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Understanding Log Analytics
at Scale

The humble machine log has been with us for many technology gen‐
erations. The data that makes up these logs is a collection of records
generated by hardware and software—including mobile devices, lap‐
top and desktop PCs, servers, operating systems, applications, and
more—that document nearly everything that happens in a comput‐
ing environment. With the constantly accelerating pace of business,
these logs are gaining in importance as a contributor to practices
that help keep applications running 24/7/365 as well as analyzing
issues faster to bring them back online when outages do occur.

If logging is enabled on a piece of hardware or software, almost
every system process, event, or message can be captured as a time-
series element of log data. Log analytics is the process of gathering,
correlating, and analyzing that information in a central location to
develop a sophisticated understanding of what is occurring in a
datacenter and, by extension, providing insights about the business
as a whole.

The comprehensive view of operations provided by log analytics can
help administrators investigate the root cause of problems and iden‐
tify opportunities for improvement. With the greater volume of that
data and novel technology to derive value from it, logs have taken
on new value in the enterprise. Beyond long-standing uses for log
data, such as troubleshooting systems functions, sophisticated log
analytics has become an engine for business insight as well as com‐
pliance with regulatory requirements and internal policies, such as
the following:
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• A retail operations manager looks at customer interactions with
the ecommerce platform to discover potential optimizations
that can influence buying behavior. Complex relationships
among visit duration, time of day, product recommendations,
and promotions reveal insights that help reduce cart abandon‐
ment rates, improving revenue.

• A ride-sharing company collects position data on both drivers
and riders, directing them together efficiently in real time as
well as performing long-term analysis to optimize where to
position drivers at particular times. Analytics insights enable
pricing changes and marketing promotions that increase rider‐
ship and market share.

• A smart factory monitors production lines with sensors and
instrumentation that provide a wealth of information to help
maximize the value generated by expensive capital equipment.
Applying analytics to log data generated by the machinery
increases production by tuning operations, identifying potential
issues, and preventing outages.

Using log analytics to generate insight and value is challenging. The
volume of log data generated all over an enterprise is staggeringly
large, and the relationships among individual pieces of log data are
complex. Organizations are challenged with managing log data at
scale and making it available where and when it is needed for log
analytics, which requires high compute and storage performance.

Log analytics is maturing in tandem with the global
explosion of data more generally. International Data
Corporation (IDC) predicts that the global datasphere
will grow more than fivefold in seven years, from 33
zettabytes in 2018 to 175 zettabytes in 2025.1 (A zetta‐
byte is 1021 bytes or a million petabytes.)

What’s more, the overwhelming majority of log data offers little
value and simply records mundane details of routine day-to-day
operations such as machine processes, data movement, and user
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transactions. There is no simple way of determining what is impor‐
tant or unimportant when the logs are first collected, and conven‐
tional data analytics are ill suited to handle the variety, velocity, and
volume of log data.

This report examines emerging opportunities for deriving value
from log data, as well as the associated challenges and some
approaches for meeting those challenges. It investigates the mechan‐
ics of log analytics and places them in the context of specific use
cases, before turning to the tools that enable organizations to fulfill
those use cases. The report next outlines key architectural consider‐
ations for data storage to support the demands of log analytics. It
concludes with guidance for architects to consider when planning
and designing their own solutions to drive the full value out of log
data, culminating in best practices associated with nine key
questions:

• What are the trends for ingest rates?
• How long does log data need to be retained?
• How will regulatory issues affect log analytics?
• What data sources and formats are involved?
• What role will changing business realities have?
• What are the ongoing query requirements?
• How are data-management challenges addressed?
• How are data transformations handled?
• What about data protection and high availability?

Capturing the Potential of Log Data
At its core, log analytics is the process of taking the logs generated
from all over the enterprise—servers, operating systems, applica‐
tions, and many others—and deducing insights from them that
power business decision making. That requires a broad and coher‐
ent system of telemetry, which is the process of PCs, servers, and
other endpoints capturing relevant data points and transmitting
them to a central location.
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Log analytics begins with collecting, unifying, and preparing log
data from throughout the enterprise. Indexing, scrubbing, and nor‐
malizing datasets all play a role, and all of those tasks must be com‐
pleted at high speed and efficiency, often to support real-time
analysis. This entire life cycle and the systems that perform it must
be designed to be scalable, flexible, and secure in the face of require‐
ments that will continue to evolve in the future.

Generating insights consists of searching for specific pieces of data
and analyzing them together against historical data as well as
expected values. The log analytics apparatus must be capable of
detecting various types of high-level insights such as anomalies,
relationships, and trends among the log data generated by informa‐
tion technology (IT) systems and technology infrastructure, as
shown in Figure 1.

Figure 1. High-level types of insights discoverable from log data

Following are some examples of these types of high-level insights:

Anomaly
Historically, 90% of the traffic to a given server has come from
HR. There is now an influx of traffic from a member of the sales
department. The security team might need to investigate the
possibility of an insider threat.

Relationship
The type of spike currently observed in traffic to a self-serve
support portal from a specific customer often precedes losing
that customer to the competition. The post-sales support team
might need to ensure that the customer isn’t at risk.
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Trend
Shopping cart abandonment rates are increasing on the ecom‐
merce site for a specific product type. The sales operations team
might need to investigate technical or marketing shortcomings
that could be suppressing that product’s sales.

In addition to detecting these high-level insights, the log analytics
apparatus must be capable of effective reporting on and visualization
of those findings to make them actionable by human administrators.

Your Environment Has Too Many Log Sources to Count
Log data is generated from many sources all over the enterprise,
and deciding which ones to use for analytics is an ongoing process
that can never be completed. The following list is representative, as
opposed to exhaustive:

Servers
Operating systems, authentication platforms, applications,
databases

Network infrastructure
Routers, switches, wireless access points

Security components
Firewalls, intrusion prevention systems, management tools

Virtualization environments
Hypervisors, orchestration engines, management utilities

Data storage
Local, virtualized, Storage Area Network (SAN), and/or
Network-Attached Storage (NAS) resources

Client machines
Usage patterns, data movement, resource accesses

Although they derive from a shared central concept, implementa‐
tions of log analytics are highly variable in scope, intent, and
requirements. They can run the gamut from modest to massive in
scale, with individual log entries that might be sparse or verbose,
carrying all manner of information in an open-ended variety of for‐
mats that might not be readily compatible, as shown in Figure 2. All
share the challenge of tightening the feedback loop between sifting
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through and interpreting enormous numbers of events, often in real
time, to generate insights that can optimize processes.

Figure 2. Challenge of bringing together nonstandardized log file
formats

Storing log data enables analysts to go back through the repository
of time-series data and re-create a series of events, correlating causes
and effects after the fact. In addition to casting light on the past,
identifying historical patterns also helps illuminate present and
future dangers and opportunities. The sheer volume of that data and
the need to be able to effectively query against it places significant
demands on storage systems.

Treating Logs as Data Sources
The contents of logs are less a series of metrics than they are text
strings akin to natural language, in the sense that they are formatted
imprecisely, with tremendous variation depending on who created
the log-writing mechanism. In addition, because log entries are only
semi-structured, they must be interpreted and then parsed into dis‐
crete data points before being written to a database.

Telemetry from thousands of different sources might be involved,
from simple sensors to enterprise databases. In keeping with that
enormous diversity, the structure, contents, and syntax of entries
vary dramatically. Beyond differences in format and syntax, various
logs contain discrete datasets, with mismatched types of data. Trans‐
forming and normalizing this data is key to making it valuable.

Analytics can be performed on log data that is either streaming or at
rest. Real-time or near-real-time analysis of logs as they are gener‐
ated can monitor operations and reveal emerging or existing prob‐
lems. Analysis of historical data can identify trends in quantities
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such as hardware utilization and network throughput, providing
technology insights that complement business insights more broadly
and help guide infrastructure development. Using older data to
create baselines for the future also helps to identify cases for which
those ranges have been exceeded.

Logs Versus Metrics
Both logs and metrics are essentially status messages, which can
come from the same source. They are complementary but distinct,
as represented in Figure 3.

Figure 3. Comparison between logs and metrics

Logs are semi-structured, defined according to the preferences of
the individual developers that created them. They are verbose by
nature, most often based on free text, often resembling the natural
language from which they derive. They are intended to give detail
about a specific event, which can be useful in drill-down root-cause
analysis of scenarios such as system failures or security incidents.

Metrics are quantitative assessments of specific variables, typically
gathered at specific time intervals, unlike logs, which are triggered
by external events. Metrics have a more structured format than
logs, making them suitable for direct numerical analysis and visual‐
ization. Because their collection is governed by time rather than
events, volumes of metrics data tend to scale more gradually than
logs with increased IT complexity and transaction volume.

Of the two, logs are far messier. Although they are semi-structured,
recovering that structure requires parsing with specialized tools.
Metrics, by contrast, are inherently highly structured. Logs and
metrics can work together, with different functions that reflect their
respective structures.

For example, metrics reveal trends through repeated measurement
of the same quantities over time. Referred to as the aforementioned
“time series,” this sequence of data points can be plotted as a line
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graph, for example, where increases in query response time might
indicate deteriorating performance of a database. The greater level
of forensic detail in the corresponding logs can be the key to deter‐
mining why that deterioration occurred.

Log data is messy, both in the organizational sense of mismatched
formats of logs from various sources, as well as in the hygienic sense
of misspellings, missing data, and so on. Beyond the need to inter‐
pret the structures of entries and then parse them, the transforma‐
tions applied to log data must also account for quality issues within
the data itself. For example, log analytics systems typically provide
the ability to interpret data so that they can successfully query
against data points that might include synonyms, misspellings, and
other irregularities.

Aside from quality issues, data logs can contain mismatches simply
because of the way they characterize data, such as one security sys‐
tem tagging an event as “warning” while another tags the same event
as “critical.” Such discrepancies among log entries must be resolved
as part of the process of preparing data for analysis.

The need to collect log data from legacy systems can also be chal‐
lenging. Whereas legacy applications, operating systems, and hard‐
ware are frequent culprits in operational issues, they can provide
less robust (or otherwise different) logging than their more modern
counterparts. Additional layers of data transformation might be
required by such cases in order to normalize their log data to that of
the rest of the environment and provide a holistic basis for log
analytics.

The Log Analytics Pipeline
As log data continues to grow in volume, variety, and velocity, the
associated challenges require structured approaches to infrastruc‐
ture design and operations. Log analytics and storage mechanisms
for machine data based on tools such as Splunk and the Elastic Stack
must be optimized across a life cycle of requirements, as illustrated
in Figure 4. To perform these functions effectively, it must be possi‐
ble to draw data from anywhere in the environment, without being
impinged by data silos.
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Figure 4. Pipeline for assembling and driving value from log data

This pipeline represents the process for transforming log data into
actionable insights, although in practice, their order might be rear‐
ranged or only a subset of the steps listed here might be used. Com‐
mon operations performed on log data include the following:

Collect
From its dispersed sources, log data must be aggregated, parsed,
and scrubbed, such as inserting defaults for missing values and
discarding irrelevant entries.

ETL (Extract, Transform, Load)
Data preparation can include being cleaned of bad entries,
reformatted, normalized, and enriched with elements of other
datasets.

Index
To accelerate queries, the value of indexing all or a portion of
the log data must be balanced against the compute overhead
required to do so (as discussed below).

Store
Potentially massive sets of log data must be stored efficiently,
using infrastructure built to deliver performance that scales out
smoothly and cost effectively.

Search
The large scale of the log data in a typical implementation places
extreme demands on the ability to perform flexible, fast, sophis‐
ticated queries against it.

Correlate
The relationships among various data sources must be identi‐
fied and correlated before the significance of the underlying
data points can be uncovered.

Visualize
Treating log entries as data means that they can be represented
visually using graphs, dashboards, and other means to assist
humans in understanding them.
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Analyze
Slicing and dicing log data and applying algorithms to it in a
structured, automated way enables you to identify trends, pat‐
terns, and actionable insights.

Report
Both predefined and ad hoc reporting must be powerful and
flexible so that users can rapidly produce outputs that illumi‐
nate their business needs.

The framework of steps given here is a guideline that
could easily be expanded to more specifically call out
actions such as data parsing, transformation, and inter‐
pretation, among many others. The point of this life
cycle description is to provide a workable overall view
rather than the most exhaustive one possible.

Getting your arms fully around the challenges associated with
implementing log analytics is daunting. The potential sources and
types of log data available are of open-ended variety, as are the pos‐
sible uses of that data. Although the specific implementations at
every organization will be different, they share general technical
requirements as well as the potential to be applied to common busi‐
ness needs and use cases.

Log Analytics Use Cases
Technologists have been analyzing machine logs for decades, from
the earliest days of tuning or troubleshooting their environments.
Over time, the industry has found ways to increasingly automate
that analysis, leading to the emergence of log analytics as we know it
today. Now more than ever, log analytics can help businesses run
more efficiently, reduce risk, and ensure continuity of operations.

The use cases described in this section illustrate some examples of
how log analytics has taken on new importance in the past several
years, demonstrating how it can deliver unprecedented value to
organizations of all types and sizes. Factors that have contributed to
that growing importance include the following:

• Data growth provides greater opportunities for log analytics as
well as challenges. The scale of data analysis will grow further as
we continue to drive intelligence into the world around us. A
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2 Richard Friedman. Inside HPC, May 31, 2019. “Converging Workflows Pushing Con‐
verged Software onto HPC Platforms.” https://insidehpc.com/2019/05/workflows-
converged-software-hpc/.

single self-driving car is estimated to generate multiple terabytes
of data each day, while a smart factory might generate a petabyte
per day.2

• Greater variety among types of endpoints has already reached
unprecedented levels as the IT environment has become more
complex. As the pace of change accelerates and the Internet of
Things (IoT) adds billions of new devices online, the insights to
be gained by bringing together multiple data sources will con‐
tinue to increase.

• Technology evolution, making log analytics feasible at greater
scale than before. In particular, the mainstream emergence of
flash storage offers faster read/write speed than conventional
spinning hard disk drives (HDDs), and low-cost compute
capacity offers high performance with commodity servers.

With the increased scope and prevalence of log analytics as a whole,
a growing set of common use cases have emerged. The remainder of
this section discusses several prevalent ones, grouped here under the
categories of cybersecurity, IT operations, and industrial automa‐
tion. While many other use cases are possible and indeed prevalent,
these provide a representative sample.

Cybersecurity
Securing IT and other systems is a classic application of log analytics
based on the massive numbers of events that are logged and trans‐
mitted throughout a large organization. Cyber protection in this
area draws from log data and alerts from security components such
as firewalls and intrusion detection systems, general elements of the
environment such as servers and applications, and activities such as
user login attempts and data movement. Log analytics can play a
role in multiple stages of the security life cycle:

Proactively identifying and characterizing threats
Log analytics can iteratively search through log data to detect
unknown threats that conventional security systems are not
designed to identify, creating testable hypotheses.

Log Analytics Use Cases | 11
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Detecting and responding to attacks and other security events
When abnormal indicators arise, log analytics can help to iden‐
tify the nature and scope of a potential breach, minimize expo‐
sure, and then neutralize and recover from the attack.

Performing forensic analysis after a breach has occurred
A robust log analytics platform helps identify the point-in-time
log information that should be brought into a post-mortem
investigation as well as making that data available and acting
on it.

Detecting anomalies
Cyber processes often use analytics to define a typical working state
for an organization, expressed as ranges of values or other indicators
in log data, and then monitor activity to detect anomalies. For
example, an unusual series of unsuccessful authentication attempts
might suggest attempted illicit access to resources. Unusual move‐
ment of data could indicate an exfiltration attempt.

The sheer volume of log data makes it untenable for humans to
interpret it unaided.

With thousands of events per minute being documented by hard‐
ware and software systems all over the computing environment, it
can be difficult or impossible to determine what is worthy of atten‐
tion. Machine learning models can help analytics engines cull
through these huge amounts of log data, detecting patterns that
would not be apparent to human operators.

Those processes can occur automatically, or they can be initiated by
ad hoc queries by analysts or others. Their outputs can be used to
identify items of interest for human analysts to investigate further,
allowing them to focus their attention where it is the most valuable.
A common application is that threat hunters often use log analytics
to help identify potential threats, look more deeply into them, and
determine what response, if any, is required.

AI Is Invaluable to Anomaly Detection
The twin limiting factors in detecting anomalies in log data for
security usages are massive data volumes and the necessity of look‐
ing for undefined patterns. The data itself is messy, consisting of
many different formats and potentially containing misspellings,
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inconsistencies, and gaps. The anomalous patterns being looked for
can be subtle and easy to overlook.

All of this makes humans poorly suited to anomaly detection at
scale. Sustained massive levels of event volumes quickly become
overwhelming, and a significant proportion of those events are
irrelevant. At the same time, software tools might also not be suc‐
cessful, given that the effectiveness of its detection is limited by the
accuracy of its assumptions, which are likely to be predetermined
and static. Over the past 5 to 10 years, the industry has developed
sophisticated dashboards to provide real-time views that help iden‐
tify potential security incidents.

Machine learning and artificial intelligence (AI) are increasingly
viable for improving those human monitoring approaches, over‐
coming some key limitations and turning massive data stores from
a liability into an asset for helping to train AI models. Algorithms
can use both historical and real-time data to continually update
their vision of what “business as usual” looks like and use that mov‐
ing baseline as the standard against which they interpret emerging
log events.

In recent years, predictive analytics have become more common in
a variety of usages. Based on all data received up to the current
moment, a machine learning model can predict expected parame‐
ters of future events and then flag data that falls outside those
ranges.

Working from that set of detected anomalies, the algorithm can
correlate them with other incidents to limit the universe of events
to be considered and to illuminate patterns in real time. By alerting
security analysts to those anomalies and patterns, the system can
pare the scope of alerts that must be investigated by human opera‐
tors down to a manageable level. As a result, IT staff can focus on
innovation and adding value to the organization rather than just
maintaining the status quo.

Identifying and defeating advanced threats
One of the issues confronted by modern security teams is the sub‐
tlety and long time horizons associated with today’s stealthy attacks.
Advanced persistent threats operate by moving laterally as quietly as
possible through an organization to gain access to additional resour‐
ces and data, in a process that often elapses over a matter of months.
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The key to detection often lies less in identifying any specific event
than in overall patterns.

In practice, a security analyst might begin with a suspicious activity
such as a service running from an unexpected file location and then
use various log data to uncover additional information surrounding
that event to help discover whether it is malicious or benign. For
example, other activities during the same login session, connections
from unexpected remote IP addresses, or unusual patterns of data
movement captured in logs can be relevant.

Treating log data as a coherent whole rather than natively as a dispa‐
rate collection of data points enables analysts to examine activities
anywhere across the entire technology stack. This approach also
enables analysts to traverse events backward and forward through
time to retrace and analyze the behaviors of a given application,
device, or user. This capability can be vital in cases such as under‐
standing the behaviors of persistent cyber threats that operate over
the course of weeks or months.

Data context consists of information about each data point’s connec‐
tions to others, which must be encoded along with the data itself,
typically in the form of metadata created to describe the main data.
This context enables analysis to identify the significance of a given
data point in relation to the greater whole.

Statistical analysis against bodies of machine log data can reveal
relationships that would otherwise remain hidden. Those insights
help security teams more confidently categorize events in terms of
the levels of threat they represent, enabling faster, more precise
responses that help limit negative impacts on operations, assets, and
reputations. In the context of a smart factory, for example, that anal‐
ysis can help avoid unplanned outages that would otherwise lead to
lost productivity and profitability.

First, Prepare the Organization
Because sources of log data often cross organizational boundaries,
even within the same company, setting the foundations for a log
analytics practice involves more than technology. For example, a
single transaction might involve technology components that are
managed and controlled by many different individuals and depart‐
ments, as illustrated in Figure 5.
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Figure 5. Resources involved in a single transaction, managed by sepa‐
rate teams

The expertise of people who know the systems best can be invalua‐
ble in determining what logs are available and how to get data from
them for use in analytics. Cooperation with all of these entities is
essential at all points along the transaction chain. Administrators of
everything from enterprise databases to network hardware will
need to enable logging and provide access to the log files generated.

This reality makes the buy-in and support of senior management
essential. Involving them early in the decision-making process is
sound advice, and it illustrates the value of presenting them with
use cases that support their business interests. In particular, the
cyber security potential of log analytics is a strong inducement to
cooperate that crosses organizational boundaries.

IT Operations
Even though IT operations has always been challenging, today’s
business and technology climate makes it more so than ever. Very
high standards for the quality of end-user experience have become
the norm; meanwhile, the pace of change has accelerated and the
ability to turn on a dime is taken for granted. At the same time,
many of these organizations are being forced to do more with less in
the face of budgets that might be flat or even decreasing.

The technology environment itself has also become more complex
and varied. In place of traditional client-server computing stacks
that were relatively uniform and static, dynamic, heterogeneous
infrastructures change in real-time cadence with varying workloads.
A growing proportion of the network is defined in software, creat‐
ing new management challenges, and software paradigms such as
microservices and containers challenge basic assumptions about
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enterprise applications. And all of this unfolds against the backdrop
of unprecedented data volumes.

Log analytics can help address the need for IT operations to be
highly responsive to each diverse part of the enterprise, maintaining
smooth operations and avoiding downtime. Speed is of the utmost
importance, with operations teams finding and remediating as many
issues as possible automatically without human intervention, and
addressing others quickly. This capability is a prerequisite for meet‐
ing Service-Level Agreements (SLAs), delivering a good end-user
experience, and maintaining uninterrupted, highly responsive access
to resources.

Enabling logs in infrastructure and applications enables visibility
into factors that reveal insights about performance and availability.
Both machine-to-machine and machine-to-human modalities can
make use of analysis based on that log data to identify potential
issues before they arise and to tune the environment on an ongoing
basis, to deliver the best results possible in the face of changing busi‐
ness requirements. For troubleshooting, the log analytics stack helps
accelerate root-cause analysis by bringing together time-series data
from all over the environment.

Infrastructure monitoring and troubleshooting
As IT infrastructure becomes more complex, the challenges with
providing uninterrupted, smooth operation and an excellent end-
user experience become more acute. In particular, a single operation
can involve a large number of different systems, which might
involve a combination of resource types, as shown in Figure 6, such
as far-flung collections of sensors, on-premises systems, public
cloud, and Software as a Service (SaaS). Platforms can vary dramati‐
cally, services and applications might be controlled by different parts
of the organization, and the information available from each can be
inconsistent.
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Figure 6. Diverse resource types contributing to a single end-user
experience

Traditionally, systems were monitored manually and independently,
calling on the familiar image of an administrator scanning multiple
displays arrayed at a monitoring station. Unfortunately, this
approach of eyeing alerts as the basis for keeping systems in good
working order becomes less viable as the environment becomes
larger and more complex. Both the large numbers of systems to keep
watch over and the multidimensional interactions among them defy
the abilities of human operators. What’s more, the dispersed nature
of the log data being generated under this model makes it difficult to
discern relationships among them.

For example, when doing root-cause analysis of a performance issue
with a database application, there are many places to look at once.
The application itself can be a contributor, as can the database plat‐
form, the server hardware that both run on, and the availability of
network resources. There might be contributing factors associated
with all of these, or even another external entity that might not be
immediately apparent, such as a single sign-on (SSO) mechanism,
firewall, or DNS server.

Aggregating all of that data together provides the basis for more effi‐
cient and sophisticated analysis. Having access to a composite pic‐
ture of all the factors potentially contributing to the issue lets
administrators do troubleshooting with a holistic approach, rather
than having to look at various resources in a piecemeal fashion. For
example, staff are able to look at all of the events that occurred on
the entire body of related systems at a specific point in time,
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correlating them to discover the issue—or combination of issues—
behind the problem.

Software development, optimization, and debugging
Applying log analytics within software-development organizations
arms developers with information about how their code behaves
and interacts with the rest of the environment. This insight can help
them optimize the quality of their software while also letting them
act more deliberately, breaking the cycle of running from fire to fire.
In addition to enabling the development organization to be proac‐
tive rather than reactive, the organization as a whole is saved from
the impacts of avoidable issues in software.

The success of a development organization is directly tied to how
well its software functions in a variety of situations, including edge
cases and unforeseen circumstances. Identifying potential issues
before they affect the production environment is a critical capability.
For example, a minor inefficiency in an application’s operation could
become an unacceptable bottleneck as usage, data volumes, and
integration with other systems grow. An intermittent delay in one
process can affect other processes that are dependent on it over
time, and the cascade effect can eventually become untenable.

Log files can provide early indications of emerging issues, long
before they would normally become apparent to users or adminis‐
trators. For example, a gradual trend toward a database server tak‐
ing a progressively longer time opening a set of database records can
indicate growing response-time issues. Log analytics can help detect
this trend and then determine its root cause, whether it is a simple
capacity issue or a need for performance tuning in application code.
Anticipating the usability issue before it affects users allows for the
necessary steps to be taken in a timelier fashion and business
impacts to be avoided.

Apart from avoiding exceptions, log analytics can also aid in
capacity planning by helping predict how a system will continue to
perform as it scales. By tracking the time needed to perform a given
operation as the number of database records increases, it’s possible
to estimate how those trends will continue in the future. That infor‐
mation can give you a better idea of the viability of a specific piece
of code going forward, which can feed strategy about when a new
approach to achieving the desired result might be needed.
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In the context of a DevOps practice, log analytics can help teams
ensure compatibility of their code with complex distributed systems.
Applied in the early stages of your Continuous Integration/Continu‐
ous Delivery (CI/CD) pipeline, log analytics can show how the code
interacts with the rest of the environment before it is released to
production. By anticipating issues at this stage, we can often fix
them with less effort and expense than if those problems didn’t
emerge until post-deployment.

Application performance monitoring
The purpose of Application Performance Management (APM) is to
maintain a high standard of user or customer experience by measur‐
ing and evaluating the performance of applications across a range of
domains. Common capabilities include analysis of transaction
throughput and response time, establishing baseline levels of those
quantities, and monitoring to generate alerts when performance
strays outside set limits. Real-time data visualizations are typically
employed to help conceptualize the significance of emerging events,
as an aid to identifying potential problems and their root causes
(hopefully before they occur).

Log analytics can also play a key role in the related field of A/B test‐
ing, for which log data related to usage is collected separately for two
versions of an application. The two sets of log data are then com‐
pared side by side to identify how the changes made between the
two versions of the application affect factors such as the user experi‐
ence (UX).

Exerting control and visibility across applications has become more
complex in recent years as modern applications have transmuted
from monolithic stature to distributed collections of microservices,
containers, and other components loosely coupled together using a
variety of application programming interfaces (APIs). In addition to
forming a complex structure for the application, these components
can be hosted using a combination of on-premises resources and
multiple cloud environments.

Together, these factors make the task of integrating and consolidat‐
ing log data to track application performance more challenging than
in the past. Accordingly, APM approaches have shifted to meet the
needs of modern applications and development practices. Because
APIs are central to the architectures of distributed applications,
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Industry 4.0.” https://www.techrepublic.com/article/top-5-things-to-know-about-
industry-4-0/.

monitoring and managing API performance is critical to the success
of APM as a whole. Likewise, the growing prominence of contain‐
ers, especially for cloud-distributed applications, makes monitoring
container performance an important consideration, as well.

APM practices should allow for robust prioritization of perfor‐
mance problems for resolution, identifying the most urgent ones for
triage. That capability is often assisted by machine learning algo‐
rithms that are trained to recognize the signs of common perfor‐
mance issues. At the same time that triage is necessary, the log
analytics toolset must also provide precise insights that enable
deeper root-cause analysis. This capability is essential to avoid wast‐
ing time and effort to solve a secondary or ancillary issue without
addressing the underlying root cause.

Industrial Automation
In many cases, log analytics for industrial automation begins with
adding connectivity to rich data collection mechanisms that already
exist on industrial systems. The computing and control apparatus
often captures detailed log data, stores it for a specified period of
time, and then discards it. Technical staff can manually access that
data in response to outages or performance problems, although in
many organizations, there is no day-to-day usage of that log data
beyond watching for exceptions or other issues.

Enabling Industry 4.0
The essence of the fourth industrial revolution (Industry 4.03 ) is
taking full advantage of the connected computer systems that
underlie industrial processes. Data exchange among different parts
of the environment, including cyber-physical systems, is a key aspect
of that development. The potential for using log data to enable
Industry 4.0 depends on integrating data from both IT and opera‐
tional technology (OT) systems, generating insight from it, and
applying that insight to optimize efficiency, profitability, and
competitiveness.
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For example, analyzing data gathered from automated manufactur‐
ing equipment can enable sophisticated systems for preventive
maintenance. Such measures monitor operating logs and metrics
from industrial mechanisms in production and optimize mainte‐
nance to avoid unplanned outages and maximize the working life‐
span of capital equipment.

The mechanisms to facilitate those processes are sometimes known
as the physical-to-digital-to-physical (PDP) loop,4 which is illustra‐
ted in Figure 7. In the physical-to-digital stage of the PDP loop, log
data is captured from cyber-physical systems to create a record of
operational details. In the digital-to-digital stage, that data is gath‐
ered centrally so that analytics and visualizations can be applied to
it, generating insights about how operation of the physical systems
can be optimized or enhanced. The digital-to-physical stage pro‐
vides the novel aspect of this process that distinguishes Industry 4.0,
namely to provide a feedback loop back to the cyber-physical sys‐
tems, which can then act on those insights.

Figure 7. The Industry 4.0 physical-to-digital-to-physical loop
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Operating in real time, the information flowing through the PDP
loop enables industrial automation equipment to be continually self-
tuning. The resulting efficiency improvements help to ensure that
companies can extract the maximum value out of their capital
investments.

In place of the physical equipment in the preceding description of
the PDP loop, we can modify the model to use a digital twin, which
is a sensor-enabled digital replica of an industrial cyber-physical sys‐
tem. The twin is a dynamic digital doppelganger that is continuously
updated by means of log data that is collected from the physical
device so that it accurately represents the system in real time. We
can use the simulation to observe and investigate the operation of
equipment under different conditions and analyze them together
with historical data to predict maintenance requirements in
advance.

Industrial Internet of Things
Instrumentation and telemetry are nothing new in industrial appli‐
cations, for which data has been collected for decades from sensors
on equipment that ranges from oil rigs to assembly lines to jet
engines. It is common for millions or even billions of dollars’ worth
of equipment to be in use within a large industrial operation. That
high value of capital equipment and its importance to profitability
has led to increasingly richer and more plentiful information being
provided by these telemetry systems.

The motivation for collecting all of this information is both to make
the equipment operate as efficiently as possible—generating more
profit more quickly—and to extend the working life of the equip‐
ment itself, maximizing return on investment. Improvement in the
tools and other technologies that support log analytics has driven
the ability to get more granular telemetry, to aggregate and analyze
it more effectively, and to more directly implement the outcome.
The goal, then, is to tighten the feedback loop between microevents
that occur in the environment, looking at millions of such events to
deduce significance, and to use that insight to optimize some
process.

Part of the challenge of log analytics in an Industrial Internet of
Things (IIoT) context is the enormous variety of data. The rapidly
evolving nature of this field means that many new players are
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emerging, and it might be some time before standard data formats
emerge. It is not uncommon to have thousands of different types of
sensors, all with different data formats and different ways of com‐
municating information. All of that information needs to be brought
together and normalized in such a way that either a human or an
algorithm can make sense of it to reveal the information buried
inside.

It is common in IIoT deployments for large numbers of sensors and
other data sources to be located far from the network core. In such
cases, it is often not practical or desirable to transfer the full volume
of data generated over a wide-area connection.

In response, “edge analytics”—the practice of performing analytics
close to the data source—is becoming increasingly prevalent and
can have multiple advantages. In autonomous vehicles and other
real-time usages, for example, the results of an algorithm being
applied to log data are required as near to instantaneously as possi‐
ble. Long-range transfer of data is also incompatible with latency-
sensitive usages, such as real-time control of manufacturing-line
equipment.

Performing edge analytics on log data helps support the ability to
analyze that data in a variety of ways for different business needs.
For example, monitoring for safety issues or controlling machine
settings in real time might be performed at the edge, whereas analy‐
sis of operational data across the enterprise might be better suited to
a centralized analytics apparatus.

Similarly, this combination of approaches allows for both real-time
inquiry to discover and address problems as they happen as well as
longitudinal studies, including the addition of historical informa‐
tion, to discover long-term trends and issues. That work depends on
having a centrally available repository of historic data. On their way
to that central store, log data streams might pass through complex,
multistage pipelines.

The data and various pieces of metadata typically come from sen‐
sors to a staging point where the data is collected and transformed
in various ways so that it can be more readily stored in a database
and compared against other data that initially might have had an
incompatible structure and format. For example, this staging point
could be a central information hub on an oil field where data from
dozens of wellheads is collected.
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From there, the data can be aggregated at a regional hub that incor‐
porates all of the data from several oil fields, performing further
transformations on the data and combining it into an aggregate
stream that is sent to a larger collection point, and so on, all the way
to the network core (which increasingly includes private, hybrid, or
public cloud resources).

Sending the data to a remote location to perform cal‐
culations on it may introduce unacceptable transport
latency, even on high-speed connections. Moreover,
the need to send a massive stream of raw data as free
text can be prohibitive in terms of bandwidth require‐
ments, particularly as the volumes of log data being
collected continue to increase.

Predictive maintenance
Fine-tuning maintenance schedules for large-scale industrial equip‐
ment is critical to getting the full value out of the capital they repre‐
sent. Taking a machine out of service for maintenance too soon cuts
into efficiency by creating unneeded planned downtime; whereas,
stretching out the time between maintenance intervals carries the
risk of unplanned downtime and interrupted productivity.

By increasing the amount of instrumentation built in to industrial
equipment, a richer set of data is generated, supporting sophistica‐
ted log analytics that provide insights about optimal maintenance
timing. Rather than a simple break-fix approach that addresses
problems on an exception basis, or even a regular schedule designed
to prevent unplanned outages, predictive maintenance can respond
to actual conditions and indicators, for greater accuracy.

Machine learning models can help transform telemetry into insight,
helping predict the most cost-effective approaches to physical main‐
tenance, responding to the needs of an individual piece of equip‐
ment rather than averages. In fact, this approach to predictive
maintenance has implications far beyond the industrial context, a
few examples of which include the following:

• Vehicle fleets and their replaceable components such as filters
and lubricants

• IT physical infrastructure, including components of servers,
storage, and network devices
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• Field equipment needs that range from leaking pipelines to
vending machine replenishment

In any of these spheres of operation, among many others, applying
log analytics to predictive maintenance can optimize operational
expenses by increasing efficiency and productivity while offering
capital expense advantages, as well, in the form of longer equipment
life cycles.

When building out storage infrastructure, you should
make scalability a primary design requirement. In
addition to storage capacity, you need to recognize the
importance of growing performance requirements as
automated and ad hoc query volumes increase over
time with new business needs.

Tools for Log Analytics
Tasks along the log analytics pipeline ingest disparate log data,
transform it to a more usable state, draw insights from it, and output
those insights either as machine-to-machine communications or in
human-consumable forms such as visualizations and reports. A
large number of toolsets are available to perform these functions,
both proprietary and open source. The largest market shares among
these for log analytics are held by Splunk, the Elastic Stack, and
Sumo Logic, some characteristics of which are summarized in
Table 1.

Table 1. Vital statistics for a few popular log analytics tools
 Splunk Elastic Stack Sumo Logic
Open source/proprietary Proprietary Open source Proprietary
SaaS option Yes Yes Yes
On-premises option Yes Yes No

All of these toolsets utilize compute and storage resources to per‐
form search, analysis, and visualization that are suited to the needs
of log analytics, as illustrated in Figure 8. These solutions place a
premium on the ability to ingest data directly from virtually any
source, provide high-throughput flexible analytics on it, and scale as
data volumes grow, in terms of both capacity and performance to
drive increased query complexity and volume.
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Figure 8. Placement of log analytics tools within the broader solution
stack

Even though each individual implementation will have its own
unique requirements for compute resources, they might have char‐
acteristics in common. For example, because log analytics workloads
tend to depend on high throughput of small packets, many imple‐
mentations use processors with large numbers of relatively light‐
weight cores. In addition, applications that require fast response
time will benefit from large allotments of system memory, possibly
holding data close to the processor with an in-memory data store.
However, as data sizes become larger—including with regularly used
historic data—flash storage can play an increasing role.

Splunk
Splunk is a proprietary offering that is available for either on-
premises or SaaS implementations, with the primary difference
being where the data is stored: on-premises or in the cloud, respec‐
tively. It offers the largest variety of plug-ins (around 600) for
integration with external tools and platforms among the products
discussed here, and it has the most established ecosystem,
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documentation, and user community. Splunk also provides an
extensive collection of developer tools.

Splunk the company has been public since 2012. It focuses on the
enterprise segment from the standpoints of feature set, scalability,
and pricing, and it targets IT operations, security, IoT, and business
analytics usages. The platform is feature-rich, although the complex‐
ity that accompanies that richness can create a relatively steep learn‐
ing curve for new users. Splunk implements machine learning for
advanced analytics capabilities such as anomaly detection and
forecasting.

Elastic (formerly ELK) Stack
The Elastic Stack is a combination of open source tools that can be
implemented either on-premises or in the cloud, with options for
the latter that include the Elastic Cloud platform or AWS Elastic‐
search Service, a hosted solution offered by Amazon Web Services
(AWS). Also available is Elastic Cloud on Kubernetes, which enables
the use of containers infrastructure to deploy, orchestrate, and oper‐
ate Elastic products with Kubernetes. Elastic the company has been
public since 2018, and the primary components of the Elastic Stack5

include the following:

• Elasticsearch, the search and analytics engine at the core of the
Elastic Stack

• Logstash, a data-ingest and transformation pipeline
• Kibana, a visualization tool to create charts and graphs

Customers can download and implement the Elastic Stack for free
or choose from a variety of subscription options that offer varying
levels of security hardening and technical support (either within
business hours or 24/7/365). Higher subscription levels also offer
more sophisticated search and analytics options, including machine
learning capabilities in areas such as anomaly detection and alerting,
forecasting, and root-cause indication.
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intertwined and essential not only to storage architecture, but to the entire solution
stack.

Sumo Logic
Another proprietary solution for log analytics, Sumo Logic is
offered as a cloud-based service, without an on-premises option.
Thus, although customers don’t need to maintain their own infra‐
structure to support their Sumo Logic implementation, they are
compelled to transfer their data offsite to Sumo Logic’s AWS-based
cloud network. The security implications of that requirement can be
a blocking factor for some organizations. In some geographies, the
ability to depend on always-available high-bandwidth, dependable,
and secure internet connectivity might also be limited.

Sumo Logic targets small and medium businesses in addition to
large enterprises, placing a premium on simplicity of set up and ease
of use. Multiple subscription tiers are offered, including free, profes‐
sional, and enterprise, with successive tiers adding progressively
higher levels of alerting, integration, support, and security-focused
functionality. The toolset implements machine learning algorithms
to continually investigate log data for anomalies and patterns that
can produce insights and provide 24/7 alerting in response to events
or problems.

Topologies for Enterprise Storage Architecture
At its most fundamental level, the value of log analytics depends
upon drawing on the largest universe of data possible and being able
to manipulate it effectively to derive valuable insights from it. Two
primary requirements of that truism from a systems perspective are
capacity and performance,6 meaning that the systems that underlie
log analytics—including storage, compute, and networking—must
be able to handle massive and essentially open-ended volumes of
data with the speed to make its analysis useful to satisfy business
requirements.

As datacenter technologies have evolved, some advances in the abil‐
ity to handle larger data volumes at higher speed have required little
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effort from an enterprise architecture perspective. For example,
storage drives continue to become larger and less expensive, and
swapping out spinning HDDs for solid-state drives (SSDs) requires
little effort or planning. Datacenter operators continue to deploy
larger amounts of memory and more powerful processors as the
generations of hardware progress. These changes enable new
horizons for what’s possible, with little effort on the part of the
practitioner.

Accompanying changes to get the full value out of hardware advan‐
ces require more ingenuity. As a simple example, advances in per‐
formance, security, and stability enabled by a new generation of
processors might require the use of a new instruction set architec‐
ture such that software needs to be modified to take advantage of it.

More broadly and perhaps less frequently, changes to enterprise
architecture are needed to take full advantage of technology advan‐
ces as well as to satisfy new business needs. The rise of compute
clusters, virtualization and containers, and SANs are examples of
this type of technological opportunities and requirements.

Like other usage categories, log analytics draws from and requires all
these types of changes. Much of what is possible today is the direct
result of greater processing power, faster memory, more capable
storage media, and more advanced networking technologies, com‐
pared to what came before. At the same time, seizing the full oppor‐
tunity from these advances is tied to rearchitecting the datacenter.
Incorporation of cloud technologies, edge computing, and the IoT
are high-profile examples that most conference keynotes at least
make mention of.

One critical set of challenges inherent to enabling massive data
manipulations such as those involved in log analytics is the balloon‐
ing scale and complexity of the datacenter architecture required to
collect, manipulate, store, and deliver value from the data. Platoons
of system administrators are needed just to replace failed drives and
other components, while the underlying architecture itself might not
be ideal at such massive scale.
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Log analytics place performance demands on the
underlying systems that are an order of magnitude
greater than those of a general-purpose datacenter
infrastructure. That reality means that the same archi‐
tectures—including for storage—that have met con‐
ventional needs for years need more than an
incremental degree of change; evolution at the funda‐
mental architecture level might be indicated.

One example of the need to fundamentally revise architectures as
new usages develop is the emergence of SANs, which took storage
off the general network and created its own, high-performance net‐
work designed and tuned specifically for the needs of block storage,
avoiding Local-Area Network (LAN) bottlenecks associated with
passing large data volumes. Now, log analytics and enterprise analyt‐
ics more generally are examples of emerging, data-intensive usages
that place challenges beyond the outer limits of SAN performance.

Newer network-scale storage architectures must be able to handle
sustained input/output (I/O) rates in the range of tens of gigabytes
per second. Hyper-distributed applications are demanding hereto‐
fore unheard-of levels of concurrency. The architecture as a whole
must be adaptable to the ongoing—and accelerating—growth of
data stores. That requirement not only demands that raw capacity
scale out as needed, but to support that larger capacity, performance
must scale out in lockstep so that value can be driven from all that
data. Complexity must be kept in check, as well, lest management of
the entire undertaking become untenable.

To consider the high-level arrangement of resources as it pertains to
these challenges, three storage-deployment models play primary
roles (see also Figure 9):

DAS
This is the simple case in which each server has its own local
storage on board that is managed by some combination of OS,
hypervisor, application, or other software.

Virtualized storage
Pools storage resources from across the datacenter into an
aggregated virtual store from which an orchestration function
dynamically allocates it as needed.
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Physically disaggregated storage and compute
Draws from the conventional NAS design pattern, where stor‐
age devices are distinct entities on the physical network.

Figure 9. Common models for storage architecture in the enterprise

DAS
In many organizations, log analytics has grown organically from the
long-standing use of log data on an as-needed basis for tasks such as
troubleshooting and root-cause analysis of performance issues.
Often, no specific initiative is behind expanded usages for logfiles;
instead, individuals or working teams simply find new ways to apply
this information to what they are already doing.

Similarly, no specific architecture is adopted to support log analytics’
potential, and the systems that perform log analytics are general-
purpose servers with DAS that consists of one or more HDDs or
SSDs in each server unit. Scaling out in this model consists of buy‐
ing more copies of the same server. As the organization adopts more
advanced usages to get the full value from log analytics, a sprawling
infrastructure develops that is difficult to manage and maintain.
Requirements for datacenter space, power, and cooling can also
become prohibitive.

In addition, this approach can constrain flexibility, because the orga‐
nization must continue to buy the same specific type of server, with
the same specific drive configuration. Moreover, in order to add
storage space for larger collections of historic data, it is necessary to
buy not just the storage capacity itself, but the entire server as a unit,
with added cost for compute that might not be needed, as well as
increased datacenter resources to support it. The inefficiency associ‐
ated with that requirement multiplies as the log analytics undertak‐
ing grows.
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Virtualized Storage
Storage virtualization arose in part as a means of improving
resource efficiency. This model continues to use DAS at the physical
level, with a virtualization layer that abstracts storage from the
underlying hardware. Even though the physical storage is dispersed,
applications see it in aggregate, as a single, coherent entity of which
they can be assigned a share as needed. This approach helps elimi‐
nate unused headroom in any given server by making it available to
the rest of the network, as well.

The software-defined nature of the virtualized storage resource
builds further upon the inherent rise in efficiency from this method
of sharing local storage. Orchestration software dynamically creates
a discrete logical storage resource for a given workload when it is
needed and eliminates it when it is no longer needed, returning the
storage capacity to the generalized resource pool.

Virtualization of compute and networking extends this software-
defined approach further, by creating on-demand instances of those
resources, as well. Together, these elements enable a software-
defined infrastructure that can help optimize efficient use of capital
equipment and take advantage of public, private, and hybrid cloud.
Because the storage topology for the network is continually rede‐
fined in response to the needs of the moment, the infrastructure the‐
oretically reflects a best-state topology at all times.

Software-defined storage was developed for the performance and
density requirements of traditional IT applications. Because log ana‐
lytics has I/O requirements that are dramatically higher than those
workloads, it can outpace the capabilities of the storage architecture.
In particular, the distributed and intermixed nature of the infra‐
structure in this model can create performance bottlenecks that
strain the ability of the network to keep up.

In addition, because data movement across the network is typically
more expensive and slower than computation, it is not unusual to
create multiple copies of data at different locations, which increases
physical storage requirements.
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Physically Disaggregated Storage and Compute
Moving to a more cloud-like model, the storage architecture can
physically disaggregate storage and compute. In this model, large
numbers of servers are provisioned that don’t keep state themselves,
but just represent and transform that state. Separate storage devices
are deployed as a separate tier that maintain all the states for those
servers. The storage devices themselves are purpose-built to be
highly efficient at scale, handling data even in the multipetabyte
range.

Because the compute and storage elements of the environment are
physically disaggregated, they can be scaled out independently of
each other. More compute or storage elements can be added in a
flexible way, providing the optimal level of resources needed as busi‐
ness requirements grow. In addition, as historical data stores
become larger, they benefit from the fact that this physically disag‐
gregated model allows storage elements to be packed very densely
together, to improve network efficiency, and to use efficient error
encoding to get maximum value out of the storage media. The cen‐
tralized nature of the storage also helps improve efficiency by avoid‐
ing the need to create extraneous copies of the data.

At large scale, physical disaggregation is often superior to compute
and storage virtualization at meeting the high IO requirements of
log analytics implementations. And while conceptually, this design
approach is not entirely new compared to SAN or NAS, it can be
built to design criteria that are beyond the performance and
throughput capabilities of those traditional architectures. Physically
disaggregated architectures for log analytics are, at some level, just
new and enhanced manifestations of established concepts.

For example, one critical design goal is to build in extremely high
concurrency, parallelizing work at a very fine-grained level that ena‐
bles it to be spread evenly across the environment. In addition, the
representations of file structure and metadata should be thoroughly
distributed. These consistency measures help avoid hot spots within
the infrastructure. This allows for the optimal use of resources to
support real-time operation in the face of the massive ingest rates
associated with log analytics, which can commonly exert 10 times
the performance and throughput requirements on the infrastructure
compared to common enterprise workloads.
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Physically decoupling compute and storage enables
each to scale out independent of the other, decreasing
total cost of ownership (TCO) by removing the need to
purchase extraneous equipment. Following an archi‐
tectural pattern similar to SAN and NAS but with
modern data management and flash-based storage
enables the levels of performance and throughput
needed for real-time analytics at scale.

The Role of Object Stores for Log Data
Object storage and file storage take different approaches to organiz‐
ing data, as illustrated in Figure 10.

Figure 10. Data structures used by file and object storage

Object storage uses a flat address space and comprehensive meta‐
data to store chunks of data referred to as “blocks” in place of the
hierarchical folder structure used in file storage, making it far more
scalable. Thus, data retrieval remains fast, even as data stores swell
from larger historical datasets to feed increasingly complex analyt‐
ics. In addition, object storage is well suited to managing unstruc‐
tured data by means of custom metadata to describe an object’s
contents. This characteristic makes data self-describing, which pro‐
vides flexibility for implementations of advanced analytics.

Object stores are designed to scale to hundreds of petabytes in size
without degraded performance. They also protect data integrity
while maximizing usable storage space. This technique divides data
into shards, each of which is a subset of the table’s full set of rows.
Shards are distributed across multiple database instances to spread
load and increase parallelism for large objects.
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Multiple copies of each shard can be stored to provide data resil‐
iency, although this approach can become prohibitive as data vol‐
umes increase. Erasure encoding can also be employed to efficiently
protect data by computing and storing error-correcting shards along
with the data shards.

Because it is designed to scale out, including to distributed architec‐
tures, object storage is more cost effective than file storage, espe‐
cially as stores of historical log data grow larger. Moreover, because
object storage is cloud native, log analytics systems can make use of
either private cloud or public cloud object stores, including Amazon
Simple Storage Service (Amazon S3), Microsoft Azure Blob, and
Google Cloud Storage. Those environments also provide high avail‐
ability and useful developer tools and design patterns that stream‐
line the production of microservices to provide custom
manipulations on log data.

Although object storage offers tremendous scalability and flexibility,
accessing offsite public cloud storage can create unacceptable lags in
response time for latency-sensitive log analytics applications.
Accordingly, many IT organizations choose to build on-premises
private cloud object storage infrastructure This approach also ena‐
bles them to realize the value of object storage without entrusting
their data to a third party.

Conversely, using public cloud can reduce requirements for local
storage by placing a portion of the data on remote object stores.
Increasing the proportion of data on public cloud infrastructure can
reduce the in-house administration burden, freeing personnel from
the care and feeding of a growing storage infrastructure.

For example, Splunk SmartStore combines a remote storage tier
with an on-premises cache manager that allows data to reside
locally. To increase performance, the warmer data in on-premises
caches avoids the latency associated with fetching that data remotely.

Pure Storage provides fast on-premises storage for SmartStore to
avoid that latency, making it possible to have large volumes of his‐
torical data available for fast queries while reducing the dependence
on large, fast local storage for the hot tier. It also disaggregates stor‐
age from compute without having to take that storage off-premises.

The cache manager controls the flow of data between the cache and
remote storage as well as monitoring and adjusting the size of those
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caches according to recorded performance and hit rates. Organiza‐
tions that tend to do frequent long-term searches, for example,
might find that they need larger cache capacities to prevent frequent
calls to remote storage.

In the present reality where not all applications are designed or rear‐
chitected to use object stores, unified file and object access plays a
pivotal role, as illustrated in Figure 11. This architecture allows data
to be either ingested or accessed through either a file or an object
interface, increasing compatibility with both legacy and cloud-based
applications. Applications designed to access file-based data are
therefore able to use data stored in the cloud as objects.

Figure 11. Unified file and object access to storage

The Trade-Offs of Indexing Log Data
Indexing data amounts to creating a map used to quickly locate the
specific database record or records, allowing for faster query results
compared to scanning the entire table. Determining when to index
data is a nice computer science problem. In essence, the conundrum
is that indexing data can accelerate queries against it later, but the
act of indexing itself is computationally intensive. Particularly when
indexing is done at the point of ingress, it can affect throughput and
therefore scalability.

One way of preventing impacts on data ingress is to index data at
rest as resources allow. It can also often be valuable to index only the
highest-value portion of data, storing the remainder in unindexed
form. In these usages with partial indexing of log data, algorithms
must be capable of determining the priority of indexing individual,
specific pieces of data, based on the likelihood of performance
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benefit in future queries. This approach targets queries that are
known and planned for in advance, so it must be accompanied by
the ability to return fast results from unplanned queries on unin‐
dexed data, as well.

Indexing is therefore well suited to point queries, such as finding the
incidence of a specific phrase or event, a so-called “needle-in-the-
haystack” problem within a predictable sphere of data. Each query
can consult the index and return fast results, potentially justifying
the indexing overhead. On the other hand, for ad hoc queries that
consider unbound amounts of data, the computational cost of scan‐
ning the world of unindexed data can be justified by the fact that
indexing all of that data would be more expensive still.

Both indexed and raw, unindexed data typically cohabitate in enter‐
prise environments, potentially accessed by different applications. A
healthy combination of indexing at the point of ingest and reindex‐
ing is called for, with reindexing (despite its resource-intensive
nature) playing a key role as the projected uses for data change.

Performance Implications of
Storage Architecture
Growing IT complexity is a fact of life as more business processes
become digitized, higher levels of automation are enabled, and new
technologies enter the datacenter. That growing complexity drives
increasing volumes of log data that can potentially be used for log
analytics; a company of a given size would generate far more logs
today than a company of similar size a decade ago.

The availability of more log data generates the potential for more
sophisticated log analytics, placing more extensive demands on the
underlying systems. Specifically, even as the amounts of data that
need to be ingested, handled, and stored rises exponentially, so do
the numbers of queries being made against it, both by automated
systems running reports and dashboards as well as by human users
placing ad hoc queries to generate business insights.
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The emergence of flash storage for the enterprise in the
past 10 years or so represents a sea change in storage
architecture because of its dramatically higher speed
and longevity. Notwithstanding those advantages, cost
constraints mean that spinning disks still dominate in
the datacenter.
Conventional HDDs are appropriate for dumping
large amounts of data that won’t be searched against
often, but the random reads and writes are much
slower than flash. Searching a huge dataset to support
real-time or near-real-time log analytics requirements
can be prohibitively time consuming with spinning
disks.

Log analytics operations depend on rapid, dependable access to
stored data, which places growing performance and scalability
demands on the storage hardware. Fast response rates are critical to
business use cases, both to optimize efficiency and to provide a good
user experience. These requirements are driving flash adoption in
the enterprise; in fact, flash storage has become the standard imple‐
mentation for many use cases.

Even as the volumes of log data being generated are growing rapidly,
many companies are extending their standard retention periods,
requiring longer-term preservation of data. A key driver behind this
trend is the fact that analytics models can often be made more pow‐
erful by making larger sets of historical data available to them.
Querying against several years of data allows tracking of long-term
trends, and as AI models are increasingly adopted for analytics of all
kinds, those large datasets can also be useful for training deep learn‐
ing models.

Log analytics presents substantial performance chal‐
lenges. Throughput must be optimized from the point
of ingest, through all stages of processing, to outputs
such as alerts, dashboard visualizations, or reports.
Data pipelines and storage must be consolidated, elim‐
inating data silos and the practice of storing multiple
copies of data for different usages.

Tiered storage is a common approach to handling large amounts of
historical data, including log data. By providing multiple areas
of storage, each with a different balance between cost and
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performance, tiered storage allows the medium to be tailored to dif‐
ferent needs, as illustrated in Figure 12. In this conception, the per‐
formance tier houses the data most likely to be queried frequently
and needed for real-time analytics scenarios (i.e., the “hottest” data).
The archive tier is for long-term storage of infrequently accessed
“cold” data, and the capacity tier in between strikes a balance
between the two for “warm” data.

Figure 12. Tiered storage balances cost and performance for different
data types

In practical terms, this range might correspond to the age of log
data. For example, the most recent 30 days of log data might be
stored in the performance tier, data 31 days to a year old in the
capacity tier, and data that is older still in the archive tier.

As organizations continue to stretch the limits of what they can
monitor, accomplish, and predict with log analytics, query volumes
will continue to increase, including searches against older data.
Increased requirements to perform analysis and export insights
from data stored in the capacity and even archive tiers compels
architects to increase the performance of those tiers, which is largely
accomplished by the addition of flash storage.

Drive More Value from Storage with
Data-Reduction Technologies

Because flash is an order of magnitude faster than spinning disks, it
has become all but essential to data-intensive workloads such as log
analytics. Particularly for real-time results that draw on historical
data, the storage tier requires the speed that only flash can offer. At
the same time, the relatively high cost per gigabyte compared to
conventional hard disks makes getting maximum value from the
available capacity of flash storage a first-order concern.

Performance Implications of Storage Architecture | 39



Storage vendors have devised a range of data reduction features that
reduce the amount of capacity needed to store a given body of data.
While not all are available from all providers, the following capabil‐
ities have been developed by the industry:

• Pattern removal detects and consolidates simple binary pat‐
terns within datasets (e.g., summarizing a string as “1,000
zeroes” instead of actually encoding the 1,000 identical values).
These measures can reduce storage requirements as well as
processing for other data-reduction measures such as dedupli‐
cation and compression.

• Deduplication ensures that only unique blocks of data are com‐
mitted to flash storage. Ideally, deduplication works globally
(rather than within a volume or a pool) and on variable block
sizes for maximum efficiency.

• Inline compression reduces the number of bits needed to repre‐
sent a given piece of data. The use of multiple algorithms is
desirable, to optimize compression ratios among different
types of data that have different requirements.

• Post-process compression applies additional compression algo‐
rithms to data after the process is complete, increasing the data
reduction result achieved with inline compression.

• Copy reduction handles data-copy processes within the flash
storage medium using only metadata, producing snapshots and
clones that offer greater efficiency than actual copies of the
data.

To get the full value of these capabilities in the datacenter, they
should be available right out of the box, without requiring extensive
configuration or tuning. High-performance data-reduction meas‐
ures should be always-on and suitable for use across workloads,
regardless of size, type, or criticality.

Enabling Log Data’s Strategic Value with
Data Hub Architecture
Even though data is widely regarded today as every business’s most
important asset, it tends to be isolated in silos across the enterprise
that are each developed to meet the needs of a discrete set of appli‐
cations and workloads. This fragmentation of data limits the degree
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to which it can be accessed in real time, hampering the ability to
perform flexible analytics on it. This limitation runs counter to the
modern perspective of data as a primary strategic differentiator,
unleashed by the power of analytics.

Data lakes provide a single, unified store of structured, semi-
structured, and unstructured data in its raw form as well as various
transformed versions, using a flat architecture. They make all data
available to any application that needs it, overcoming the data isola‐
tion that is inherent in an environment that has developed an array
of data silos.

At the same time, data lakes are essentially uncurated masses of data,
dwelling in a storage architecture designed to store its contents as
efficiently as possible, rather than with speed of access, sharing, and
delivery. This property makes the data-lake approach to storage
limited for log analytics. In addition, data lakes lack the ability to
tailor data delivery to the specific latency, throughput, and I/O
requirements of individual applications and usages.

Data hub arose as a data-centric storage architecture conceived
specifically for data sharing as efficiently as possible, overcoming
limitations of data silos and data lakes for enterprise-wide log ana‐
lytics, as illustrated in Figure 13. Key requirements for a data hub
implementation include the ability to deliver very high throughput
for both file and object storage, scale-out performance for support
of growing workloads, and investment protection.

Figure 13. Unification of data with data-hub architecture

This approach specifically satisfies the different requirements for
data delivery by multiple applications, allowing individual partitions
to be tuned for specific workloads in a dynamic fashion that is
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managed in software. This capability requires massive hardware and
software parallelism to provide real-time results for demanding
workloads.

Storage based on a data hub architectural approach represents
software-defined, on-demand infrastructure built to accommodate
requirements that are constantly changing and must be responded
to in real time. It embraces virtualized constructs, including virtual
machines and containers, as well as bare-metal physical hardware.
The data hub also depends on having a modern storage medium
such as flash technology, which is superior to older spinning disks at
handling multiple simultaneous demands. This medium dramati‐
cally improves performance, particularly in the small data accesses
and random reads and writes that are prevalent in analytics work‐
loads, in contrast to the focus on large, sequential accesses in data
lake architectures.

Storage Platforms to Enable Data-Hub Architecture
The specific storage systems that enterprises use when building a
data-hub architecture are the foundations for next-generation data
analytics in general and log analytics in particular. Because these
systems must operate at petabyte scale, architects should choose
storage platforms that provide high performance out of the box and
that can adapt to requirements dynamically. Efficient operation
across the spectrum of requirements demands that ongoing manual
tuning or configuration are not required for different workloads.

Hot-pluggable blades are often the form factor of choice, allowing
capacity and performance to be easily and instantly scaled out as
needed. That simplicity can be critical to agility when accommodat‐
ing tens of thousands of clients simultaneously as well as tens of bil‐
lions of data objects. The platform should support both file and
object storage so that the architecture can flexibly adapt to varying
requirements. Key design criteria to consider for data hubs to pro‐
vide on-demand access to enterprise data for log analytics include
the following:

• Native-built file and object protocols to maximize throughput
• Scale-out architecture to increase both storage and performance

linearly
• Multidimensional performance to eliminate bottlenecks for

various workloads
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• Massive parallelism to accommodate open-ended scale of
clients and data

As nonvolatile storage has come down in price, all-flash architec‐
tures have become viable for mainstream implementations. These
devices provide order-of-magnitude improvements in performance
and latency over mechanical HDDs, especially with the small pack‐
ets that are common with log analytics workloads. Accordingly,
flash has become the gold standard for storage systems used in data
hubs.

The provider of the storage systems is every bit as important as the
storage itself. There is simply no substitute for their experience
working with end-customer architects, system administrators, data‐
base administrators, and others to identify and resolve the diverse
challenges in implementing data storage topologies for log analyt‐
ics. That expertise can be critical to working through issues related
to I/O and storage bottlenecks, scaling and concurrency, and high
availability, among others. Top-tier providers can also provide
assistance around integration with enterprise software platforms
such as analytics engines, databases, ERP systems, and virtualiza‐
tion platforms, across operating environments, to reduce risk and
achieve the best results possible.

Nine Guideposts for Log Analytics Planning
The benefits that log analytics can provide vary dramatically among
different organizations, as do the infrastructure and techniques best
suited to enabling those benefits. Nevertheless, the common set of
best practices and considerations described here can help guide
architects during the planning process.

Guidepost 1: What are the trends for ingest rates?
Accommodate future needs for performance and capacity.

Guidepost 2: How long does log data need to be retained?
Fine-tune data retention policies to optimize costs and mini‐
mize liability.

Guidepost 3: How will regulatory issues affect log analytics?
Provide verifiable measures to govern data usage, transport,
and storage.
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Guidepost 4: What data sources and formats are involved?
Forecast and prepare for upcoming requirements for changes
in data-transformation pipelines.

Guidepost 5: What role will changing business realities have?
Align infrastructure planning for log analytics with broader
corporate strategy.

Guidepost 6: What are the ongoing query requirements?
Identify future query volumes among different types such as ad
hoc versus point queries.

Guidepost 7: How are data-management challenges addressed?
Plan for impacts on log data formatting and delivery from
changes in the environment.

Guidepost 8: How are data transformations handled?
Ensure that tools and applications in place to transform data
are sufficient for the future.

Guidepost 9: What about data protection and high availability?
Designate log data’s criticality and sensitivity, reflected in secu‐
rity and backup/restore policies.

In particular, it is important to keep in mind that key considerations
and concerns that bear on planning infrastructure for log analytics
will intensify as log data continues to grow in volume, velocity, and
variety. Architects must therefore plan for flexible scalability of
capacity and performance in their storage systems to support the log
analytics function as it continues to become more demanding as
well as more valuable to the enterprise as a whole.

Guidepost 1: What Are the Trends for Ingest Rates?
Log data originates all over the environment, and its volume grows
continually as the environment becomes more complex over time.
Even as multiple terabytes per day inundate the log analytics plat‐
form initially, the sheer scale of the data is unbound in the future.
Determining how those data volumes are likely to grow over time is
critical to understanding the future state of the environment.

In particular, the storage infrastructure must be designed to accom‐
modate future needs from both the capacity and performance per‐
spectives. The capacity aspects of this requirement speak to the
value of decoupling compute and storage so that the latter can scale
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independently of the former. The storage infrastructure must be able
to scale in terms of performance to support the larger numbers of
more complex queries against ever-growing log data volumes.

Guidepost 2: How Long Does Log Data Need
to be Retained?
Corporate standards, audit provisions, and regulatory requirements
can all affect the required retention period for log data. As volumes
continue to grow exponentially, the cost and complexity associated
with storing it can become burdensome or even untenable. At the
same time, growing data stores make a structured approach to
tracking the data life cycle more vital so that it is not retained longer
than necessary.

Best practices in this area include assessment and tuning of data-
retention policies to ensure that they are appropriate both to meet
requirements and to ensure that retention periods are maintained at
the shortest appropriate level. If possible, retention requirements
should be projected forward to discern whether they are likely to
increase or decrease in the future. Nearer-term requirements
include data reduction techniques such as deduplication and com‐
pression to reduce the burden on storage system capacities as much
as possible.

Architects should also consider options for cost-effectively storing
archival data. For example, if performance requirements associated
with older data stored as Amazon S3 objects are lower than for cur‐
rent operating data, it might be desirable to push them out to Ama‐
zon Glacier or a similar cost-optimized service.

Guidepost 3: How Will Regulatory Issues Affect
Log Analytics?
Setting data-retention standards is a clear issue associated with
meeting regulatory requirements, but the full scope of considera‐
tions in this area is far broader. Personally Identifiable Information
(PII) and other sensitive data must be controlled and protected with
verifiable measures that govern how it is used, transported, and
stored. This set of concerns can affect issues such as how specific
data can be used in public cloud infrastructures or shared with part‐
ners, for example.
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Particularly for organizations that operate in multiple geographic
areas, data sovereignty can be a complex issue. Because data is gov‐
erned by the laws of the jurisdiction where it is located, organiza‐
tions must be concerned with the physical locations of their data,
particularly in cases for which public cloud resources are used. For
example, data that was collected through perfectly legitimate means
in one country can be in violation of the privacy laws in another.

As a related matter, confidential data might be subject to subpoena
or other unwanted inspection by government or legal entities in the
jurisdiction where it is stored. Response times potentially required
by subpoena actions can be a challenge in the common case where it
requires weeks to restore older data from backup and then days to
query against the associated large volumes of data. For organizations
that must regularly respond to law-enforcement requests for
archival data, architects might need to accommodate streamlined
access.

In a world in which regulations over data privacy and
usage are evolving, forecasting legal requirements can
be problematic. One approach is to consider the meas‐
ures taken to date by government entities that have
provided early leadership. Frameworks such as the
European Union’s General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act
(CCPA) suggest the types of regulatory patterns that
might later be adopted elsewhere.

Guidepost 4: What Data Sources and Formats
Are Involved?
The semi-structured nature of log data means that the sources of
those logs play an important role in determining how to handle the
data. As IT complexity and the scope of sources grow and change
over time, the associated challenges can become more complex. Par‐
ticularly as IoT topologies are built out over the next several years,
many organizations will find themselves needing to accommodate a
vast assortment of new sensors and other endpoints, and that variety
will also usher in an expanded diversity of log types and formats.

As the universe of data sources and log types becomes broader and
more complex, novel transformation pipelines will be needed to cre‐
ate a coherent whole from that data. Forecasting those changes in
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advance and accommodating them in how the infrastructure scales
is an important set of requirements for architects. The ability to
cost-effectively scale out compute and storage, independently of
each other, is central to successfully meeting this set of evolving
requirements.

Guidepost 5: What Role Will Changing Business
Realities Have?
The changing needs of a business and its use of log analytics to
guide business change are deeply intertwined. Planning should
include considering what business questions log analytics can
answer, such as how to allocate resources for maximum efficiency or
whether to launch a marketing initiative geared toward increasing
revenue. Architects must consider how intelligence generated
through log analytics can inform business strategy.

Just about any major business event can have an impact on infra‐
structure planning for log analytics. That reality makes it valuable
for infrastructure planning to draw on the business’s larger corpo‐
rate strategy. For example, architects should consider the potential
impacts if the company were to enter into new market segments or
geographies. Either type of change would be likely to increase the
volume and variety of log data. Likewise, mergers and acquisitions
could introduce new and unpredictable infrastructures alongside
what the company already operates. Because every organization is
subject to unforeseen circumstances, architects must design flexible,
scalable frameworks that can accommodate uncertain future needs.

Guidepost 6: What Are the Ongoing Query
Requirements?
The central issues around query requirements are what types of
searches are being done against the data and how many. In addition
to searches by human users and machine-to-machine systems, plan‐
ning must take into consideration factors such as executive dash‐
boards, data visualization systems, reporting, and real-time alerting.
Architects must account for potential addition of such new loads on
the log analytics infrastructure as well as the expected growth in
workloads generated by existing systems.

The nature of the queries being made against the log data store is a
key design factor for log analytics. In practical terms, for example,
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architects should identify what data is most likely to have ad hoc
queries made against it, as opposed to point queries. They also need
to consider how often each type is likely to occur as well as how
much historical data is likely to be searched and how frequently.
These capabilities should be tuned to avoid slow or cumbersome
search, avoiding lost opportunities or missed deadlines.

Likely usages such as ad hoc queries being done in conjunction with
threat hunting activity should be considered to help guide this pro‐
cess. The answers to those questions can help guide design decisions
about factors such as how to implement tiered storage or which data
to index at the point of ingress.

Guidepost 7: How Are Data-Management Challenges
Addressed?
Effectively managing data is a cornerstone of driving value from the
massive volumes of log data constantly being generated by hard‐
ware, software, and processes of every description. In particular, the
inherent variety within log data adds complexity to matters of
schema evolution and back-compatibility as log data sources change
and multiply. Solution architects should identify strategy for main‐
taining coherence and functionality in the face of such changes.

Data-management concerns associated with log analytics extend to
changes in the operating environments in which log data is gener‐
ated. For example, the firmware or software running on sensors, sys‐
tems, and other entities that are transmitting logs might be
upgraded or reconfigured. Those changes may alter the formatting
of log files, requiring adaptation by the log analytics platform.
Proper planning requires establishing processes to anticipate such
changes in advance and setting standards for addressing them when
they arise.

Guidepost 8: How Are Data Transformations Handled?
Transforming log data as it is collected from a wide variety of sour‐
ces places significant demands on the underlying systems that must
typically be satisfied in real time on steadily growing data streams.
The alternative of simply transmitting and storing logs as flat files
puts untenable processing burdens on analytics processes. The
transformation workload itself can be highly compute intensive, and
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it takes place over a complex and varied compute layer. It also places
significant demands on the storage layer.

The tools and applications in place to perform those transforma‐
tions must be capable of handling any foreseeable data requirements
as well as integrating and interoperating effectively with the other
components of the log analytics pipeline. Likewise, the underlying
infrastructure must be designed to provide storage and compute
architectures that can accommodate the associated performance and
scalability requirements.

Guidepost 9: What About Data Protection and
High Availability?
As log analytics evolves within an organization, it enables increas‐
ingly sophisticated usages that deliver increasingly significant value.
Over time, those usages can become business critical or even mis‐
sion critical, elevating the value of the underlying log data as well as
the requirements for assuring its accessibility. Foreseeing and plan‐
ning for that transition involves providing high availability for a
subset of log data, without interfering with the smooth operation of
analytics based on mixed data streams.

Designating specific bodies of log data as critical is also tied into
other aspects of IT planning. From a security perspective, this status
must be considered when identifying requirements for how it
should be protected and how sensitive information in the log data
should be masked as well as its recoverability after tampering or
other interference as the result of a breach. Backup and restore pro‐
cesses for protecting that data should also reflect its potentially
changing value to the organization.

Conclusion
To deliver on the potential for log analytics to improve operations
across the business, architects are challenged to adapt their existing
storage infrastructures to real-time needs for access to diverse log
data at scale. Done right, legacy architectures based on spinning
disks can be replaced with all-flash solutions at similar or lower cost.
Data-hub architectures, for example, can dramatically increase
throughput and scale while tailoring data access to the needs of

Conclusion | 49



specific applications and workloads, so that log analytics can better
meet the needs of the business.

Disaggregating storage and compute facilitates that scalability by
enabling each to be built out and added to independently of the
other, using a cost-effective “pay as you grow” scale-out approach.
At the same time, a well-designed log analytics architecture can
seamlessly scale capacity and performance together, helping to
ensure that query and response performance continues to meet
SLAs and provide excellent end-user experience as the volume of log
data and the purposes it serves continue to grow exponentially.
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