—the user only needs to be an
authenticated user.

 For the purposes of our business reviews application, let’s say we want to allow any
user to search for businesses but only show the averageStars field to authenticated
users, encouraging users to sign up with our application. Let’s update our GraphQL
type definitions to include this authorization rule.

type Business {
businessId: ID!
waitTime: Int! @computed
averageStars: Float

Listing 7.5 api/index.js: Updating the Business type

150 CHAPTER 7 Adding authorization and authentication

@auth(rules: [{ isAuthenticated: true }])
@cypher(

statement: "MATCH (this)<-[:REVIEWS]-(r:Review) RETURN avg(r.stars)"
)

recommended(first: Int = 1): [Business]
@cypher(

statement: """
MATCH (this)<-[:REVIEWS]-(:Review)<-[:WROTE]-(u:User)
MATCH (u)-[:WROTE]->(:Review)-[:REVIEWS]->(rec:Business)
WITH rec, COUNT(*) AS score
RETURN rec ORDER BY score DESC LIMIT $first
"""

)
name: String!
city: String!
state: String!
address: String!
location: Point!
reviews: [Review!]! @relationship(type: "REVIEWS", direction: IN)
categories: [Category!]!

@relationship(type: "IN_CATEGORY", direction: OUT)
}

We’ve now protected the averageStars field, which means we’ll need to include a
valid JWT in the header of any GraphQL request with that field, as shown in the next
listing.

{
businesses {

name
categories {

name
}
averageStars

}
}

"errors": [
{

"message": "Unauthenticated",

If we don’t include the averageStars field in the selection set, our request returns the
expected fields. Experiment with sending an invalid token and requests with and with-
out the averageStars field. Here we include a valid token in the request’s authoriza-
tion header to allow us to view the averageStars field:

{
"Authorization":"Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxM
jM0NTY3ODkwIiwibmFtZSI6IldpbGxpYW0gTHlvbiIsImVtYWlsIjoid2lsbEBncmFuZHN0YWNr
LmlvIiwiaWF0IjoxNTE2MjM5MDIyfQ.Y37P8OF_qMamIcZldi89Nm0YQdF4v91iHQWrNu0jtBk"
}

Listing 7.6 Requesting the protected averageStars field in a GraphQL query

We add the @auth schema directive to
protect the averageStars field, using an

isAuthenticated rule.

1517.3 The @auth GraphQL schema directive

7.3.3 The roles authorization rule

The roles rule allows us to add requirements for the type of permissions required for
one or more operations. Rather than just having a valid signed token, to access a field
or type protected by a roles rule, the token must include one of the specified roles in
the role claim encoded in the token. Let’s take a look at an example in the next listing.

extend type User @auth(rules: [{roles: ["admin"]}])

Here we use the extend GraphQL keyword in our type definitions to add additional
directives or fields to a type already defined in our type definitions. Using this syntax is
equivalent to including the directive when first defining the type, but using type
extensions allows us to separate our type definitions into multiple files if we desire
(see figure 7.5).

Listing 7.7 api/index.js: Protecting the user type with a roles authorization rule

Client GraphQL server

Yes

Neo4jGenerate the database query.
Fetch data from Neo4j.

No, return
error

GraphQL request

Authorization: Bearer eyJhbGciOiJ...

Context object

hasRole directive resolver

Business resolver function

Decode JWT.
Add the payload to the context.

Response

Error

"You are not authorized"

Data

Response

{
 Business (name: "Neo4j") {
 name
 address
 }
}

{
 Business: [
 {
 name: "Neo4j"
 address: "lll E 5th Ave"
 }
]
}

{
 user: {
 "sub": "1234567890",
 "name": "William Lyon",
 "email": "will@grandstack.io",
 "iat": 1516239022
 }
}

Does the user
have the

required role?

Figure 7.5 Authorization flow, using the @auth GraphQL schema directive

152 CHAPTER 7 Adding authorization and authentication

Now, any GraphQL operation that accesses the User type must have the admin role,
including any that traverse to a user, as the next listing shows.

query {
businesses(where: {name: "Neo4j"}) {

name
categories {

name
}
address
reviews {

text
stars
date
user {

name
}

}

}
}

Executing the previous query will result in the following error message, since our
token does not include the admin role:

"errors": [
{

"message": "Forbidden"
}

]

We’ll need to include the roles in the claims in the token. Return to the online JWT
builder at https://jwt.io, and add the roles array to the claims:

{
"sub": "1234567890",
"name": "William Lyon",
"email": "will@grandstack.io",
"iat": 1516239022,
"roles": ["admin"]

}

Now, if we update the token used in the authorization header in Apollo Studio using
this new JWT and run the GraphQL query again, we will be able to access user
information.

 Remember that if we don’t specify specific operations (e.g., create, read, and
update) when adding our authorization rules, then the rule applies to all operations
that include the type or field in question. If we want to limit the authorization rule to

Listing 7.8 GraphQL query accessing user information

https://jwt.io

1537.3 The @auth GraphQL schema directive

only being applied to certain operations, we must explicitly specify them when defin-
ing the rules, using the @auth schema directive.

 The first two @auth rules we examined (isAuthenticated and roles) used only
values from the JWT payload (or, simply, the presence of a valid token, in the case of
isAuthenticated). The next three rules we will explore will use values from the data-
base (our application data) to enforce authorization rules.

7.3.4 The allow authorization rule

Previously, we created a rule that protected the user type by requiring the admin role
for the authenticated user. Let’s add an additional authorization rule to allow users to
read their own user information.

extend type User
@auth(

rules: [
{ operations: [READ], allow: { userId: "$jwt.sub" } }
{ roles: ["admin"] }

]
)

Note that we have combined our new allow rule with the existing roles rule. Since the
rules argument takes an array of rules, these act as or logic. To access the user type,
the claims in the request’s JWT must conform to at least one of the authorization rules
defined in the rules array. In this case, the authenticated user must be either an
admin or match the userId of the user being requested. To test our new rule, let’s cre-
ate a new JWT for the user Jenny with the following payload:

{
"sub": "u3",
"name": "Jenny",
"email": "jenny@grandstack.io",
"iat": 1516239022,
"roles": [

"user"
]

}

We can create this using the web interface at jwt.io; just be sure to use the same JWT
secret when signing the token:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJ1MyIsIm5hbWUiOiJKZW5ueSIsIm
VtYWlsIjoiamVubnlAZ3JhbmRzdGFjay5pbyIsImlhdCI6MTUxNjIzOTAyMiwicm9sZXMiOlsid
XNlciJdfQ.ctal5qgshR4-hqchxsYxxHVGPsE0JNxydGy3Pga27nA

Now, using this JWT to execute a GraphQL request as the user Jenny, we can query for
this user’s details in the following listing.

Listing 7.9 api/index.js: Allowing users to access their own user information

https://jwt.io/

154 CHAPTER 7 Adding authorization and authentication

query {
users(where: { name: "Jenny" }) {

name
userId

}
}

Since the sub claim in our JWT matches the userId of the user we are requesting, we
see the result data:

{
"data": {

"users": [
{

"name": "Jenny",
"userId": "u3"

}
]

}
}

In this case, our GraphQL query is filtering for the user, using the where argument to
ensure we are only querying for the data that we have access to. What happens if we
ask for user data that we don’t have access to? For example, what if we asked for all
user information?

query {
users {

name
userId

}
}

Since our user is not an admin and we are requesting user objects for which the
userId will not match the sub claim in our JWT, we will see a Forbidden error.

 Let’s see how we can avoid these types of errors by automatically filtering the query
results for only the data the authenticated user has access to. To accomplish this, we
will use a where authorization rule. This means the client doesn’t need to worry about
adding a filter to avoid asking for data the authenticated user doesn’t have access to.

7.3.5 The where authorization rule

In the previous section, we used an allow authorization rule to ensure that users are
only able to access their own data. However, this approach was problematic in that it
put the burden on the client to add the appropriate filters to ensure the GraphQL
request was not asking for data the user was not authorized to see. Let’s instead use a

Listing 7.10 Query for a single user’s details

Listing 7.11 Query for all user details

1557.3 The @auth GraphQL schema directive

where rule in the next listing, so we don’t need to worry about requesting data that the
authenticated user is not authorized to see.

extend type User
@auth(

rules: [
{ operations: [READ], where: { userId: "$jwt.sub" } }
{ operations: [CREATE, UPDATE, DELETE], roles: ["admin"] }

]
)

We still need to ensure that only admin users are able to create, update, or delete
users, so we add those operations to the roles rule, as shown in listing 7.13. Now,
whenever a read request for the user type is executed, a predicate in the generated
database query is added to filter for only the currently authenticated user, matching
the sub claim of the JWT to the userId node property value in the database.

query {
users {

name
userId

}
}

{
"data": {

"users": [
{

"name": "Jenny",
"userId": "u3"

}
]

}
}

If we examine the generated Cypher query sent to the database we can see the predi-
cate that is appended, ensuring the node’s userId property value in the database
matches the JWT sub value, as shown in the following listing.

MATCH (this:User)
WHERE this.userId IS NOT NULL AND this.userId = "u3"
RETURN this { .name, .userId } as this

Listing 7.12 api/index.js: Using a where authorization rule

Listing 7.13 GraphQL query requesting user information

Listing 7.14 Generated Cypher query

156 CHAPTER 7 Adding authorization and authentication

7.3.6 The bind authorization rule

The bind rule is used to enforce authorization rules when creating or updating data
and can also be used across relationships. In listing 7.15, let’s use a bind rule to ensure
that when reviews are created or updated, they are connected to the currently authen-
ticated user. We don’t want to allow users to falsely create reviews written by other
users!

extend type Review
@auth(

rules: [
{

operations: [CREATE, UPDATE]
bind: { user: { userId: "$jwt.sub" } }

}
]

)

Let’s write a GraphQL mutation to create a new business review in the next listing.

mutation {
createReviews(

input: {
business: { connect: { where: { node: { businessId: "b10" } } } }
date: "2022-01-22"
stars: 5.0
text: "Love the Philtered Soul!"
user: { connect: { where: { node: { userId: "u3" } } } }

}
) {

reviews {
business {

name
}
text
stars

}
}

}

This executes with no problem, adding the review node to the database and the
appropriate relationships:

Listing 7.15 api/index.js: Using a bind authorization rule

Listing 7.16 Creating a new review

1577.4 Auth0: JWT as a service

{
"data": {

"createReviews": {
"reviews": [

{
"business": {

"name": "Philz Coffee"
},
"text": "Love the Philtered Soul!",
"stars": 5

}
]

}
}

}

However, if instead of connecting the review to the currently authenticated user (in this
case, the user with userId u3), the mutation tries to connect to user u1 or to no user at
all, then the mutation operation will fail, and a Forbidden error will be returned.

 Be sure to refer to the documentation for more examples of how to use the @auth
GraphQL schema directive to add complex authorization rules to your GraphQL API:
neo4j.com/docs/graphql-manual/current/auth.

 So far, we’ve been using the JWT Builder website to create our JWTs; this is fine for
development and testing, but we need something more for production.

7.4 Auth0: JWT as a service
Auth0 is an authentication and authorization service that can authenticate users with
several methods, such as social sign-in or email and password. It also includes func-
tionality to maintain a database of users, and we can use it to define rules and permis-
sions for our users. I like to think of Auth0 as a JWT-as-a-service provider. Even though
Auth0 has lots of functionality and services, at the end of the day, I’m often just inter-
ested in getting a user’s auth token (as a JWT) and using that to authorize the user in
my APIs and applications.

 Auth0 is also a good service for learning and development because it offers a free
tier with no credit card required to sign up. In this section, we will configure Auth0 to
protect our API and then use the Auth0 React SDK to add Auth0 support to our appli-
cation. You can create an Auth0 account for free at https://auth0.com.

7.4.1 Configuring Auth0

Once we’ve signed in to Auth0, we’ll need to create an API and an Application in our
Auth0 tenant (see figure 7.6). First, create the API and give it a name.

https://auth0.com
https://neo4j.com/docs/graphql-manual/3.0/auth/

158 CHAPTER 7 Adding authorization and authentication

We won’t make use of this feature in our application, but we can, optionally, enable
role-based access control (RBAC) for our API (see figure 7.7). This will allow us to add
fine-grained permissions to the JWTs generated by Auth0 that can be used by the
roles @auth schema directive rule for role-based access control.

Figure 7.6 Creating an API in Auth0

1597.4 Auth0: JWT as a service

If we do enable RBAC, we’ll also need to define all possible permissions that can be
used in our API. I’ve added the necessary permissions for creating, reading, updating,
and deleting businesses in our API (see figure 7.8).

 You can read more about using the roles authorization rule to enable RBAC in
the Neo4j GraphQL Library documentation here: http://mng.bz/5Q5z.

 Now, we need to create our Application in the Auth0 dashboard. Select Create
Application. We’ll need to choose a name for our application—I used Business Reviews.
We’re also asked to choose the type of application. Since we’re building a React appli-
cation, choose Single Page Web Application, and click the Create button.

Figure 7.7 Enabling RBAC for our API in Auth0

http://mng.bz/5Q5z

160 CHAPTER 7 Adding authorization and authentication

We’ll keep most default settings, but we must update the entries for Allowed Callback
URLs and Allowed Logout URLs. Add http://localhost:3000 to each of these text boxes
under the Settings tab for our new application, and then select Save Changes.

 Next, we’ll need to update the configuration in our GraphQL API, specifying the
method used to verify the JWTs generated by Auth0, as shown in listing 7.17. Up to
now, we’ve been using a simple secret stored in an environment variable (JWT_SECRET)
to verify the JWT. This is fine for local development and testing, but we’ll want to use a
more secure method now that we’re using Auth0 and preparing to deploy our applica-
tion to the web.

 Navigate to Advanced Settings and then Endpoints. Look for the JWKS URL, and
copy this value. Then, in the code for our GraphQL API, change the method used for
validating the JWT to jwksEndpoint using the URL for your Auth0 application. This
will allow our GraphQL API to fetch the public key from Auth0 to validate the token,
which is a much more secure method than using a shared secret.

Figure 7.8 Adding permissions to the API in Auth0

1617.4 Auth0: JWT as a service

const {
Neo4jGraphQLAuthJWKSPlugin,

} = require("@neo4j/graphql-plugin-auth");

...

const neoSchema = new Neo4jGraphQL({
typeDefs,
resolvers,
driver,
plugins: {

auth: new Neo4jGraphQLAuthJWKSPlugin({
jwksEndpoint: "https://grandstack.auth0.com/.well-known/jwks.json",

}),
},

});

We’re now ready to start integrating Auth0 into our React application.

7.4.2 Auth0 React

First, let’s install the Auth0 SDK for React. This package includes React-specific inte-
grations for adding Auth0 support to any React applications.

 We’ll install the auth0-react library using npm. First, be sure you’re in the web-
react directory:

npm install @auth0/auth0-react

Now, let’s add the initial Auth0 setup to our React application in the next listing.

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import App from "./App";
import reportWebVitals from "./reportWebVitals";
import {

ApolloClient,
InMemoryCache,
ApolloProvider,
makeVar,

} from "@apollo/client";
import { Auth0Provider } from "@auth0/auth0-react";

export const starredVar = makeVar([]);

const client = new ApolloClient({
uri: "http://localhost:4000",
cache: new InMemoryCache({

typePolicies: {

Listing 7.17 api/index.js: Using the Auth0 JSON Web Key Set (JWKS) endpoint

Listing 7.18 web-react/src/index.js: Adding the Auth0 provider component

Now we use the
Neo4jGraphQLAuthJWKSPlugin class.

Be sure to use your endpoint, as
found in Auth0’s Advanced Settings.

Import the Auth0
Provider component.

162 CHAPTER 7 Adding authorization and authentication

Business: {
fields: {
isStarred: {

read(_, { readField }) {
return starredVar().includes(readField("businessId"));

},
},

},
},

},
}),

});

ReactDOM.render(
<React.StrictMode>

<Auth0Provider
domain="grandstack.auth0.com"
clientId="4xw3K3cjvw0hyT4Mjp4RuOVSxvVYcOFF"
redirectUri={window.location.origin}
audience="https://reviews.grandstack.io"

>
<ApolloProvider client={client}>

<App />
</ApolloProvider>

</Auth0Provider>
</React.StrictMode>,
document.getElementById("root")

);

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals();

We add the Auth0Provider component, injecting it into the component hierarchy by
wrapping our ApolloProvider and App components. We also include the domain, cli-
ent ID, and audience information for our Auth0 tenant, application, and API that we
just created. This information can be found in the Auth0 dashboard for your Auth0
application.

 In the next listing, we’ll add login and logout buttons to our application using Auth0.
Clicking the login button will walk the user through Auth0’s authentication flow.

import React, { useState } from "react";
import BusinessResults from "./BusinessResults";
import { gql, useQuery } from "@apollo/client";
import { useAuth0 } from "@auth0/auth0-react";

const GET_BUSINESSES_QUERY = gql`
query BusinessesByCategory($selectedCategory: String!) {

businesses(

Listing 7.19 web-react/src/App.js: Adding login and logout buttons

Wrap our App component with
the Auth0Provider component.

Import the useAuth0
React hook.

1637.4 Auth0: JWT as a service

where: { categories_SOME: { name_CONTAINS: $selectedCategory } }
) {

businessId
name
address
categories {

name
}
isStarred @client

}
}

`;

function App() {
const [selectedCategory, setSelectedCategory] = useState("");
const { loginWithRedirect, logout, isAuthenticated } = useAuth0();

const { loading, error, data, refetch } = useQuery(
GET_BUSINESSES_QUERY,
{

variables: { selectedCategory },
}

);

if (error) return <p>Error</p>;
if (loading) return <p>Loading...</p>;

return (
<div>

{!isAuthenticated && (
<button onClick={() => loginWithRedirect()}>Log In</button>

)}
{isAuthenticated && (

<button onClick={() => logout()}>Log Out</button>
)}
<h1>Business Search</h1>
<form>

<label>
Select Business Category:
<select

value={selectedCategory}
onChange={(event) => setSelectedCategory(event.target.value)}

>
<option value="">All</option>
<option value="Library">Library</option>
<option value="Restaurant">Restaurant</option>
<option value="Car Wash">Car Wash</option>

</select>
</label>
<input type="button" value="Refetch" onClick={() => refetch()} />

</form>

<BusinessResults businesses={data.businesses} />
</div>

);

Access functions to work
with authentication flow

and user data.

Add the login and logout buttons.

164 CHAPTER 7 Adding authorization and authentication

}

export default App;

The Auth0 React package includes a useAuth0 hook, which gives us access to func-
tions that can trigger the authentication flow, determine whether the user is currently
authenticated, and access user information. Now, we have a button with the option to
log in, or if we’re already logged in, then we have the option to log out.

 Clicking Log In, we’re presented with a number of options for sign-in, including
GitHub, Google, Twitter, or email and password authentication (see figure 7.9). One
benefit of using an authentication service is that we don’t really need to concern our-
selves with the specifics of the auth flow, since this is handled by Auth0.

Notice the use of the isAuthenticated variable provided by the useAuth0 hook. Once
they log in, we can also access user information. Let’s now add a profile component to
show the user’s name and avatar image once they’ve logged in. Create a new file, Profile
.js, in the web-react/src directory, as shown in the next listing.

Figure 7.9 Sign-in options via Auth0

1657.4 Auth0: JWT as a service

import { useAuth0 } from "@auth0/auth0-react";

const Profile = () => {
const { user, isAuthenticated } = useAuth0();
return (

isAuthenticated && (
<div style={{ padding: "10px" }}>

<img
src={user.picture}
alt="User avatar"
style={{ width: "40px" }}

/>
{user.name}

</div>
)

);
};

export default Profile;

Now, let’s include this profile component in our main App component to display the
profile when the user is logged in.

import Profile from "./Profile";

...

{!isAuthenticated && (
<button onClick={() => loginWithRedirect()}>Log In</button>

)}
{isAuthenticated && <button onClick={() => logout()}>Log Out</button>}
<Profile />
<h1>Business Search</h1>

...

OK, we’re able to have users sign in to our application and show their profile informa-
tion, as shown in figure 7.10, but how do we make authenticated requests to our
GraphQL API? We saw when using Apollo Studio that we need to attach the authoriza-
tion token as a header in the GraphQL request.

Listing 7.20 web-react/src/Profile.js: Adding a user profile component

Listing 7.21 web-react/src/App.js: Adding profile component

Adding the Profile component

166 CHAPTER 7 Adding authorization and authentication

To access the token, we will use the getAccessTokenSilently function from the
auth0-react library. Then, we will attach this token to the Apollo Client instance, as
shown in the next listing.

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import App from "./App";
import reportWebVitals from "./reportWebVitals";
import {

ApolloClient,
InMemoryCache,
ApolloProvider,
makeVar,
createHttpLink,

} from "@apollo/client";
import { setContext } from "@apollo/client/link/context";
import { Auth0Provider, useAuth0 } from "@auth0/auth0-react";

export const starredVar = makeVar([]);

const AppWithApollo = () => {

Listing 7.22 web-react/src/index.js: Adding the access token in our GraphQL request

Figure 7.10 The authenticated view of our React application

Create a wrapper component that will be
responsible for adding the authorization token.

1677.4 Auth0: JWT as a service

const { getAccessTokenSilently, isAuthenticated } = useAuth0();

const httpLink = createHttpLink({
uri: "http://localhost:4000",

});

const authLink = setContext(async (_, { headers }) => {
// Only try to fetch access token if user is authenticated
const accessToken = isAuthenticated

? await getAccessTokenSilently()
: undefined;

if (accessToken) {
return {

headers: {
...headers,
authorization: accessToken ? `Bearer ${accessToken}` : "",

},
};

} else {
return {

headers: {
...headers,
// We could set additional headers here or a "default"
// authorization header if needed

},
};

}
});

const client = new ApolloClient({
link: authLink.concat(httpLink),
cache: new InMemoryCache({

typePolicies: {
Business: {
fields: {

isStarred: {
read(_, { readField }) {

return starredVar().includes(readField("businessId"));
},

},
},

},
},

}),
});

return (
<ApolloProvider client={client}>

<App />
</ApolloProvider>

);
};

ReactDOM.render(
<React.StrictMode>

Use Apollo Client’s
setContext function to
add the JWT to the
GraphQL request.

168 CHAPTER 7 Adding authorization and authentication

<Auth0Provider
domain="grandstack.auth0.com"
clientId="4xw3K3cjvw0hyT4Mjp4RuOVSxvVYcOFF"
redirectUri={window.location.origin}
audience="https://reviews.grandstack.io"

>
<AppWithApollo />

</Auth0Provider>
</React.StrictMode>,
document.getElementById("root")

reportWebVitals();

Now, each request to the GraphQL API will include the authorization token in the
header if the user is authenticated. We can verify this by opening the browser devel-
oper tools and inspecting the GraphQL network request (see figure 7.11).

Inject the AppWithApollo
component into the React
component hierarchy.

Figure 7.11 Viewing the authorization header attached to the GraphQL request in the browser dev tools
window

1697.4 Auth0: JWT as a service

We can copy this token and decode its payload using jwt.io. Here’s what my decoded
token looks like:

{
"iss": "https://grandstack.auth0.com/",
"sub": "github|1222454",
"aud": [

"https://reviews.grandstack.io",
"https://grandstack.auth0.com/userinfo"

],
"iat": 1599684745,
"exp": 1599771145,
"azp": "4xw3K3cjvw0hyT4Mjp4RuOVSxvVYcOFF",
"scope": "openid profile email"

}

Of course, our application doesn’t look any different, since we aren’t requesting any
protected fields in our GraphQL query. Let’s add the averageStars field, which is
protected by the isAuthenticated rule, to the GraphQL query when the user is
logged in.

function App() {
const [selectedCategory, setSelectedCategory] = useState("");
const { loginWithRedirect, logout, isAuthenticated } = useAuth0();

const GET_BUSINESSES_QUERY = gql`
query BusinessesByCategory($selectedCategory: String!) {

businesses(
where: { categories_SOME: { name_CONTAINS: $selectedCategory } }

) {
businessId
name
address
categories {

name
}
${isAuthenticated ? "averageStars" : ""}
isStarred @client

}
}

`;

const { loading, error, data, refetch } = useQuery(
GET_BUSINESSES_QUERY,
{

variables: { selectedCategory },
}

);

if (error) return <p>Error</p>;
if (loading) return <p>Loading...</p>;

Listing 7.23 web-react/src/App.js: Including the averageStars field in the selection set

Add the averageStars field when
the user is authenticated.

170 CHAPTER 7 Adding authorization and authentication

And now we will update the BusinessResults component to include averageStars
when the use is authenticated.

import React from "react";
import { starredVar } from "./index";
import { useAuth0 } from "@auth0/auth0-react";

function BusinessResults(props) {
const { businesses } = props;
const starredItems = starredVar();
const { isAuthenticated } = useAuth0();

return (
<div>

<h2>Results</h2>
<table>

<thead>
<tr>

<th>Star</th>
<th>Name</th>
<th>Address</th>
<th>Category</th>
{isAuthenticated ? <th>Average Stars</th> : null}

</tr>
</thead>
<tbody>
{businesses.map((b) => (

<tr key={b.businessId}>
<td>

<button
onClick={() =>

starredVar([...starredItems, b.businessId])
}

>
Star

</button>
</td>

<td style={b.isStarred ? { fontWeight: "bold" } : null}>
{b.name}

</td>
<td>{b.address}</td>
<td>

{b.categories.reduce(
(acc, c, i) => acc + (i === 0 ? " " : ", ") + c.name,
""

)}
</td>
{isAuthenticated ? <td>{b.averageStars}</td> : null}

</tr>
))}

</tbody>

Listing 7.24 web-react/src/BusinessResults.js: Display the averageStars field

Add the Average Stars header
only when the user is

authenticated.

Show the Average Stars value
when authenticated.

171Summary

</table>
</div>

);
}

export default BusinessResults;

Now, we’ll see the average stars for each business only when the user is authenticated.
We’ve added authentication and authorization to our application and added support
for Auth0. Now that we’re confident our application is secure, we’ll take a look at
deploying our application and database in the next chapter.

7.5 Exercises
1 Create a new query field called qualityBusinesses that uses a @cypher schema

directive to return businesses that have at least two reviews each with four or
more stars. Protect this field, using a roles rule and the @auth schema directive
to require a role of analyst. Create a JWT that includes this role in the claims,
and use Apollo Studio to query this new qualityBusinesses field.

2 In this chapter, we used a GraphQL mutation to create a new business review.
Update the React application to include a form to allow the currently authenti-
cated user to create new business reviews.

Summary
 Authorization rules can be expressed declaratively in the GraphQL schema

using the @auth GraphQL schema directive.
 JWT is a standard for encoding and transmitting JSON objects and is commonly

used for authorization tokens in web applications, such as GraphQL APIs.
 Auth0 is an identity and access management service that can be used to handle

JWT generation and user authentication. Auth0 can be integrated into a React
application, using the Auth0 React SDK.

172

Deploying our full stack
 GraphQL application

While developing our application so far, we have been running it locally on our
machine for testing. Now, it’s time to deploy our application so we can share it with
the world and have users interact with it. There are many different ways to deploy
applications, especially with the growth and evolution of cloud-managed services that
offer improved developer experiences and usage pricing. There is not a single best
deployment option for any application, as each choice has tradeoffs; ultimately, the
developer must decide what options make the most sense for them and their use case.

 In this chapter, we explore an opinionated approach to deploying our full stack
GraphQL application, taking advantage of third-party service providers, like Netlify,
AWS Lambda, and Neo4j Aura. This approach of leveraging managed services,

This chapter covers
 Deploying our full stack GraphQL application so it

is accessible to users on the web

 Using serverless deployment and cloud-managed
services like Netlify, AWS Lambda, and Neo4j Aura

 A framework for evaluating various deployment
options to help us reconcile the inherent tradeoffs

1738.1 Deploying our full stack GraphQL application

outsourcing much of the operations of these services to the provider, is often referred
to as serverless. We evaluate the advantages and disadvantages of this deployment
approach, using a framework focused on operations, scale, and developer experience.
Finally, we review alternative options for deployment and discuss the tradeoffs
introduced.

8.1 Deploying our full stack GraphQL application
Serverless computing is a paradigm that describes a way of allocating computing
resources and execution on demand; it’s a way for developers to ship their application
without concerning themselves with provisioning and maintaining servers. Services
like the AWS Lambda Function as a Service (FaaS) platform are said to be serverless—
not because no servers are involved in the process of serving an application, but
rather, the developer need not think about servers, and instead, the relevant abstrac-
tion becomes the function, or unit of code. Usage of the term serverless has expanded to
describe not just computing runtimes like AWS Lambda and Google App Engine but
also databases and other managed cloud services.

 The first deployment paradigm we will examine takes advantage of managed ser-
vices. A managed service is a way of outsourcing responsibility for operating software,
infrastructure, or networking to a cloud service provider. This means developers can
spend less time maintaining and operating things like the database, scaling up web-
servers, installing security updates, and renewing SSL certificates and can, instead,
focus on building aspects of their application in which they have a competitive advan-
tage, such as the core business competency and business logic. Our approach has spe-
cial appeal for full stack developers, who may not be experts or care to take on
responsibility for managing databases, servers, dealing with SSL certificates, DNS con-
figuration, and other aspects needed for operating a full stack web application.

8.1.1 Advantages of this deployment approach

Embracing managed services offers advantages over alternative approaches. Here we
highlight the advantages of developer productivity, usage-based pricing, scalability,
and maintenance and operations.

DEVELOPER PRODUCTIVITY

Many managed services pride themselves on offering an improved developer experi-
ence that abstracts away many unnecessary complexities or concerns that are unre-
lated to the goals of the developer: building and shipping their application. Tooling
like web consoles to configure services and command line interfaces (CLIs) that can
be integrated into developer workflows enable developers to be more productive.

USAGE PRICING

Incurring costs based on the usage of the service is a core tenet of this paradigm. If an
application has very little usage, it will incur little cost for the developer. This allows
developers to build, deploy, and test their applications with little upfront cost, since
their costs are not fixed.

174 CHAPTER 8 Deploying our full stack GraphQL application

SCALABILITY

Services should scale on demand driven by usage. For example, a FaaS runtime like
AWS Lambda executes in response to events, such as the invocation of an API end-
point. Each function invocation is stateless and runs concurrently, allowing for greater
elasticity and on-demand scaling than a single web server.

MAINTENANCE AND OPERATIONS

By using managed services, the responsibility for ensuring that the service operates in
a healthy, secure, and high-performing state is outsourced to the service provider.
This benefit often resonates with the full-stack developer who is typically responsible
for many components of the overall application.

8.1.2 Disadvantages of our deployment approach

Of course, managed services are not a silver bullet that will solve all our problems, and
they can introduce some disadvantages. These disadvantages include vendor lock-in,
performance optimization, and usage-based pricing (a double-edged sword!).

VENDOR LOCK-IN
Outsourcing the responsibility for maintaining and updating the service to a service
provider means the developer is at the mercy of the service provider to provide con-
tinuous operation of the service—and at a reasonable cost. Services can sometimes be
discontinued or deprecated, as many services have specific APIs, libraries, or para-
digms that may be costly for a developer to adapt to an alternative.

PERFORMANCE OPTIMIZATIONS

Since many services operate in a multitenant architecture, performance cannot always
be guaranteed to be consistent, as resources may be shared or allocated to other users.
Given the on-demand nature of many services, there may be some overhead, as
resources are provisioned to respond to increased usage.

USAGE PRICING

Usage pricing can be both an advantage and a disadvantage. If the cost structure and
usage patterns are not understood, or if there is a surge in unanticipated usage, then
an unexpected increase in costs could be most unwelcome.

8.1.3 Overview of our approach to full stack GraphQL

Our deployment approach will take advantage of three managed services (see figure 8.1):

1 Neo4j Aura database as a service—For deploying a managed, scalable graph data-
base in the cloud. By using Neo4j Aura, we eliminate the need to think about
how to manage our database instance. Operations and maintenance, such as
regular backups and updates, are handled for us by the service.

2 Netlify Build—For building, deploying, and updating our React application and
serving it globally through a content delivery network (CDN). Using the Netlify
platform will not only give us access to a global CDN to ensure our site loads
fast, regardless of where in the world our users are located, but Netlify also

1758.2 Neo4j Aura database as a service

offers a smooth developer experience and integration with version control sys-
tems, such as GitHub.

3 AWS Lambda (via Netlify Functions)—For deploying our GraphQL API as a scal-
able serverless function. Using AWS Lambda for our GraphQL API means we
don’t have to think about hosting and managing webservers and scaling servers
up and down as incoming requests grow.

8.2 Neo4j Aura database as a service
Neo4j Aura is Neo4j’s managed cloud service, offering Neo4j database clusters as a
cloud service. Neo4j Aura offers scalable, highly available Neo4j clusters without deal-
ing with operations or maintenance. Developers can provision Neo4j clusters with the
click of a button and have access to Neo4j developer tooling, like Neo4j Browser,
Neo4j Bloom, and the APOC standard library. There are two flavors of Neo4j Aura:
AuraDB and AuraDS. AuraDB is Neo4j’s standard database-as-a-service offering, which
is suitable for backing web applications and API services. AuraDS is Neo4j’s hosted
graph data science platform and includes features specific to data science workloads.
For our purposes, we will be using Neo4j AuraDB.

8.2.1 Creating a Neo4j Aura cluster

Since Neo4j Aura is a managed service, we’ll need to first sign up by either logging in
with a Google account or creating an account using email and password at
neo4j.com/aura and then selecting Sign Up Now. Since I use Gmail, I’ll choose to sign
in with Google. After signing in, we’ll see the Neo4j Aura Dashboard.

 The Neo4j Aura Dashboard is our mission control central for our Neo4j clusters in
the cloud. We can monitor our databases, provision new databases, import data, scale
databases up or down, and access developer tooling.

User Netlify content delivery
network

Page request

JavaScript, HTML, and images

GraphQL API and
 AWS Lambda

GraphQL data-
fetching requests

Neo4j Aura database cluster

Database queries

Figure 8.1 A full stack GraphQL deployment from the user’s perspective

https://neo4j.com/cloud/platform/aura-graph-database/

176 CHAPTER 8 Deploying our full stack GraphQL application

 However, since we haven’t created any Neo4j Aura clusters yet, our dashboard
looks empty. Let’s create a new cluster by clicking the Create a database button (see fig-
ure 8.2). There is an AuraDB Free tier that offers a Neo4j instance without any cost or
requirement to input a credit card, so I’ll choose this option. For larger applications,
we can choose the AuraDB Professional tier, which offers additional features and the
ability to scale the resources available to our database instance.

Figure 8.2 Configuring a
Neo4j AuraDB deployment

1778.2 Neo4j Aura database as a service

Be sure to select the AuraDB Free database type. Next, we’ll need to choose a name for
our database. I went with GRANDstack Business Reviews. We can choose from different
regions where our database will be deployed. I just left the default, but feel free to
select the location closest to you. In the Starting dataset option, we can choose to start
with a predefined dataset or load our own data. Since we’ll be working with our own
data, select Load or create your own data in a blank database. After selecting the configura-
tion options, we’ll be presented with a random password, which we’ll use to access our
Neo4 Aura instance (see figure 8.3).

Be sure to save the password somewhere safe. We’ll change it, but we will need it to log
in with Neo4j Browser in a moment.

 Clicking Continue will take us back to the Neo4j Aura dashboard, but now, we’ll see
details for the database cluster we’ve just deployed with options to Explore, Query, or
Import (see figure 8.4). The Explore button will launch Neo4j Browser, which we’ve
used in previous chapters to execute Cypher queries and visualize the results. The
Query button will launch Neo4j Bloom, a visual graph exploration tool, which we will
explore in a moment. Finally, the Import button will launch the Neo4j Data Importer, a
tool for loading data into Neo4j from flat files such as CSV format.

Figure 8.3 Database credentials for our Neo4j AuraDB deployment

178 CHAPTER 8 Deploying our full stack GraphQL application

If we click on the database name, we can see more detailed information and options
specific to our database. For our cluster, we can see the following details:

 Connection URI—This is the connection string used to connect to our Neo4j
cluster using the Neo4j client drivers.

 Tier—This tells us the service tier for this database (Free, Professional, or
Enterprise).

 Cloud provider—This is the cloud platform where this cluster is deployed. In this
case, it is Google Cloud Platform.

 Region—This is the geographical region of the data center where the cluster is
deployed.

 Memory—This is the current size of the database, which can be scaled up or
down at any time.

We also have the Open with dropdown button to access Neo4j Browser or Neo4j Bloom
developer tools.

8.2.2 Connecting to a Neo4j Aura cluster
Now that we’ve provisioned our Neo4j Aura cluster, we’re ready to connect to it using
the Neo4j JavaScript driver. First, let’s change the initial password for the neo4j data-
base user. To do this, we’ll launch Neo4j Browser by clicking the Query button. This
will open Neo4j Browser, which we’re familiar with from previous chapters. Refer back
to chapter 3 for an overview of how to use Neo4j Browser. We’ll be prompted to sign
in using the neo4j database user and initial password we were assigned.

 After signing in, let’s change our password for user neo4j. To do this, we’ll need to
execute a Cypher command against the system database. Any administrative com-
mands, like changing user passwords, need to be done against this system database.
First, we tell Neo4j Browser to switch to the system database:

:use system

Then, we’ll use the ALTER CURRENT USER Cypher command to change the password of
the default neo4j user:

ALTER CURRENT USER SET PASSWORD FROM
"<OUR_RANDOM_INITIAL_PASSWORD_HERE>" TO "<NEW_SECRET_PASSWORD_HERE>"

Figure 8.4 The Neo4j AuraDB dashboard, showing our new database

1798.2 Neo4j Aura database as a service

Be sure to replace <OUR_RANDOM_INITIAL_PASSWORD_HERE> with the initial password
and <NEW_SECRET_PASSWORD_HERE> with a new secure password. For the remaining
examples, we’ll use the password graphqlapi, but using a stronger password is encour-
aged. To switch back to the default neo4j database, we can use the command :use neo4j.

NOTE Commands like :use are utility commands specific to Neo4j Browser
and are not Cypher commands. For more information on using these com-
mands in Neo4j Browser, run :help or :help commands.

Now that we’ve changed our database user’s password, let’s test whether we can con-
nect to our Neo4j Aura cluster, using the Neo4j JavaScript driver. From the Aura dash-
board, if we click on our database name, we can see code samples showing how to
connect to our Neo4j Aura instance using different language drivers (see figure 8.5).

Figure 8.5 The Connect tab in Neo4j Aura, showing code examples in various languages

180 CHAPTER 8 Deploying our full stack GraphQL application

In listing 8.1, let’s adapt the JavaScript example to simply count the number of nodes
in the database and return the results. We’ll create a new file in the API directory,
called aura-connect.js, with our simplified JavaScript example.

NOTE Note the neo4j+s:// URI scheme used in the code sample. Previously,
we used bolt://, which indicated a connection to a specific Neo4j instance.
With Neo4j Aura, we’ve deployed a cluster—a series of Neo4j instances that
talk to each other to replicate and distribute data—so we use the neo4j
scheme to tell the driver to route requests to different machines in the clus-
ter, instead of to a single machine. The +s tells the driver we want to use a
secure encrypted connection.

(async () => {
const neo4j = require("neo4j-driver");

// be sure to change these connection details for your Neo4j instance
const uri = "neo4j+s://97a0fe69.databases.neo4j.io";
const user = "neo4j";
const password = "graphqlapi";

const driver = neo4j.driver(uri, neo4j.auth.basic(user, password));
const session = driver.session();

try {
const readQuery = `MATCH (n)

RETURN COUNT(n) AS num`;
const readResult = await session.readTransaction((tx) =>

tx.run(readQuery)
);
readResult.records.forEach((record) => {

console.log(`Found ${record.get("num")} nodes in the database`);
});

} catch (error) {
console.error("Something went wrong: ", error);

} finally {
await session.close();

}

await driver.close();
})();

This code imports the Neo4j JavaScript driver, creating an instance of the driver with
our Neo4j Aura credentials, executing a Cypher query in a read transaction, and then
logging the results of the query to the console. If we run this file, we should verify that
we are able to connect to our Neo4j Aura database and that the database is currently
empty:

$ node aura-connect.js
Found 0 nodes in the database

Listing 8.1 aura-connect.js: Querying our Neo4j Aura instance

1818.2 Neo4j Aura database as a service

Our next step is to upload data from our local Neo4j instance that we’ve been using to
develop our application to our Neo4j Aura database.

8.2.3 Uploading data to Neo4j Aura

Previously, we used the :play grandstack Neo4j Browser guide to load some initial
data to import our business reviews data, but in this case, we may have added user
information, new reviews, or updated businesses. Let’s discuss the process of dumping
and loading data from a local Neo4j database into our new Neo4j Aura cluster.

 There are a few different ways to import data into Neo4j Aura, but we will use the push-
to-cloud tool. If you select the Import tab in the Neo4j Aura dashboard, you’ll be presented
with a wizard-like interface to walk you through the steps of uploading a local Neo4j data-
base into your Neo4j Aura cloud database. We’ll go through those steps now.

 First, we want to make sure our local Neo4j database is in a stopped state. We can
verify this in Neo4j Desktop and click the Stop button if it is not (see figure 8.6).

Next, we’ll open a terminal in Neo4j Desktop that will allow us to run the neo4j-
admin command for this specific Neo4j instance. The neo4j-admin command line
tool has several useful features, such as a high-volume data import from CSV files,

Figure 8.6 Stopping the database and opening the management pane

182 CHAPTER 8 Deploying our full stack GraphQL application

generating recommended memory configuration, and the push-to-cloud command,
which we will use to upload this database to our Neo4j Aura instance.

 Select the drop-down arrow next to the Open button, and choose Terminal to open
a new window with a command prompt. The working directory for this new command
prompt is set to the directory where this particular Neo4j instance has been installed:

$ pwd
/Users/lyonwj/Library/Application Support/com.Neo4j.Relate/Data/dbmss/
dbms-54c2c495-211d-408d-8c9e-6a65cce61d91

Now, we’re ready to use the push-to-cloud command to upload this database to
Neo4j Aura. We’ll specify the Bolt URI of our Neo4j Aura instance as well as the
--overwrite flag to indicate we want to replace any data we may have already created
in the Neo4j Aura instance. We’ll be prompted for database user and password, and
then our local database will be exported and uploaded to our Neo4j Aura database:

$ bin/neo4j-admin push-to-cloud --bolt-uri \
neo4j+s://97a0fe69.databases.neo4j.io --database neo4j --overwrite

Neo4j aura username (default: neo4j):neo4j
Neo4j aura password for neo4j:
Done: 68 files, 879.4KiB processed.
Dumped contents of database 'neo4j' into '/Users/lyonwj/Library/Application
Support/com.Neo4j.Relate/Data/dbmss/
dbms-54c2c495-211d-408d-8c9e-6a65cce61d91/dump-of-neo4j-1612960685687'
Upload
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
We have received your export and it is currently being loaded into your
Aura instance.
You can wait here, or abort this command and head over to the console to
be notified of when your database is running.
Import progress (estimated)
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
Your data was successfully pushed to Aura and is now running.

1838.2 Neo4j Aura database as a service

Now, we can verify the data was uploaded to our Neo4j Aura instance. If we run our
aura-connect.js script again, we should see that we have a total of 36 nodes in the
database:

$ node aura-connect.js
Found 36 nodes in the database

8.2.4 Exploring the graph with Neo4j Bloom

We can also visually inspect and explore the data we’ve just uploaded to Neo4j Aura.
Let’s return to the Neo4j Aura dashboard, and this time we’ll open the database using
Neo4j Bloom. Neo4j Bloom is a graph exploration application for visually interacting
with Neo4j graphs and is included with Neo4j Aura. From the Neo4j Aura dashboard,
click the Explore button. A new tab will open, and we’ll be prompted to log in, using
our database username and password.

 Once we are signed in, Neo4j Bloom will connect to our Neo4j Aura instance and
allow us to visually explore our graph data. First, we’ll need to configure a perspective
(see figure 8.7). In Neo4j Bloom, a perspective defines the domain or view of the
graph data that should be exposed and how that data should be styled. For our
purposes, the default-generated perspective should be sufficient, so select Create
Perspective to generate a perspective from the database, and then select the perspective
to use it for visualization.

Figure 8.7 Creating a perspective in Neo4j Bloom

184 CHAPTER 8 Deploying our full stack GraphQL application

Once we’ve created the perspective, we can begin our visual exploration of the graph.
This main view in Neo4j Bloom is called the scene and serves as a kind of canvas for us
to paint on with our graph data, based on the data we select. To bring data into the
scene, we use natural language, like search terms in the search bar that will be trans-
lated to graph patterns (see figure 8.8). For example, if we begin to type User name:
Will WROTE Review, we can see helpful autocomplete graph patterns start to be sug-
gested for us. Selecting one of these patterns will execute the search and populate the
scene with data matching the graph search pattern.

We said earlier that perspectives can configure how the visualization is styled (see fig-
ure 8.9). One such styling we can configure is the icons used to represent nodes in the
visualization. By selecting a category in the legend panel, we can apply styling, such as
the color, size, icon, or caption of the node.

Figure 8.8 Natural language search in Neo4j Bloom

1858.2 Neo4j Aura database as a service

The visualization is interactive and can be used to explore the graph or validate that
the data uploaded is as we expected. Selecting nodes will allow us to view their proper-
ties (see figure 8.10). We can also right-click on nodes or relationships to further
expand or filter the data shown in the scene.

Figure 8.9 Configuring category icons in Neo4j Bloom

186 CHAPTER 8 Deploying our full stack GraphQL application

At this point, we’ve provisioned our Neo4j Aura cluster, changed the password,
uploaded our data, explored the data, and verified and explored our graph in Neo4j
Bloom. Now, let’s turn our attention to deploying our React application and GraphQL
API using Netlify and AWS Lambda.

8.3 Deploying a React application with Netlify Build
To deploy our React application, we’ll make use of Netlify. Netlify is a cloud platform
focused on a smooth developer experience and workflow for building and deploying
web applications. Netlify combines an automated build system, global content delivery

Figure 8.10 View node details in Neo4j Bloom

1878.3 Deploying a React application with Netlify Build

network, serverless functions, edge handlers, and other features, all wrapped up in a
platform focused on a smooth developer experience and workflow.

 Services with similar features include Vercel, DigitalOcean App Platform, Cloud-
flare Pages, and Azure Static Web Apps. Netlify also has a free tier, so we can deploy
our application and try out the service without needing to input a credit card or incur
any charges.

 Netlify also enables us to trigger builds and deployments via commits and pull
requests to a Git version control system, like GitHub or GitLab. We’ll make use of
GitHub in this section to trigger Netlify deployments and show a great feature of
Netlify, called preview builds, that allows us to deploy and test the application from a
pull request.

8.3.1 Adding a site to Netlify

Let’s start by navigating to netlify.com and clicking the Sign up button to create a free
Netlify account. Since we’ll be taking advantage of the GitHub integration to deploy
and update our application from GitHub, we can sign in to Netlify using our GitHub
account, and our Netlify account will then be linked to GitHub (see figure 8.11). We
can also sign in with another option, such as email and password, and choose to link
our Netlify account to GitHub later on.

Figure 8.11 Signing in to Netlify

https://www.netlify.com/

188 CHAPTER 8 Deploying our full stack GraphQL application

Once we’ve signed in, we are presented with an overview of the web sites we’ve added
to Netlify (see figure 8.12). Since we just created our account, this page is a bit sparse.

To add our first site to Netlify, let’s create a GitHub repository for our application so
we can add it as a site to Netlify to start deployments. We’ll need to create a new
GitHub repository for our application (see figure 8.13). To do that, first navigate to
github.com/new. We’ll need to choose a name for our repository—I chose
grandstack-business-reviews. We can also choose to make our repository private if we
don’t want to expose it to the world.

Figure 8.12 The Netlify dashboard

https://github.com/new

1898.3 Deploying a React application with Netlify Build

We’ve now created an empty GitHub repository, and it’s time to add our business
reviews application code to the repository. This screen shows the common terminal
commands used to initialize a git repository, commit code, and push to GitHub (see
figure 8.14). There is also a Desktop client that can be used with GitHub; however,
we’ll use the command line to do this.

Figure 8.13 Creating a new GitHub repository

190 CHAPTER 8 Deploying our full stack GraphQL application

Let’s open a terminal and navigate to the web-react directory that holds the React
application we’ve been building. First, we initialize a blank GitHub repository:

$ git init

We can view the status of our local working directory with the git status command:

$ git status

On branch main
No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
README.md
package-lock.json
package.json
public/
src/

nothing added to commit but untracked files present (use "git add" to track)

In this case, we have haven’t made any commits to the repository yet, so let’s stage our
code to be added. To do this, we’ll use the git add command:

$ git add -A

The -A flag indicates we want to stage all files in the project to be added. We typically
don’t want to add all files to the repository; things like the node_modules directory

Figure 8.14 Instructions for pushing a local Git repository to GitHub

1918.3 Deploying a React application with Netlify Build

and secrets shouldn’t be checked into version control. The create-react-app tool we
used earlier to create the skeleton of our React application also created a .gitignore
file that includes rules for files to be excluded from git. Thanks to this file, we can
safely make use of the -A flag when staging files for a commit. Now, as we run git
status again, we’ll see all the files to be added to the repository in our commit:

$ git status
On branch main
No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: .gitignore
new file: README.md
new file: package-lock.json
new file: package.json
new file: public/favicon.ico
new file: public/index.html
new file: public/logo192.png
new file: public/logo512.png
new file: public/manifest.json
new file: public/robots.txt
new file: src/App.css
new file: src/App.js
new file: src/App.test.js
new file: src/BusinessResults.js
new file: src/Profile.js
new file: src/index.css
new file: src/index.js
new file: src/logo.svg
new file: src/serviceWorker.js
new file: src/setupTests.js

Let’s make our commit with the git commit command. Every commit also includes a
message that indicates the reason or functionality introduced in the commit. This
message can be added using the -m flag, or we can omit that flag and then be
prompted for a commit message:

$ git commit -m "initial commit"
[main (root-commit) 0bb81ca] initial commit
20 files changed, 14609 insertions(+)
create mode 100644 .gitignore
create mode 100644 README.md
create mode 100644 package-lock.json
create mode 100644 package.json
create mode 100644 public/favicon.ico
create mode 100644 public/index.html
create mode 100644 public/logo192.png
create mode 100644 public/logo512.png
create mode 100644 public/manifest.json
create mode 100644 public/robots.txt
create mode 100644 src/App.css
create mode 100644 src/App.js

192 CHAPTER 8 Deploying our full stack GraphQL application

create mode 100644 src/App.test.js
create mode 100644 src/BusinessResults.js
create mode 100644 src/Profile.js
create mode 100644 src/index.css
create mode 100644 src/index.js
create mode 100644 src/logo.svg
create mode 100644 src/serviceWorker.js
create mode 100644 src/setupTests.js

Next, we connect our local Git repository with the remote GitHub repository we created:

$ git remote add origin \
git@github.com:johnymontana/grandstack-business-reviews.git

And finally, we push our local commit up to the remote GitHub repository with the
git push command:

$ git push -u origin main

Enumerating objects: 24, done.
Counting objects: 100% (24/24), done.
Delta compression using up to 16 threads
Compressing objects: 100% (24/24), done.
Writing objects: 100% (24/24), 175.60 KiB | 1.60 MiB/s, done.
Total 24 (delta 0), reused 0 (delta 0)
To github.com:johnymontana/grandstack-business-reviews.git
* [new branch] main -> main

Branch 'main' set up to track remote branch 'main' from 'origin'.

If we refresh the GitHub web page for our repository, we’ll now see the code we’ve
committed and a history of the commits (see figure 8.15).

Figure 8.15 Viewing our new repository on GitHub

1938.3 Deploying a React application with Netlify Build

Now, we’re ready to deploy our React application with Netlify. Return to the Netlify
dashboard, and click on Add site from Git. We’ll be prompted to select the Git provider
we want to connect to and then the repository we want to add. Select GitHub, and
choose the repository we just created and pushed our code to (see figure 8.16).

Netlify will inspect the code to determine that this is a React application built using
the command npm run build, and the content should be served from the /build direc-
tory. We shouldn’t need to make any changes here, as the defaults will typically be suf-
ficient to build and deploy our React application. We can change these build settings
later if needed (see figure 8.17).

 Netlify will now pull down our code from GitHub to build and deploy the site. We
can view the build logs from the dashboard as this happens. Each site in Netlify is
assigned a URL and SSL certificate, so we can immediately preview our application

Figure 8.16 Adding a new site in Netlify

194 CHAPTER 8 Deploying our full stack GraphQL application

once it’s been built and deployed without needing to add a custom domain (see fig-
ure 8.18).

Figure 8.17 Configuring our new Netlify site

Figure 8.18 Configuring the deploy settings in Netlify

1958.3 Deploying a React application with Netlify Build

Once the build is finished, we can navigate to our application in a web browser (see
figure 8.19). In this case, the URL is https://hungry-thompson-86fbf3.netlify.app/.

But we have a problem: the GraphQL API is pointing to http://localhost:4000, our
local machine, which means anyone else loading this application won’t be able to con-
nect to the GraphQL API and view these results. We can verify this by opening the
developer tools in our web browser and inspecting the network requests. We’ll deploy
the GraphQL API application in the next section, but let’s explore a few features of
Netlify first (see figure 8.20).

Figure 8.19 A Netlify site deploy in progress

https://hungry-thompson-86fbf3.netlify.app/

196 CHAPTER 8 Deploying our full stack GraphQL application

8.3.2 Setting environment variables for Netlify builds
If we take a look at src/index.js, where we create the Apollo Client instance, to con-
nect to our GraphQL API, we’ll see that we’ve left the URI for the GraphQL API hard-
coded as http://localhost:4000, as shown in the next listing.

...

const httpLink = createHttpLink({
uri: "http://localhost:4000",

});

...

Listing 8.2 src/index.js: Using an Apollo Link to connect to our GraphQL API

Figure 8.20 Our newly deployed application

1978.3 Deploying a React application with Netlify Build

This is fine for local development and testing, but now we want to use the same code
for local development and our deployed application. To allow for using a local
GraphQL URI during development, but to connect to a deployed GraphQL API in our
deployed application, we’ll set an environment variable to be read at build time for the
GraphQL URI. We’ll determine this value depending on the environment being
used—for local development, we’ll leave the GraphQL URI as http://localhost:4000,
but we’ll configure a different value for our Netlify builds.

 Let’s create a .env file to store local development environment variables. One con-
venient feature of Create React App is that any values specified in .env will be set as
environment variables, and any variables that begin with REACT_APP will be replaced in
the client React application during the build. Let’s set the local value we want to use
for development for the GraphQL API in this .env file, as shown next.

REACT_APP_GRAPHQL_URI=/graphql
NEO4J_URI=neo4j://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=letmein
REACT_APP_AUTH0_DOMAIN=grandstack.auth0.com
REACT_APP_AUTH0_CLIENT_ID=4xw3K3cjvw0hyT4Mjp4RuOVSxvVYcOFF
REACT_APP_AUTH0_AUDIENCE=https://reviews.grandstack.io

We’ll update our code in the next listing to read from these environment variables
when setting the URI of our GraphQL API and to specify our Auth0 domain, client
ID, and audience values.

...

const httpLink = createHttpLink({
uri: process.env.REACT_APP_GRAPHQL_URI

});

...

ReactDOM.render(
<React.StrictMode>

<Auth0Provider
domain={process.env.REACT_APP_AUTH0_DOMAIN}
clientId={process.env.REACT_APP_AUTH0_CLIENT_ID}
redirectUri={window.location.origin}
audience={process.env.REACT_APP_AUTH0_AUDIENCE}

>
<AppWithApollo />

</Auth0Provider>
</React.StrictMode>,
document.getElementById("root")

);

Listing 8.3 .env: Setting environment variables for our React application

Listing 8.4 src/index.js: Using environment variables

198 CHAPTER 8 Deploying our full stack GraphQL application

For local development, we want to develop using the local GraphQL API URI, but in the
deployed application, we want the React application to connect to the deployed
GraphQL API. To enable this, we’ll now set the REACT_APP_GRAPHQL_URI environment
variable in the Netlify building settings for our site (see figure 8.21). Choose Site Settings
in the Netlify dashboard for our site, and then choose Build & deploy in the left-side nav-
igation. We’ll create a new environment variable called REACT_APP_GRAPHQL_URI with
the value /graphql.

This means that our deployed application will try to connect to a GraphQL API at
/graphql on the same domain. We haven’t deployed the GraphQL API here yet, so
our application will return an error for now until we add the GraphQL API.

Figure 8.21 Setting Netlify environment variables

1998.3 Deploying a React application with Netlify Build

8.3.3 Netlify deploy previews

A convenient feature of services like Netlify is the deploy preview. A deploy preview is a
build triggered by a change to the code (often from a pull request) that is deployed to
a temporary URL, different from the main application. This build has all the function-
ality of the main application and can be shared with teammates and other stakehold-
ers to review before the pull request is committed and the change is reflected in the
main application.

 Let’s see how this works by creating a pull request and deploying a preview updat-
ing our React application to read from the REACT_APP_GRAPHQL_URI environment vari-
able. If we run the command git status, we’ll see that we’ve made a change to
src/index.js:

$ git status

On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: index.js

no changes added to commit (use "git add" and/or "git commit -a")

Let’s switch to a new Git branch, called env-var-graphql-uri. We’ll commit our change
to this new branch:

$ git checkout -b env-var-graphql-uri
Switched to a new branch 'env-var-graphql-uri'

Now, let’s add our change to index.js in a commit. Since we’ve switched our working
directory to a new Git branch, this commit will be made to the env-var-graphql-uri
branch, not the main branch:

$ git add index.js
$ git commit -m "use environment variable to specify GraphQL URI"
[env-var-graphql-uri 92f1142] use environment variable to
specify GraphQLURI
1 file changed, 1 insertion(+), 1 deletion(-)

Next, we push this new branch to GitHub. Since we’re pushing a new branch to our
remote repository, GitHub helpfully tells us that we can create a pull request from this
new branch:

$ git push origin env-var-graphql-uri

Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.

200 CHAPTER 8 Deploying our full stack GraphQL application

Delta compression using up to 16 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 415 bytes | 415.00 KiB/s, done.
Total 4 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
remote:
remote: Create a pull request for 'env-var-graphql-uri'on
GitHub by visiting: remote: https://github.com/johnymontana/
grandstack-business-reviews/pull/new/env-var-graphql-uri
remote:
To github.com:johnymontana/grandstack-business-reviews.git
* [new branch] env-var-graphql-uri -> env-var-graphql-uri

A pull request is a way to request a change from another branch or fork of the reposi-
tory to be merged into the main branch. Let’s create a pull request that requests
merging the new branch, env-var-graphql-uri, into the main branch (see figure 8.22).

Since we’ve connected Netlify to this GitHub repository, Netlify will immediately start
a deploy preview build based on the changes in this pull request. We can see the status
of this build in the Checks section of the pull request page on GitHub. Once the build
is complete, we can visit this deploy preview to see the changes reflected in a live
deployment (see figure 8.23). We can also share this temporary URL with others to
review the changes to the site.

Figure 8.22 Creating a pull request in GitHub

2018.3 Deploying a React application with Netlify Build

Once we’re satisfied with the changes, we’ll merge the pull request. We can do this on
GitHub by clicking the Merge pull request button. This will merge the changes from the
env-var-graphql-uri branch into the main branch. This merge will then trigger a build
and deployment on Netify, which will then replace the main version of our application
(see figure 8.24).

 Now that we’ve deployed the React application, it’s time to deploy our GraphQL
API. To do this, we’ll convert our GraphQL API into a serverless function so it can be
deployed on the AWS Lambda service. We’ll take advantage of the Netlify Functions
feature to enable this for us.

Figure 8.23 Triggering a Netlify deploy preview from a pull request

202 CHAPTER 8 Deploying our full stack GraphQL application

8.4 Serverless GraphQL with AWS Lambda and Netlify Functions
AWS Lambda is an FaaS compute platform that allows us to run code on demand with-
out provisioning or managing servers. Functions are invoked in response to events,
such as an HTTP request. When combined with AWS’s API Gateway service, Lambda
functions can be used to implement API endpoints and applications, such as a
GraphQL API. AWS Lambda supports Node.js, Python, Java, Go, Ruby, Swift, and C#
and can include packaged dependencies. Unlike other cloud services that incur costs
metered by the hour, AWS Lambda is priced based on the number of requests, and
the duration of those requests is measured in increments of 1 millisecond.

 The Netlify Functions service allows us to deploy Lambda functions directly from
the Netlify function without the need for creating an AWS account. Netlify handles
the build and deployment of Lambda functions using the same Git version control
features, such as deploy previews, which means we can manage the code for our
Lambda functions alongside the rest of our site. Currently, Netlify can deploy Lambda
functions for Node.js and Go.

 So far, we’ve built our GraphQL API application as a Node.js Express server using
Apollo Server. In this section, we will convert our GraphQL API to a Lambda function,
using a Lambda-specific version of Apollo Server, and deploy alongside our Netlify site
using the Netlify Functions feature.

8.4.1 Serving a GraphQL API as a Lambda function

Since our Lambda GraphQL API will be deployed via Netlify as part of our Netlify site,
we’ll place the code and dependencies in our existing project. Let’s install the depen-
dencies needed:

npm install apollo-server-lambda @neo4j/graphql

➥ @neo4j/graphql-plugin-auth neo4j-driver

Figure 8.24 Viewing the
status of our Netlify builds

2038.4 Serverless GraphQL with AWS Lambda and Netlify Functions

Note that we install apollo-server-lambda, a special version of Apollo Server that will
allow us to structure our GraphQL API as a Lambda function. We also install the
Neo4j JavaScript driver, the Neo4j GraphQL integration library, and libraries neces-
sary for working with JWTs that we saw in the previous chapter.

 Let’s create a new file, src/graphql.js, in the same directory where our React appli-
cation is located. Later, we’ll check this file into version control and push it up to
GitHub, triggering a Netlify build and deployment. We’ll use apollo-server-lambda to
create a simple GraphQL API with a single query field, greetings, that returns a
greeting message, as the following listing shows.

const { ApolloServer, gql } = require("apollo-server-lambda");

const typeDefs = gql`
type Query {

greetings(name: String = "GRANDstack"): String
}

`;

const resolvers = {
Query: {

greetings: (parent, args, context) => {
return `Hello, ${args.name}!`;

},
},

};

const server = new ApolloServer({
typeDefs,
resolvers,

});

const serverHandler = server.createHandler();

exports.handler = (event, context, callback) => {
return serverHandler(

{
...event,
requestContext: event.requestContext || {},

},
context,
callback

);
};

Next, we need to configure our Netlify site so it knows where we’ve created our new
Lambda function and that we want to serve the GraphQL API at the /graphql end-
point of our site. To do this, we’ll create a netlify.toml file in the root of our project, as
shown in the following listing.

Listing 8.5 src/graphql.js: A simple GraphQL API using AWS Lambda

Note that we are
importing the apollo-
server-lambda flavor

of Apollo Server.

Since we are creating an
AWS Lambda function, we
need to export a handler
function that wraps our
Apollo Server instance.

204 CHAPTER 8 Deploying our full stack GraphQL application

[build]
command = "npm run build"
functions = "src/lambda"
publish = "build"

[[redirects]]
from = "/graphql"
to = "/.netlify/functions/graphql"
status = 200

By default, our Netlify Functions are exposed at /.netlify/functions/, followed by the
filename of the function. We create a redirect, so our GraphQL API can be accessed at
/graphql.

8.4.2 The Netlify dev CLI

So far, we’ve treated Netlify as a deployment service for our React application. If we
wanted to build and serve the React application locally, then when running npm run
start, we used the react-scripts tool without getting Netlify involved. Now that
we’re adding Lambda functions, we’ll need to do a bit more to test out our applica-
tion locally. We’ll install the Netlify command line tool to build and run our GraphQL
Lambda function and React application locally using Netlify dev:

$ npm install netlify-cli -g

Now that we’ve installed the Netlify CLI, we can use the dev command to start our site
locally. This will build and serve our React application and Lambda function locally
without triggering a deployment:

$ netlify dev

After running netlify dev, we can open a web browser and navigate to http://local-
host:8888/graphql. We should see Apollo Studio, where we can run a GraphQL query
against our Lambda GraphQL API, as shown in the following listing.

{
greetings

}

The result of this query will show the greeting message we defined in the resolver:

{
"data": {

"greetings": "Hello, GRANDstack!"
}

}

Listing 8.6 netlify.toml: Configuring the Netlify build

Listing 8.7 Querying our simple GraphQL API

2058.4 Serverless GraphQL with AWS Lambda and Netlify Functions

Of course, this is just a simple Hello World GraphQL API, so let’s bring over the rest
of our GraphQL API application for the business reviews application.

8.4.3 Converting our GraphQL API to a Netlify function

As shown in listing 8.8, to convert our existing GraphQL API to make use of AWS
Lambda and apollo-server-lambda, we need to change a few lines. The most signifi-
cant changes are the use of the apollo-server-lambda package, instead of apollo-server-
express, and exporting a handler function for our AWS Lambda. Otherwise, this will
look similar to the GraphQL API code we’ve been building up through chapter 7.

const { ApolloServer, gql } = require("apollo-server-lambda");

const neo4j = require("neo4j-driver");
const { Neo4jGraphQL } = require("@neo4j/graphql");
const {

Neo4jGraphQLAuthJWKSPlugin,
} = require("@neo4j/graphql-plugin-auth");

const resolvers = {
Business: {

waitTime: (obj, args, context, info) => {
var options = [0, 5, 10, 15, 30, 45];
return options[Math.floor(Math.random() * options.length)];

},
},

};

const typeDefs = gql`
type Query {

fuzzyBusinessByName(searchString: String): [Business]
@cypher(

statement: """
CALL
db.index.fulltext.queryNodes('businessNameIndex',
$searchString+'~')

YIELD node RETURN node
"""

)
}

type Business {
businessId: ID!
waitTime: Int! @computed
averageStars: Float!

@auth(rules: [{ isAuthenticated: true }])
@cypher(

statement: """
MATCH (this)<-[:REVIEWS]-(r:Review) RETURN avg(r.stars)

"""
)

Listing 8.8 src/graphql.js: Converting our GraphQL API to an AWS Lambda function

Using the apollo-server-
lambda flavor of Apollo

Server, instead of
apollo-server

206 CHAPTER 8 Deploying our full stack GraphQL application

recommended(first: Int = 1): [Business!]!
@cypher(
statement: """
MATCH (this)<-[:REVIEWS]-(:Review)<-[:WROTE]-(u:User)
MATCH (u)-[:WROTE]->(:Review)-[:REVIEWS]->(rec:Business)
WITH rec, COUNT(*) AS score
RETURN rec ORDER BY score DESC LIMIT $first
"""

)
name: String!
city: String!
state: String!
address: String!
location: Point!
reviews: [Review!]! @relationship(type: "REVIEWS", direction: IN)
categories: [Category!]!

@relationship(type: "IN_CATEGORY", direction: OUT)
}

type User {
userId: ID!
name: String!
reviews: [Review!]! @relationship(type: "WROTE", direction: OUT)

}

extend type User
@auth(

rules: [
{ operations: [READ], where: { userId: "$jwt.sub" } }
{ operations: [CREATE, UPDATE, DELETE], roles: ["admin"] }

]
)

type Review {
reviewId: ID! @id
stars: Float!
date: Date!
text: String
user: User! @relationship(type: "WROTE", direction: IN)
business: Business! @relationship(type: "REVIEWS", direction: OUT)

}

extend type Review
@auth(

rules: [
{
operations: [CREATE, UPDATE]
bind: { user: { userId: "$jwt.sub" } }

}
]

)

type Category {
name: String!
businesses: [Business!]!

2078.4 Serverless GraphQL with AWS Lambda and Netlify Functions

@relationship(type: "IN_CATEGORY", direction: IN)
}

`;

const driver = neo4j.driver(
process.env.NEO4J_URI,
neo4j.auth.basic(process.env.NEO4J_USER, process.env.NEO4J_PASSWORD)

);

const neoSchema = new Neo4jGraphQL({
typeDefs,
resolvers,
driver,
plugins: {

auth: new Neo4jGraphQLAuthJWKSPlugin({
jwksEndpoint: "https://grandstack.auth0.com/.well-known/jwks.json",

}),
},

});

const initServer = async () => {
return await neoSchema.getSchema().then((schema) => {

const server = new ApolloServer({
schema,
context: ({ event }) => ({ req: event }),

});
const serverHandler = server.createHandler();
return serverHandler;

});
};

exports.handler = async (event, context, callback) => {
const serverHandler = await initServer();

return serverHandler(
{

...event,
requestContext: event.requestContext || {},

},
context,
callback

);
};

We can now commit our changes to this file and push to GitHub to deploy. Deploying
our application is almost complete. In the next section, we add a custom domain and
assign it to our site in Netlify.

8.4.4 Adding a custom domain in Netlify

So far, our application has been running on the https://hungry-thompson-86fbf3
.netlify.app/ subdomain assigned by Netlify. Let’s set up a custom domain that better
aligns with the branding we’d like for the site. In Netlify, select Domains from the top

We use event here because
the request signature for
AWS Lambda is slightly
different than Express.

Exporting a handler
function for our AWS
Lambda function

https://hungry-thompson-86fbf3.netlify.app/
https://hungry-thompson-86fbf3.netlify.app/
https://hungry-thompson-86fbf3.netlify.app/

208 CHAPTER 8 Deploying our full stack GraphQL application

navbar. From here, we can add custom domains and assign them to our sites in Netlify
(see figure 8.25).

We can purchase domain names directly from Netlify or add domains purchased
through other registrars. In this case, I want to add a domain I’ve purchased else-
where, so I’ll point the domain at Netlify’s nameservers, allowing Netlify to manage
the domain and DNS records for the domain (see figure 8.26).

Finally, we’ll need to update the Auth0 application settings so the authentication func-
tionality provided by Auth0 works, using the new domain. We’ll update the Allow Call-
back URLs and Allowed Logout URLs in Auth0, adding the default localhost URLs as well
as our Netlify site URL and our custom domain (see figure 8.27).

Figure 8.25 Adding a custom domain to Netlify

Figure 8.26 Pointing our domain at the Netlify nameservers

2098.4 Serverless GraphQL with AWS Lambda and Netlify Functions

And with that, our application is now deployed and ready to use on our custom
domain (see figure 8.28).

Figure 8.27 Updating
the allowed callback
URLs in Auth0

Figure 8.28 Our deployed full stack GraphQL application after signing in

210 CHAPTER 8 Deploying our full stack GraphQL application

8.5 Our deployment approach
In this chapter, we explored an approach to deploying our full stack GraphQL appli-
cation that embraced taking advantage of managed services, specifically Neo4j Aura,
Netlify, and AWS Lambda (see figure 8.29). At the beginning of this chapter, we dis-
cussed some of the advantages and disadvantages of managed services in general.
Let’s review the services from the developer’s perspective.

Netlify allows for automated builds and deployment of our React application to the
Netlify global content delivery network, ensuring our frontend application is accessi-
ble to anyone in the world without unnecessary network latency. Converting our
GraphQL API to an AWS Lambda function and leveraging Netlify Functions means we
can integrate the API application into the same application codebase. By integrating
with GitHub, our workflow for development and deployment is improved, allowing us
to create preview deployments from pull requests.

 With the Neo4j Aura database as a service, we are able to take advantage of devel-
oper tooling like Neo4j Desktop and Neo4j Browser for development and not have to
concern ourselves with maintaining and operating a Neo4j cluster in the cloud. Now
that our application has been deployed, in the next chapter, we move away from our
business reviews application and focus on more-advanced GraphQL features, such as

Developer

Netlify content delivery
network

GraphQL API
 AWS Lambda

Neo4j Aura database cluster

Netlify platform
Static assets

(JS, HTML, and images)GitHub

Triggers build
and deployment

Neo4j developer tooling
(Neo4j Desktop, Neo4j

Browser, and Neo4j Bloom)

Figure 8.29 A full stack GraphQL deployment, from the developer’s perspective

211Summary

abstract types, cursor-based pagination and the Relay connection model, and working
with relationship properties in the graph.

8.6 Exercises
1 Use Neo4j Bloom to find the user who has reviewed businesses belonging to the

greatest number of categories. What are the categories of the businesses this
user has reviewed? Hint: creating a Neo4j Bloom search phrase might be help-
ful with this exercise. Consult the documentation at http://mng.bz/XZR6.

2 Create a new pull request that updates the business review application to always
order the results by business name. Use Netlify’s deploy feature to review this
update before merging the pull request and updating the application.

3 Create a new Netlify Function that uses the Neo4j JavaScript driver to query our
Neo4j Aura cluster and return a list of the most recent reviews. Run it locally
using the netlify dev command before deploying. Use the netlify.toml config-
uration to redirect /reviews to this function.

Summary
 Leveraging managed cloud services can smooth the developer experience for

deploying and maintaining web applications and address scale, operations, and
pricing that can be appealing for full stack developers who may be responsible
for all components of the application.

 Neo4j Aura is a managed cloud database service that provides Neo4j clusters
that can be provisioned with a single click. These database instances can be
scaled up and down as needed and remove the need for maintenance or opera-
tions of Neo4j.

 The Netlify platform and CDN can be used to automate building and deploying
web applications, taking advantage of GitHub integration and deploy previews
that make it easier to review changes to an application before it is shipped.

 GraphQL APIs can be deployed as an AWS Lambda function, taking advantage
of the stateless scale and demand-based pricing that make AWS Lambda appeal-
ing. Netlify Functions can be used to provision AWS Lambda functions as part of
a Netlify site, removing the need for a separate code base or deployment process.

http://mng.bz/XZR6

212

Advanced GraphQL
considerations

So far, we haven’t leveraged one of the most powerful and important features of
GraphQL’s type system—abstract types—which allow us to represent multiple con-
crete types in a single GraphQL field. Similarly, we also haven’t really made use of
an important feature of the property graph model—relationship properties—which
allow us to associate attributes with the relationships that connect nodes rather
than just nodes themselves. In this chapter, we will see how to leverage the abstract
union and interface types supported by GraphQL. We will also make use of rela-
tionship properties and, along the way, introduce GraphQL Connection objects
and pagination methods. We will move away from our business review application
and simplify our data model, focusing instead on an API for a simple online store
that sells two types of products: books and videos.

This chapter covers
 Using abstract types of unions and interfaces for their

benefits

 Paginating query results, using offsets and cursors

 Working with relationship properties, using Relay
connection types

2139.1 GraphQL abstract types

9.1 GraphQL abstract types
GraphQL supports two abstract types: interfaces and unions. Abstract types allow us to
represent multiple concrete types (or arrays of multiple types) in a single field. Inter-
faces are used when one or more fields are shared across concrete types and they
declare the shared fields that must be implemented in the concrete type. In this way,
an interface can be thought of as a contract that specifies the minimal set of fields that
a type must have to implement the interface. Unions do not need to share fields
across concrete types and do not share this idea of a contract. Unions are, therefore,
simply a grouping of concrete types.

9.1.1 Interface types

Interface types are used to represent multiple object types that are conceptually simi-
lar and share at least one common field. For example, our store API may have the
concept of a person. Each person could be either a customer or an employee. Every
person would have fields such as first name, last name, and username. However, only a
customer would have a shipping address, and only an employee would have a hire
date. In GraphQL type definitions, we can represent this concept, as shown in the
next listing.

interface Person {
firstName: String!
lastName: String!
username: String!

}

type Customer implements Person {
firstName: String!
lastName: String!
username: String!
shippingAddress: String

}

type Employee implements Person {
firstName: String!
lastName: String!
username: String!
hireDate: DateTime!

}

type Query {
people: [Person]

}

The implementing (or concrete) type must implement all the fields declared in the
interface and can then define other fields associated with the type. Here, Customer
and Employee both implement the Person interface and, therefore, must include the

Listing 9.1 Defining an interface in GraphQL type definitions

214 CHAPTER 9 Advanced GraphQL considerations

firstName, lastName, and username fields. Customer adds a shippingAddress field,
and Employee adds a hireDate field.

 Querying the people Query field would return an array of objects, where each
object could be either an Employee or a Customer object. We use an inline fragment in
the GraphQL query to specify the selection set and fields to be returned for each type,
as shown in the following listing. Inline fragments allow us to request fields on the
concrete type and include a type condition.

{
people {

__typename
firstName
lastName
username
... on Customer {

shippingAddress
}
... on Employee {

hireDate
}

}
}

We also include the __typename meta field that tells us the concrete type of each
object in the people array.

9.1.2 Union types

Unions are similar to interfaces in that they are abstract types that can be used to rep-
resent multiple concrete types; however, the concrete types composed in a union do
not need to have any common fields. A common use case for unions is to represent a
search result. For example, our store API may support a product search feature that
allows a user to search for items that may be either books or videos. To enable this, we
create a Product union that contains both Book and Video types and a Query field
search that returns an array of Product objects, as shown in the next listing.

type Video {
name: String!
sku: String!

}

type Book {
title: String!
isbn: String!

}

Listing 9.2 Querying an interface using inline fragments

Listing 9.3 Defining a union in GraphQL type definitions

2159.1 GraphQL abstract types

union Product = Video | Book

type Query {
search(term: String!): [Product!]!

}

Similar to how we query fields of the concrete type of an interface using an inline frag-
ment, we use an inline fragment when querying unions. However, since a union type
itself does not contain any fields, we can only ask for the __typename meta field when
querying a union without using an inline fragment, as shown in the following listing.

{
search(term: "GraphQL") {

__typename
... on Book {

title
isbn

}
... on Video {

name
sku

}
}

}

9.1.3 Using abstract types with the Neo4j GraphQL library

Now that we’ve explored interfaces and unions a bit, let’s see how we can make use of
abstract types in a GraphQL API using the Neo4j GraphQL Library. Let’s leave behind
our business reviews application and start a new application for our imagined book
and video store. In a new directory, run the following command to create a new
Node.js project:

npm init -y

Next, we’ll install the dependencies for our new Node.js GraphQL API application,
which should be familiar by now:

npm install @neo4j/graphql graphql apollo-server neo4j-driver dotenv

If you’d like to keep working with the business reviews application from previous
chapters, you can create a new Neo4j database in Neo4j Aura or locally, using Neo4j
Desktop. Alternatively, you can keep using the same database and run the following
Cypher statement to delete the business review data:

MATCH (a) DETACH DELETE a

Listing 9.4 Querying a union

216 CHAPTER 9 Advanced GraphQL considerations

Create a new file .env to define the environment variables that specify the connection
credentials for your Neo4j database, setting values for the environment variables
NEO4J_USER, NEO4J_URI, and NEO4J_PASSWORD, as shown in the following listing.

NEO4J_URI=neo4j+s://932a071e.databases.neo4j.io
NEO4J_USER=neo4j
NEO4J_PASSWORD=wH4-tvNOxzKlDZwIEqgNPm-8iS-tJ9gOgr1ScSq9yiM

Now that we have a new Node.js project and either a new or an empty Neo4j database,
let’s start by defining the GraphQL type definitions for our API and see how abstract
types can help simplify our API schema.

MODELING AN ONLINE BOOK AND VIDEO STORE API
Let’s start our new API by going to the (virtual) whiteboard: https://arrows.app. Fol-
lowing the graph data modeling process we identified in chapter 3, we will identify the
entities (nodes) in our application, how they are connected (relationships), and their
attributes (node properties). Let’s keep things simple and focus on users who will
place orders and orders that will contain books and/or videos. Creating the property
graph model to handle these requirements, we end up with a fairly straightforward
graph model (see figure 9.1).

As we saw in chapter 4, we can use this property graph model diagram to translate
GraphQL type definitions that map to this property graph model, using the
@relationship GraphQL schema directive to capture the direction and type of our
relationships, as the next listing shows.

Listing 9.5 .env: Be sure to replace the values with your Aura connection credentials

PLACED

CON
TAI

NS

CONTAINS

 username: String!
customerID: ID!

created: DateTime!
orderID: ID!

sku: String!
name: String!

title: String!
isbn: String!

User Order

Video

Book

Figure 9.1 Graph data model for an online store that sells books and videos

https://arrows.app

2179.1 GraphQL abstract types

type User {
username: String
orders: [Order!]! @relationship(type: "PLACED", direction: OUT)

}

type Order {
orderId: ID! @id
created: DateTime! @timestamp(operations: [CREATE])
customer: User! @relationship(type: "PLACED", direction: IN)
books: [Book!]! @relationship(type: "CONTAINS", direction: OUT)
videos: [Video!]! @relationship(type: "CONTAINS", direction: OUT)

}

type Video {
name: String
sku: String

}

type Book {
title: String
isbn: String

}

Note that we’re making use of the @id and @timestamp directives to autogenerate
these values, so the client won’t need to pass them to the API. Our client shouldn’t be
concerned with generating a random unique ID for orders or passing the time that
the order was created, as doing this would also open up security implications.

 But take a look at the Order.books and Order.videos fields. To see what products
are contained in the order, our client will need to request both of those fields—one of
which may be an empty array. This is a bit awkward for the client; let’s see how we can
improve this with the use of abstract types, specifically with the use of a union type,
since our Video and Book type do not share any common fields. Instead of the
Order.books and Order.videos fields, let’s define a new union type Product in the
next listing and add an Order.products field, which will allow us to work with prod-
ucts connected to the order (whether they be books or videos) in a single field.

type User {
username: String
orders: [Order!]! @relationship(type: "PLACED", direction: OUT)

}

union Product = Video | Book

type Order {
orderId: ID! @id
created: DateTime! @timestamp(operations: [CREATE])
customer: User! @relationship(type: "PLACED", direction: IN)

Listing 9.6 GraphQL type definitions for our online store data model

Listing 9.7 GraphQL type definitions for our online store data model using a union type

Defining a union type named Product, which
can be of type either Video or Book

218 CHAPTER 9 Advanced GraphQL considerations

products: [Product!]! @relationship(type: "CONTAINS", direction: OUT)
}

type Video {
name: String
sku: String

}

type Book {
title: String
isbn: String

}

CREATING THE GRAPHQL SERVER

Now that we’ve finalized our GraphQL type definitions, let’s use them to create a
GraphQL API using the Neo4j GraphQL Library. Let’s create a new index.js with
these new type definitions and the code necessary to create a GraphQL API using
Apollo Server and the Neo4j GraphQL Library, as shown next.

const { gql, ApolloServer } = require("apollo-server");
const { Neo4jGraphQL } = require("@neo4j/graphql");
const neo4j = require("neo4j-driver");
require("dotenv").config();

const typeDefs = gql`
type User {

username: String
orders: [Order!]! @relationship(type: "PLACED", direction: OUT)

}

union Product = Video | Book

type Order {
orderId: ID! @id
created: DateTime! @timestamp(operations: [CREATE])
customer: User! @relationship(type: "PLACED", direction: IN)
products: [Product!]!

@relationship(
type: "CONTAINS"
direction: OUT

)
}

type Video {
name: String
sku: String

}

type Book {
title: String
isbn: String

Listing 9.8 index.js: GraphQL API for our online store

Using our new Product type
in a relationship field on the

Order type

2199.1 GraphQL abstract types

}
`;

const driver = neo4j.driver(
process.env.NEO4J_URI,
neo4j.auth.basic(process.env.NEO4J_USER, process.env.NEO4J_PASSWORD)

);

const neoSchema = new Neo4jGraphQL({ typeDefs, driver });

neoSchema.getSchema().then((schema) => {
const server = new ApolloServer({

schema,
});
server.listen().then(({ url }) => {

console.log(`GraphQL server ready on ${url}`);
});

});

The structure of this file should be familiar from past chapters in which we defined
GraphQL type definitions, created a Neo4j driver instance, and generated a GraphQL
schema using the Neo4j GraphQL Library to be served by Apollo Server. Now let’s
start our GraphQL server:

node index.js
GraphQL server ready on http://localhost:4000/

USING ABSTRACT TYPES IN GRAPHQL MUTATIONS

Next, let’s open our web browser and navigate to http://localhost:4000, where we will
use Apollo Studio and start creating some data in the database, using the GraphQL
mutations generated by the Neo4j GraphQL Library in our schema. First, let’s create
two users, using the generated createUsers GraphQL mutation, as shown next.

mutation {
createUsers(

input: [{ username: "bobbytables" }, { username: "graphlover123" }]
) {

users {
username

}
}

}

In the response to this GraphQL operation, we should see the user objects with the
usernames we passed in the mutation operation:

{
"data": {

"createUsers": {

Listing 9.9 GraphQL mutation: Creating users

220 CHAPTER 9 Advanced GraphQL considerations

"users": [
{
"username": "bobbytables"

},
{
"username": "graphlover123"

}
]

}
}

}

In the next listing, let’s create some products for our store, which we said sells books
and videos. To do this, we’ll use both the createBooks and createVideos mutations.

mutation {
createBooks(

input: [
{ title: "Full Stack GraphQL", isbn: "9781617297038" }
{ title: "Graph Algorithms", isbn: "9781492047681" }
{ title: "Graph-Powered Machine Learning", isbn: "9781617295645" }

]
) {

books {
title
isbn

}
}

createVideos(
input: [

{ name: "Intro To Neo4j 4.x", sku: "v001" }
{ name: "Building GraphQL APIs", sku: "v002" }

]
) {

videos {
sku
name

}
}

}

And in the response, we will have arrays with the book and video objects we just
created:

{
"data": {

"createBooks": {
"books": [

{
"title": "Full Stack GraphQL",

Listing 9.10 GraphQL mutation: Creating products

2219.1 GraphQL abstract types

"isbn": "9781617297038"
},
{
"title": "Graph Algorithms",
"isbn": "9781492047681"

},
{
"title": "Graph-Powered Machine Learning",
"isbn": "9781617295645"

}
]

},
"createVideos": {

"videos": [
{
"sku": "v001",
"name": "Intro To Neo4j 4.x"

},
{
"sku": "v002",
"name": "Building GraphQL APIs"

}
]

}
}

}

Now we’re ready to create some orders. There are a few different ways we could
go about this—for example, by using the updateUsers mutation—but let’s use the
createOrders mutation, as shown in the next listing. Since the values for the created
and orderId fields are being autogenerated for us, we don’t need to specify those values
in the mutation.

mutation {
createOrders(

input: {
customer: {

connect: { where: { node: { username: "graphlover123" } } }
}
products: {

Book: {
connect: [

{ where: { node: { title: "Graph Algorithms" } } }
{ where: { node: { title: "Full Stack GraphQL" } } }

]
}
Video: {
connect: { where: { node: { name: "Building GraphQL APIs" } } }

}
}

}

Listing 9.11 GraphQL mutation: Creating a single order

222 CHAPTER 9 Advanced GraphQL considerations

) {
orders {

orderId
created
customer {

username
}
products {

__typename
... on Book {
title
isbn

}
... on Video {
name
sku

}
}

}
}

}

Notice the use of inline fragments in the products selection. We know that this field
returns an array of Product objects, which is a union type, and each object could
resolve to be either a Book or Video. We can add the __typename field to the selection,
which will tell us the concrete type of each object, but to return the actual fields of the
concrete type (Book or Video), we need to use an inline fragment to specify the fields
to be returned when the concrete type of the object being resolved matches the type
specified in the inline fragment:

products {
__typename
... on Book {

title
isbn

}
... on Video {

name
sku

}
}

In the response object, we will see that our order objects have been assigned random
ID values as well as timestamps. Notice that our products array is a mix of Book and
Video objects:

{
"data": {

"createOrders": {
"orders": [

{
"orderId": "dfdebf08-3ce5-494e-9843-d5286f4dc8f4",

2239.1 GraphQL abstract types

"created": "2021-08-15T13:43:15.117Z",
"customer": {

"username": "graphlover123"
},
"products": [

{
"__typename": "Video",
"name": "Building GraphQL APIs",
"sku": "v002"

},
{

"__typename": "Book",
"title": "Graph Algorithms",
"isbn": "9781492047681"

},
{

"__typename": "Book",
"title": "Full Stack GraphQL",
"isbn": "9781617297038"

}
]

}
]

}
}

}

If we use Neo4j Browser to inspect the data we’ve created in the database via our
GraphQL API so far, we can see the graph representation of our order, users, and
products and how they are connected (see figure 9.2).

Figure 9.2 An order containing
two books and a video

224 CHAPTER 9 Advanced GraphQL considerations

In the next listing, let’s create a few more orders using another GraphQL mutation.

mutation {
createOrders(

input: [
{

customer: {
connect: { where: { node: { username: "bobbytables" } } }

}
products: {
Book: {

connect: { where: { node: { isbn: "9781617297038" } } }
}

}
}
{

customer: {
connect: { where: { node: { username: "graphlover123" } } }

}
products: {
Book: {

connect: { where: { node: { isbn: "9781492047681" } } }
}

}
}
{

customer: {
connect: { where: { node: { username: "graphlover123" } } }

}
products: {
Book: {

connect: [{ where: { node: { isbn: "9781617295645" } } }]
}
Video: { connect: { where: { node: { sku: "v001" } } } }

}
}

]
) {

orders {
orderId
created
customer {

username
}
products {

__typename
... on Book {
title
isbn

}
... on Video {
name
sku

Listing 9.12 GraphQL mutation: Creating multiple orders

2259.1 GraphQL abstract types

}
}

}
}

}

Notice that we can pass an array of input objects to create several orders in a single
GraphQL mutation:

{
"data": {

"createOrders": {
"orders": [

{
"orderId": "38cfd8e4-f866-4c8a-ae97-e9e7c9e72b0b",
"created": "2021-08-16T13:33:08.288Z",
"customer": {

"username": "bobbytables"
},
"products": [

{
"__typename": "Book",
"title": "Full Stack GraphQL",
"isbn": "9781617297038"

}
]

},
{
"orderId": "597ba737-de86-4772-b541-6a0bf4a25817",
"created": "2021-08-16T13:33:08.288Z",
"customer": {

"username": "graphlover123"
},
"products": [

{
"__typename": "Book",
"title": "Graph Algorithms",
"isbn": "9781492047681"

}
]

},
{
"orderId": "dfc08de3-68f9-407c-8c72-1b02eb7a9b4e",
"created": "2021-08-16T13:33:08.288Z",
"customer": {

"username": "graphlover123"
},
"products": [

{
"__typename": "Video",
"name": "Intro To Neo4j 4.x",
"sku": "v001"

},
{

226 CHAPTER 9 Advanced GraphQL considerations

"__typename": "Book",
"title": "Graph-Powered Machine Learning",
"isbn": "9781617295645"

}
]

}
]

}
}

}

Now that we’ve created several orders and their associated books and videos, let’s
explore how we can paginate data results in GraphQL.

9.2 Pagination with GraphQL
Many applications display data in tables or lists. When populating these list views, it
may make sense for the application to only request a subset of the total result set from
the server—often, only the data needed to render the current view. For example, in
the context of our online store, we may want to show a list of all orders sorted in
chronological order or allow a specific user to view all their orders. However, there
may be thousands, or even millions, of orders; we don’t want to fetch all of these
orders from the server (that would be a lot of data to send over the network).

 Instead, we would paginate the order data by requesting certain chunks (or pages),
as they are to be rendered in the application. For example, we may initially request
the first 20 orders, sorted by date of creation. Then, when the user scrolls to the end
of the first 20, the next page of results is requested from the server. GraphQL offers
two types of pagination: offset and cursor.

9.2.1 Offset pagination

Offset pagination uses two field arguments, commonly called limit and offset, to
chunk the results of an array field into pages. We typically use a third argument, sort,
to specify the sort order for the array. The limit argument specifies the number of
results to be included, and offset is the number of objects to skip before returning
values and is incremented by the value used for limit to fetch the next page. For
example, if we wanted to chunk our results into pages of size 10, then the first page
would use an offset value of 0 and a limit value of 10, the second page would use an
offset value of 10 and a limit value of 10, and so on.

 Let’s imagine our store application has a View Orders view, in which all orders are
displayed in a table, initially sorted by date of order creation. Our GraphQL query to
load all that data might look something like the following.

query {
orders(options: { sort: { created: DESC } }) {

orderId

Listing 9.13 Querying for all orders sorted by date created

2279.2 Pagination with GraphQL

created
}

}

This query is returning all orders. What if we have millions of orders? We would be
sending too much data over the network, and our user would be waiting a long time
for the page to load and show the orders! Our application is only capable of display-
ing so many orders at a time, anyway, so we end up not making use of most of the data.
Instead, we want to slice our order results and only return a subset that is relevant for
display in the application. We’ll paginate our orders into pages of size 2, requesting
the first page, as the next listing shows.

query {
orders(options: { limit: 2, offset: 0, sort: { created: DESC } }) {

orderId
created

}
}

GRAPHQL COUNT QUERIES FOR PAGINATION

We then increment the offset value to give us the next page. But how do we know
how many pages to request? We typically want to be able to display the total number of
pages in the application so the user knows how much data they are dealing with. To
facilitate this, we can make use of the count queries. The Neo4j GraphQL Library gener-
ates a count query field for each type that returns the number of nodes of that type in
the database, as shown in the next listing. The client application can then use this
number to compute the total number of pages.

query {
ordersCount
orders(options: { limit: 2, offset: 0, sort: { created: DESC } }) {

orderId
created

}
}

If we are using a filter, such as filtering for orders placed after a certain date, we can
pass the same filter argument to the count query to determine the total number of
results and calculate the number of pages to be displayed on the client.

9.2.2 Cursor pagination

Cursor pagination is another commonly used model. Instead of using a numeric offset
to slice the results into pages, we use a cursor, which is an opaque string value that

Listing 9.14 Querying for orders using offset pagination

Listing 9.15 Offset pagination, including the ordersCount field

228 CHAPTER 9 Advanced GraphQL considerations

identifies the last object in a page of results. To see cursor pagination in action, let’s
imagine our application has a view of orders for a particular user; for example, a user
may wish to view all orders they have placed, sorted by the date the order was created.

 To use cursor pagination with the Neo4j GraphQL Library, we start by requesting
the ordersConnection field, instead of the orders field. The ordersConnection field
is what is known as a Relay connection object. Let’s first see how these Relay connec-
tions are used and then explore the Relay connection model.

query {
users(where: { username: "graphlover123" }) {

username
ordersConnection(sort: { node: { created: ASC } }) {

edges {
node {
created
orderId

}
}

}
}

}

Notice that our selection set for the ordersConnection field now includes nested
edges and node fields. What’s going on there?

THE RELAY CONNECTION MODEL

These connection fields are generated by the Neo4j GraphQL Library for each relation-
ship field and conform to the “Relay Cursor Connections Specification” (https://relay
.dev/graphql/connections.htm), commonly referred to as the Relay specification or
Relay connections. Relay is a GraphQL client that includes many features beyond the
scope of this book; however, this Relay specification has become a common blueprint
for implementing cursor pagination in GraphQL and introduces the concept of a
connection type.

 These connection types provide a standard method for cursor pagination in two
ways. First, common field arguments first and after are used for slicing and pagi-
nating results. Second, connections enable a standard method of paginating results,
providing cursors and other meta information about the result set, such as whether
any more results are available for the client to fetch in the paginated results.

 According to the Relay specification, each connection object must contain an
edges array field and a pageInfo object field. The edges field is a list of edge types,
defined by the Relay specification, that wrap the relationships, connecting nodes in
our graph. The pageInfo field contains metadata about the page, such as hasNext-
Page and hasPreviousPage, as well as the cursors used for requesting the next and
previous pages: startCursor and endCursor. Additionally, the Neo4j GraphQL
Library adds a totalCount field that tells us the total number of edges.

Listing 9.16 Using the ordersConnection Relay connection type

https://relay.dev/graphql/connections.htm
https://relay.dev/graphql/connections.htm
https://relay.dev/graphql/connections.htm

2299.2 Pagination with GraphQL

 Let’s see this in action in the next listing. We will add the first: 2 field argument
to our previous query to paginate orders in pages of size 2. We’ll also request the
pageInfo object and the totalCount field.

query {
users(where: { username: "graphlover123" }) {

username
ordersConnection(first: 2, sort: { node: { created: ASC } }) {

totalCount
pageInfo {

endCursor
hasNextPage
hasPreviousPage

}
edges {

node {
created
orderId

}
}

}
}

}

Now our results include the first two orders, wrapped in the edges array, as well as the
pageInfo metadata object that includes a cursor, endCursor, that we can use to fetch
the next page of results:

{
"data": {

"users": [
{

"username": "graphlover123",
"ordersConnection": {
"totalCount": 3,
"pageInfo": {

"endCursor": "YXJyYXljb25uZWN0aW9uOjE=",
"hasNextPage": true,
"hasPreviousPage": false

},
"edges": [

{
"node": {

"created": "2021-08-15T13:43:15.117Z",
"orderId": "dfdebf08-3ce5-494e-9843-d5286f4dc8f4"

}
},
{

"node": {
"created": "2021-08-16T13:33:08.288Z",
"orderId": "dfc08de3-68f9-407c-8c72-1b02eb7a9b4e"

Listing 9.17 Using the pageInfo object to retrieve metadata

230 CHAPTER 9 Advanced GraphQL considerations

}
}

]
}

}
]

}
}

To request the next page of results, we include the value of the endCursor as the value
of the after field argument for the ordersConnection field, as shown next.

query {
users(where: { username: "graphlover123" }) {

username
ordersConnection(

first: 2
after: "YXJyYXljb25uZWN0aW9uOjE="
sort: { node: { created: ASC } }

) {
totalCount
pageInfo {

endCursor
hasNextPage
hasPreviousPage

}
edges {

node {
created
orderId

}
}

}
}

}

This time, we will see in our results that hasNextPage is false, which tells us there are
no more paginated results for the client to fetch:

{
"data": {

"users": [
{

"username": "graphlover123",
"ordersConnection": {
"totalCount": 3,
"pageInfo": {

"endCursor": "YXJyYXljb25uZWN0aW9uOjI=",
"hasNextPage": false,
"hasPreviousPage": true

},

Listing 9.18 Using cursor pagination to retrieve the next page of orders

2319.3 Relationship properties

"edges": [
{

"node": {
"created": "2021-08-16T13:33:08.288Z",
"orderId": "597ba737-de86-4772-b541-6a0bf4a25817"

}
}

]
}

}
]

}
}

The Relay connection model provides a useful standard for cursor pagination. The
edge types defined by the Relay specification also introduce a way of representing a
powerful feature of the property graph model that we have yet to work with: relation-
ship properties.

9.3 Relationship properties
In the property graph model, relationship properties are attributes stored on the rela-
tionship and are used to represent values that have meaning in the context of both
end nodes connected by the relationship. For example, in our store data model, how
would we represent the quantity of a specific item added to an order? The best way to
represent this concept of quantity is by storing a property on the CONTAINS relation-
ship that represents the quantity of that item (book or video) added to the order.

In figure 9.3, we’ve added a quantity integer property to the CONTAINS relationship.
Now, if, for example, we want to purchase two copies of the Full Stack GraphQL book

PLACED

CON
TAI

NS

qua
nti

ty:
 In

t

CONTAINS
quantity: Int

 username: String!
customerID: ID!

created: DateTime!
orderID: ID!

sku: String!
name: String!

title: String!
isbn: String!

User Order

Video

Book

Figure 9.3 Updating the online store data model to include relationship properties

232 CHAPTER 9 Advanced GraphQL considerations

when placing an order, we can set a value, 2, for this property. But how do we repre-
sent this in our GraphQL API?

9.3.1 Interfaces and the @relationship GraphQL schema directive

We’ve used the @relationship directive with the Neo4j GraphQL Library to specify the
property graph relationship type and direction, using the type and direction argu-
ments. The @relationship directive also takes an optional argument, properties,
that can be used to specify relationship properties. The properties argument takes the
name of an interface type that defines the GraphQL fields to map to the relationship
properties.

 To represent the fields for our relationship properties, we first define an interface
type that includes our relationship property fields. Since we only want to add a single
relationship property field, quantity, on the CONTAINS relationship, we will create a
Contains interface with a single field. Next, in the @relationship directive used on
the Order.products field, we add properties: "Contains" to indicate we want to use
the Contains interface to represent the relationship properties for the CONTAINS rela-
tionship. Our updated GraphQL type definitions are shown in the following listing;
let’s go ahead and update these in index.js.

interface Contains {
quantity: Int

}

type User {
username: String
orders: [Order!]! @relationship(type: "PLACED", direction: OUT)

}

type Order {
orderId: ID! @id
created: DateTime! @timestamp(operations: [CREATE])
customer: User! @relationship(type: "PLACED", direction: IN)
products: [Product!]!

@relationship(type: "CONTAINS", direction: OUT, properties: "Contains")
}

type Video {
title: String
sku: String

}

type Book {
title: String
isbn: String

}

union Product = Video | Book

Listing 9.19 Using an interface to represent relationship properties in GraphQL

2339.3 Relationship properties

Note that since Product is a union type representing both the Video and Book type,
we have captured defining the quantity relationship property for both videos and
books—a great example of the power of abstract types! After updating the GraphQL
type definitions in index.js, we’ll need to restart our GraphQL Node.js application.

9.3.2 Creating relationship properties

Now that we have updated our GraphQL type definitions to include the quantity
relationship property, let’s see how we can make use of this new relationship property.
First, we’ll create a new order, but this time, we’ll place an order for 10 copies of the Full
Stack GraphQL book. To do this, we’ll include edge: { quantity: 10} in the connect
object for the input object when using the createOrders mutation, as shown next.

mutation {
createOrders(

input: {
customer: {

connect: { where: { node: { username: "graphlover123" } } }
}
products: {

Book: {
connect: {

edge: { quantity: 10 }
where: { node: { title: "Full Stack GraphQL" } }

}
}

}
}

) {
orders {

created
orderId
productsConnection {

edges {
quantity
node {

... on Book {
title

}
}

}
}

}
}

}

To retrieve the quantity value, we now have a field quantity on the edge type objects
in the productsConnection field that indicates this order contains 10 units of the
book, as seen in the query results:

Listing 9.20 Using relationship properties in a GraphQL mutation

234 CHAPTER 9 Advanced GraphQL considerations

{
"data": {

"createOrders": {
"orders": [

{
"created": "2021-08-18T22:17:28.285Z",
"orderId": "48faa3f4-553b-42ed-a08f-e7781aed3c17",
"productsConnection": {

"edges": [
{

"quantity": 10,
"node": {

"title": "Full Stack GraphQL"
}

}
]

}
}

]
}

}
}

Thanks to the power of the Relay connection specification, we can now represent and
work with relationship properties in GraphQL!

9.4 Wrapping up Full Stack GraphQL
We’ve now learned how to leverage the power of GraphQL, graph databases, React, and
cloud services to build and secure full stack web applications. The goal of this book was
largely to show how the pieces of Full Stack GraphQL fit together. Let’s review what
we’ve covered in the book and outline some paths for further learning resources.

 In part 1, we introduced graph thinking, GraphQL, and the Neo4j graph database. We
learned the benefits of GraphQL, how to write GraphQL queries, and the basic approach
to building GraphQL servers. Our graph thinking expanded to cover graph databases,
and we introduced Neo4j and the Cypher query language. In part 2, we covered the React
JavaScript framework for building user interfaces and using Apollo Client for GraphQL
data fetching with our React application. Finally, in part 3, we tackled authentication and
authorization in our GraphQL API and React application and deployment, using man-
aged cloud services, like Auth0, Neo4j AuraDB, Netlify, and serverless functions.

 The Neo4j GraphQL Library is a core component of Full Stack GraphQL, providing
the ability to create powerful GraphQL APIs backed by Neo4j without writing boiler-
plate code; however, there are many features of the library we didn’t have a chance to
cover in this book. As you continue your journey building applications with GraphQL,
I encourage you to learn more about some of these features, such as working with
aggregations and more of the schema directives, like @cypher and @auth, that allow us
to enrich our GraphQL APIs. A resource for further learning around the Neo4j
GraphQL Library is the documentation at neo4j.com/docs/graphql-manual/current.

https://neo4j.com/docs/graphql-manual/current/

235Summary

 Another topic I would have liked to include in the book is working with React
frameworks and tooling to improve the developer experience of building frontend
applications with React. Next.js is one such framework that builds upon React and
bundles many common features that are absent from React itself. With its API Routes
feature, Next.js even includes the ability to build GraphQL APIs, an interesting
approach to colocating backend logic. The Next.js Getting Started tutorial included
in the Next.js documentation is an excellent hands-on introduction: nextjs.org/docs/
getting-started.

 To continue your graph journey with graph databases and Neo4j, the free online
trainings at Neo4j’s GraphAcademy are an excellent resource and cover many topics,
including those not covered in this book, such as graph data science and building
applications using different languages and frameworks. You can get started with
GraphAcademy at graphacademy.neo4j.com.

 Finally, I publish a blog and newsletter that dive into many of these topics. You can
find it online at lyonwj.com.

9.5 Exercises
1 The price a customer pays for an item can vary. For example, the price may

change or be temporarily reduced as part of a promotion. Add a relationship
property to store the price for each item paid in an order.

2 Write a @cypher directive field to compute the order subtotal. Be sure to take
into account the quantity of each item included in the order.

3 Write a GraphQL query to paginate the items included in an order, first using
offset pagination and then using cursor-based pagination. Can you navigate
from the last page to the first page as well?

Summary
 GraphQL supports two abstract types that can be used to represent multiple

concrete types: unions and interfaces.
 Interfaces are used when the concrete types share common fields and can be

thought of as a contract that defines the requirements for implementing the
interface.

 Unions do not share this idea of a contract and can be used when the concrete
types do not share common fields.

 Two common approaches to pagination with GraphQL include using offsets
and cursors. Offset pagination uses numeric offsets to chunk results into pages,
while cursor pagination uses an opaque cursor.

 The Relay specification defines a common connection type that can be used to
enable cursor-based pagination with GraphQL.

 These Relay connection types can also be used to model relationship properties
with GraphQL.

https://nextjs.org/docs/getting-started
https://nextjs.org/docs/getting-started
https://nextjs.org/docs/getting-started
https://graphacademy.neo4j.com/
https://lyonwj.com/

237

index

Symbols

@auth directive 148
@auth GraphQL schema directive 143, 147–157

allow authorization rule 153–154
bind authorization rule 156–157
isAuthenticated authorization rule 149–150
roles authorization rule 151–153
rules and operations 148–149
where authorization rule 154–155

@client directive 134
@cypher GraphQL schema directive 90–94

computed object and array fields 92
computed scalar fields 90–91
custom top-level query fields 93–94

@cypher schema directive 90, 147
@id directive 217
@ignore directive 94
@neo4j/graphql package 73
@neo4j/introspector package 96
@relationship directive 232
@relationship GraphQL schema directive 75–76,

216, 232–233
@relationship schema directive 75
@timestamp directive 217
$first parameter 80

Numerics

200 OK request 12
404 Not Authorized request 12

A

-A flag 191

abstract syntax tree (AST) 118
abstract types 212–226

interface types 213–214
union types 214–215
using in GraphQL mutations 219–226
using with Neo4j GraphQL library 215–226

creating GraphQL server 218–219
modeling online book and video store

API 216–218
Actor objects 7
admin role 152–153
after field argument 230
aggregations 65
aliases 58
allBusinesses resolver 41
allow authorization rule 153–154
allow rule 149
ALTER CURRENT USER Cypher command 178
AND operator 83–84
Apollo Client 18, 117–128

adding to React application 117–120
caching with 127–128
creating instances 118
hooks 120–123
injecting into the component hierarchy 119–

120
installing 117–118
making requests 24–25
querying with 118–119
response handling 26–27
using fragments with 126

Apollo Server 18
combining type definitions and resolvers 41–47
GraphQL backend and 25–26

Apollo Studio 14
querying 46–47

INDEX238

ApolloProvider component 120, 162
App component 108, 120, 162
args argument 38
array resolvers 45
AST (abstract syntax tree) 118
aud claim 143
AuraDB Free database type 177
auth0-react library 161, 166
Auth0Provider component 162
authorization and authentication

@auth GraphQL schema directive 147–157
allow authorization rule 153–154
bind authorization rule 156–157
isAuthenticated authorization rule 149–150
roles authorization rule 151–153
rules and operations 148–149
where authorization rule 154–155

Auth0 157–171
configuring 157–161
React and 161–171

JSON Web Tokens 143–147
averageStars field 90–91, 149, 169
AWS Lambda 202–209

adding custom domains in Netlify 207–209
converting GraphQL API to Netlify

function 205–207
Netlify dev CLI 204–205
serving GraphQL API as lambda function

202–204
AWS Lambda managed service 175

B

bind authorization rule 149, 156–157
boilerplate 69
Business node 53, 58
Business node label 71
Business type 38, 90, 92, 126
BUSINESS_DETAILS_FRAGMENT variable 126
Business.avgStars 45
Business.reviews 45
Business.reviews resolver 45
businessBySearchTerm 44–45
businessDetails fragment 126
businesses object 43
businessesBySearchTerm resolver 44
businessId field 131
BusinessResults component 111, 122, 170

C

CartesianPoint spatial type 88
Category node label 71
CDNs (content delivery networks) 174

client state management 117
CLIs (command line interfaces) 173
components 102–103
connect argument 130
connect object 233
Contains interface 232
CONTAINS relationship 231
content delivery networks (CDNs) 174
context argument 38
context object 39
create argument 130
CREATE command 58–61
Create React App tool 17, 104–110
CREATE statement 59
create-react-app tool 191
create, read, update, delete (CRUD)

operations 70
created field 221
createOrders mutation 221, 233
createUsers GraphQL mutation 219
CRUD (create, read, update, delete)

operations 70
cursor pagination 227–231
Customer object 214
Cypher 19–20, 57–65

aggregations 65
CREATE command 58–61
defining database constraints 63–64

node key constraint 64
property existence constraint 63–64
uniqueness constraint 63–64

MATCH command 64
MERGE command 62–63
pattern matching 57–58

nodes 57
relationships 58

properties 58

D

data object 122
Date filter 87
date types 86
DateTime filter 87
DateTime type 86
db object 39
DEBUG environment variable 77
deleteBusinesses mutation 132
developer productivity 69, 173
direction argument 75, 232
Distance filter 89
DOM (document object model) 15

INDEX 239

E

edge types 228
edges array field 228
edges field 228
elements 103
Employee object 214
engine libraries 26
exp claim 143
Explorer feature 14
extend GraphQL keyword 151

F

FaaS (function as a service) 173
filtering 82–85

filtering in selections 85
logical operators 83–84
nested filters 82–83
where argument 82

first argument 34, 80
first field argument 92
firstName field 213
Forbidden error 157
function as a service (FaaS) 173

G

GET request 10, 42
getAccessTokenSilently function 166
git commit command 191
git push command 192
git status command 199
gql template literal tag 118
GraphiQL 13–14
GraphQL 5–14

abstract types 213–226
interface types 213–214
union types 214–215
using in GraphQL mutations 219–226
using with Neo4j GraphQL library 215–226

advantages of 10–12
graphs 11–12
introspection 12
overfetching and underfetching 10–11
specification 11

Apollo Server and GraphQL backend 25–26
basic queries 76–79
client state management with 132–136
common problems 68–69

boilerplate and developer productivity 69
poor performance and the n + 1 query

problem 68–69

database integrations 69
deployment 173–175

advantages of approach 173–174
disadvantages of approach 174
overview of approach 174–175, 210–211

deployment with Netlify Build 186–201
adding sites to Netlify 187–195
deploy previews 199–201
setting environment variables for

Netlify builds 196–198
disadvantages of 12
fragments 125–126
full stack 3–5
generated schema from type definitions 74–76
graphs 31–41

adding pagination and ordering to API 34–37
API modeling with type definitions 31–37
resolvers 37–38

movie search example 27–28
mutations 129–132

creating nodes 129
creating relationships 130
updating and deleting 131–132
using abstract types in 219–226

Neo4j Aura 175–186
connecting to clusters 178–181
creating clusters 175–178
exploring graph with Neo4j Bloom 183–186
uploading data to 181–183

pagination 226–231
cursor pagination 227–231
offset pagination 226–227

querying with 7–10
relationship properties 231–234

creating 233–234
interfaces and @relationship GraphQL

schema directive 232–233
serverless 202–209

adding custom domains in Netlify 207–209
converting GraphQL API to Netlify

function 205–207
Netlify dev CLI 204–205
serving GraphQL API as lambda

function 202–204
tooling 13–14

Apollo Studio 14
GraphiQL 13–14
GraphQL Playground 14

type definitions 5–7
variables 124–125

GraphQL first development process 31
GraphQL Playground 14
graphql-plugin-auth package 147
GraphQLResolveInfo object 38

INDEX240

graphs 11–12, 31–41
adding pagination and ordering to API 34–37
API modeling with type definitions 31–37
application data as 30–31
combining type definitions and resolvers 41–47

Apollo Server 41–42
Apollo Studio 42–43, 46–47
implementing resolvers 43–46

data modeling considerations 54–55
choosing relationship direction 55
indexes 55
node vs. property 54
node vs. relationship 55
specificity of relationship types 55

in GraphQL 31–41
adding pagination and ordering to API 34–37
API modeling with type definitions 31–37
resolvers 37–38

Neo4j
client drivers 65–66
graph data modeling with 50–54
overview of 50

resolvers 37–38
default 38
implementing 38–41
resolver function signature 38

greetings query field 203
GROUP BY operator 65

H

HATEOAS (hypermedia as the engine of
application state) 11

hireDate field 213
Hooks class 103

I

ID businessID 130
ID fields 32
IN_CATEGORY relationship type 71
index-free adjacency 55
indexes 54–55
info argument 38
inline fragment 214
InMemoryCache cache 118
interface types 213–214
introspection 12, 96–97
isAuthenticated authorization rule 149–150
isAuthenticated rule 148, 169
isAuthenticated variable 164
iss claim 143
isStarred field 133

J

JOIN operation 18
JSON Web Tokens 143–147
jsonwebtoken package 144
JSX 16
JSX element 103
JWKS (JSON Web Key Set) 148
JWT (JSON Web Token) 143
JWT_SECRET environment variable 147

L

lastName field 213
LIMIT clause 80
limit field argument 226
local-only fields 132
LocalDateTime type 86
logical operators 83–84

M

managed services 173
MATCH clause 20, 60, 64
MERGE command 62–63
movie search example 27–28
Movie type 7
moviesByTitle query field resolver 25
MovieSearch React component 24
mutation operation type 37
Mutation type 7, 33, 70

N

n + 1 query problem 68–69
name field 38, 43
name property 58
Neo4j

client drivers 65–66
graph data modeling with 50–54

database constraints and indexes 54
property graph model 51–53

overview of 50
tooling

Neo4j Browser 56
Neo4j Desktop 55–56

Neo4j Aura 175–186
connecting to clusters 178–181
creating clusters 175–178
exploring graph with Neo4j Bloom 183–186
uploading data to 181–183

Neo4j AuraDB 20–21
Neo4j Bloom 183–186
Neo4j Browser 21, 56

INDEX 241

Neo4j client drivers 21–23
Neo4j Database 18–23

Cypher query language 19–20
property graph data model 19
tooling 20–23

Neo4j AuraDB 20–21
Neo4j Browser 21
Neo4j client drivers 21–23
Neo4j Desktop 20
Neo4j GraphQL Library 23

neo4j database user 178
Neo4j Desktop 20, 55–56
Neo4j GraphQL Library 23

basic GraphQL queries 76–79
common GraphQL problems 68–69

boilerplate and developer productivity 69
poor performance and the n + 1 query

problem 68–69
custom logic 90–96

@cypher GraphQL schema directive 90–94
implementing custom resolvers 94–96

filtering 82–85
filtering in selections 85
logical operators 83–84
nested filters 82–83
where argument 82

generated GraphQL schema from type
definitions 74–76

GraphQL database integrations 69
introspecting GraphQL schema from

existing database 96–97
nested queries 80–81
ordering and pagination 79–80
project setup 70–74

Neo4j 70–73
Node.js app 73–74

spatial data 88–89
Distance filter 89
point type in selections 88

temporal fields 86–87
Date and DateTime filters 87
using date types in queries 86

using abstract types with 215–226
creating GraphQL server 218–219
modeling online book and video store

API 216–218
neo4j-admin command 181
Neo4jGraphQL constructor 95, 97
nested filters 82–83
nested mutations 130
nested queries 80–81
Netlify Build,deployment with 186–201

adding sites to Netlify 187–195
deploy previews 199–201

setting environment variables for
Netlify builds 196–198

Netlify Functions,serverless GraphQL with AWS
Lambda and 202–209

adding custom domains in Netlify 207–209
converting GraphQL API to Netlify

function 205–207
Netlify dev CLI 204–205
serving GraphQL API as lambda function

202–204
node field 228
node key constraint 64
Node.js app 73–74
nodes

creating 129
node key constraint 64
node labels 52
pattern matching 57
properties vs. 54
relationships vs. 55

npm command line tool 4
npm run build command 193
npm start command 107

O

obj argument 38
obj parameter 38, 45
object resolvers 46
offset argument 34, 226
offset pagination 226–227
operation name 37
operation type 37
OR operator 83–84
ORDER BY clause 80
Order.products field 217
orderBy argument 80
orderId field 221
ordering

adding to API 34–37
Neo4j GraphQL Library 79–80

orders field 228
ordersConnection field 228, 230
overfetching 10–11
--overwrite flag 182

P

p variable 60
pageInfo field 228
pageInfo object 228–229
pagination 79–80, 226–231

adding to API 34–37
cursor pagination 227–231
offset pagination 226–227

INDEX242

param command 80
pattern matching 20
people Query field 214
Person interface 213
plugins object 147
Plugins tab 70
Point spatial type 88
point type 88
polling 127
POST request 42
properties 53, 58

nodes vs. 54
property existence constraint 63–64
relationship properties 231–234

creating 233–234
interfaces and @relationship GraphQL

schema directive 232–233
properties argument 232
property graph model 19, 51–53

node labels 52
properties 53
relationships 52–53

push-to-cloud command 182

Q

quantity integer property 231
quantity relationship property 233
Query field 34–35
query operation type 37
Query type 7, 33, 44, 70
Query.businessBySearchTerm resolver 45
Query.people resolver 141

R

RBAC (role-based access control) 158
React 15–17

Apollo Client 117–128
adding to React application 117–120
caching with 127–128
hooks 120–123
using fragments with 126

Auth0 and 161–171
client state management with GraphQL 132–

136
component libraries 16
components 16
Create React App tool 104–110
GraphQL fragments 125–126
GraphQL mutations 129–132

creating nodes 129
creating relationships 130
updating and deleting 131–132

GraphQL variables 124–125
JSX 16
making requests 24–25
overview of 102–104

component hierarchy 104
components 103–104
JSX and React elements 103

response handling 26–27
State and React Hooks 110–114
tooling 16–17

Create React App tool 17
React Chrome DevTools 17

React Chrome DevTools 17
React Hook 110–114
REACT_APP_GRAPHQL_URI environment

variable 198
react-scripts package 107
react-scripts tool 204
React.createElement() function 103
reactive variables 132
recommended field 92
refetch function 127
refetching 127
relationships 52–53

choosing relationship direction 55
creating 130
nodes vs. 55
pattern matching 58
relationship properties 231–234

creating 233–234
interfaces and @relationship GraphQL

schema directive 232–233
specificity of relationship types 55

Relay connection model 228–231
Relay specification 228
resolver functions 10
resolvers 37–38

default 38
implementing 38–41, 43–46

array resolvers 45
object resolvers 46
root-level resolvers 44–45
scalar resolvers 45

implementing custom resolvers 94–96
resolver function signature 38

RETURN clause 20, 59
Review type 86
Review.user 46
REVIEWS relationship type 71
role-based access control (RBAC) 158
roles @auth schema directive 158
roles authorization rule 151–153
roles rule 149
root-level resolvers 44–45
rules array 153

INDEX 243

S

scalar resolvers 45
selection set 7
SET command 58
setSelectedCategory function 114
setState function 110
shippingAddress field 213
sort argument 226
spatial data 88–89

Distance filter 89
point type in selections 88

starred businesses function 132
starredVar reactive variable 134
State Hook 110–114
String type 6
String value 33
sub claim 143
subscription operation type 37
Subscription type 7

T

temporal fields 86–87
Date and DateTime filters 87
using date types in queries 86

this variable 90
three-tier application 4
title argument 25
totalCount field 228–229
type argument 75, 232
type definitions

API modeling with 31–37
combining with resolvers 41–47
generated GraphQL schema from type

definitions 74–76
__typename meta field 214

U

underfetching 10–11
union types 214–215
unions abstract type 213
uniqueness constraint 63–64
update argument 131
updateBusinesses mutation 131
updateUsers mutation 221
use neo4j command 179
--use-npm command flag 105
useAuth0 hook 164
useQuery hook 117, 120, 127
User node 53
User node label 71
User object 32
User type 152
userId field 32
userId node property value 155
username field 213
useState hook 114

W

waitTime field 94–95
waitTime value 95
web-react directory 117, 161
where argument 82, 124, 154
where authorization rule 154–155
WHERE clause 64
where rule 155
whiteboard model 51
WROTE relationship type 72

Y

yarn package manager 105

	Full Stack GraphQL Applications
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	Software/hardware requirements
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1: Getting started with full stack GraphQL
	Chapter 1: What is full stack GraphQL?
	1.1 A look at full stack GraphQL
	1.2 GraphQL
	1.2.1 GraphQL type definitions
	1.2.2 Querying with GraphQL
	1.2.3 Advantages of GraphQL
	1.2.4 Disadvantages of GraphQL
	1.2.5 GraphQL tooling

	1.3 React
	1.3.1 React components
	1.3.2 JSX
	1.3.3 React tooling

	1.4 Apollo
	1.4.1 Apollo Server
	1.4.2 Apollo Client

	1.5 Neo4j Database
	1.5.1 Property graph data model
	1.5.2 Cypher query language
	1.5.3 Neo4j tooling

	1.6 How it all fits together
	1.6.1 React and Apollo Client: Making the request
	1.6.2 Apollo Server and GraphQL backend
	1.6.3 React and Apollo Client: Handling the response

	1.7 What we will build in this book
	1.8 Exercises

	Chapter 2: Graph thinking with GraphQL
	2.1 Your application data is a graph
	2.2 Graphs in GraphQL
	2.2.1 API modeling with type definitions: GraphQL-first development
	2.2.2 Resolving data with resolvers
	2.2.3 Our first resolver

	2.3 Combining type definitions and resolvers with Apollo Server
	2.3.1 Using Apollo Server
	2.3.2 Apollo Studio
	2.3.3 Implementing resolvers
	2.3.4 Querying using Apollo Studio

	2.4 Exercises

	Chapter 3: Graphs in the database
	3.1 Neo4j overview
	3.2 Graph data modeling with Neo4j
	3.2.1 The property graph model
	3.2.2 Database constraints and indexes

	3.3 Data modeling considerations
	3.3.1 Node vs. property
	3.3.2 Node vs. relationship
	3.3.3 Indexes
	3.3.4 Specificity of relationship types
	3.3.5 Choosing a relationship direction

	3.4 Tooling: Neo4j desktop
	3.5 Tooling: Neo4j Browser
	3.6 Cypher
	3.6.1 Pattern matching
	3.6.2 Properties
	3.6.3 CREATE
	3.6.4 MERGE
	3.6.5 Defining database constraints with cypher
	3.6.6 MATCH
	3.6.7 Aggregations

	3.7 Using the Neo4j client drivers
	3.8 Exercises

	Chapter 4: The Neo4j GraphQL Library
	4.1 Common GraphQL problems
	4.1.1 Poor performance and the n + 1 query problem
	4.1.2 Boilerplate and developer productivity

	4.2 Introducing GraphQL database integrations
	4.3 The Neo4j GraphQL Library
	4.3.1 Project setup
	4.3.2 Generated GraphQL schema from type definitions

	4.4 Basic GraphQL queries
	4.5 Ordering and pagination
	4.6 Nested queries
	4.7 Filtering
	4.7.1 where argument
	4.7.2 Nested filter
	4.7.3 Logical operators: AND, OR
	4.7.4 Filtering in selections

	4.8 Working with temporal fields
	4.8.1 Using a Date type in queries
	4.8.2 Date and DateTime filters

	4.9 Working with spatial data
	4.9.1 The Point type in selections
	4.9.2 Distance filter

	4.10 Adding custom logic to our GraphQL API
	4.10.1 The @cypher GraphQL schema directive
	4.10.2 Implementing custom resolvers

	4.11 Introspecting GraphQL schema from an existing database
	4.12 Exercises

	Part 2: Building the frontend
	Chapter 5: Building user interfaces with React
	5.1 React overview
	5.1.1 JSX and React elements
	5.1.2 React components
	5.1.3 Component hierarchy

	5.2 Create React App
	5.2.1 Creating a React application with Create React App

	5.3 State and React Hooks
	5.4 Exercises

	Chapter 6: Client-side GraphQL with React and Apollo Client
	6.1 Apollo Client
	6.1.1 Adding Apollo Client to our React Application
	6.1.2 Apollo Client hooks
	6.1.3 GraphQL variables
	6.1.4 GraphQL fragments
	6.1.5 Caching with Apollo Client

	6.2 GraphQL mutations
	6.2.1 Creating nodes
	6.2.2 Creating relationships
	6.2.3 Updating and deleting

	6.3 Client state management with GraphQL
	6.3.1 Local-only fields and reactive variables

	6.4 Exercises

	Part 3: Full stack considerations
	Chapter 7: Adding authorization and authentication
	7.1 Authorization in GraphQL: A naive approach
	7.2 JSON Web Tokens
	7.3 The @auth GraphQL schema directive
	7.3.1 Rules and operations
	7.3.2 The isAuthenticated authorization rule
	7.3.3 The roles authorization rule
	7.3.4 The allow authorization rule
	7.3.5 The where authorization rule
	7.3.6 The bind authorization rule

	7.4 Auth0: JWT as a service
	7.4.1 Configuring Auth0
	7.4.2 Auth0 React

	7.5 Exercises

	Chapter 8: Deploying our full stack GraphQL application
	8.1 Deploying our full stack GraphQL application
	8.1.1 Advantages of this deployment approach
	8.1.2 Disadvantages of our deployment approach
	8.1.3 Overview of our approach to full stack GraphQL

	8.2 Neo4j Aura database as a service
	8.2.1 Creating a Neo4j Aura cluster
	8.2.2 Connecting to a Neo4j Aura cluster
	8.2.3 Uploading data to Neo4j Aura
	8.2.4 Exploring the graph with Neo4j Bloom

	8.3 Deploying a React application with Netlify Build
	8.3.1 Adding a site to Netlify
	8.3.2 Setting environment variables for Netlify builds
	8.3.3 Netlify deploy previews

	8.4 Serverless GraphQL with AWS Lambda and Netlify Functions
	8.4.1 Serving a GraphQL API as a Lambda function
	8.4.2 The Netlify dev CLI
	8.4.3 Converting our GraphQL API to a Netlify function
	8.4.4 Adding a custom domain in Netlify

	8.5 Our deployment approach
	8.6 Exercises

	Chapter 9: Advanced GraphQL considerations
	9.1 GraphQL abstract types
	9.1.1 Interface types
	9.1.2 Union types
	9.1.3 Using abstract types with the Neo4j GraphQL library

	9.2 Pagination with GraphQL
	9.2.1 Offset pagination
	9.2.2 Cursor pagination

	9.3 Relationship properties
	9.3.1 Interfaces and the @relationship GraphQL schema directive
	9.3.2 Creating relationship properties

	9.4 Wrapping up Full Stack GraphQL
	9.5 Exercises

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

