
The pace of innovation has changed. Original equipment manufacturers (OEMs)
can no longer take years to introduce new products or update functionality in
existing products. If your customers can’t get what they want, when they want it,
they’re quick to go elsewhere.

OEMs in nearly every industry are becoming software-driven. But while software
can provide differentiation, inefficiencies in internal development teams can
throttle product innovation and lengthen time to market. These inefficiencies
are often based on a growing array of one-off design decisions, each leading to
different hardware and software technology choices that need to be managed
and supported by some of the company’s most valuable development resources.
OEMs need their software development organizations to quickly and cost-
effectively improve their competitive position through new product introductions
(NPIs) and by adding in-demand features and capabilities to existing product
lines.

One solution is the migration to a standard, scalable platform based on a
single processor architecture and commercial operating system (OS). With a
standard platform architecture for all products, OEMs can take advantage of
proven methods to accelerate product innovation and time to market, make
better use of limited developer resources, and reduce development inefficiencies
and costs.

Accelerate Innovation:
How adopting a scalable
platform architecture can speed
product development

1

2

Accelerate Innovation with
a Scalable Platform

Consolidation, Connectivity, and Com-
plexity are Driving Change

While many OEMs have attempted to make incremental shifts in their development
approach, the convergence of three technology trends has increased the urgency for a
foundational change.

Consolidation drives performance, cost and efficiency. The microprocessor is
typically one of the earliest design decisions for development teams, who often
make these decisions independently of other programs, resulting in little
commonality across product lines. But today’s powerful and cost-effective
processors allow multiple functions to be consolidated on a single board or
system. In response, OEMs are standardizing on a single processor
architecture, such as Arm® or Intel® x86, which offer a range of cost and
performance levels, with common development environments and extensive
ecosystems.

Connectivity supports new functionality and revenue streams but adds
security concerns. Today’s consumers expect internet connectivity in almost
any product, often with cloud-based services and applications to add
functionality. This expectation aligns with OEMs’ need for analytics to better
understand consumer needs and to support new revenue streams from add-on
services. Connectivity also requires new software, such as analytics,
dashboards and human machine interfaces, and increases security risks,
making it critical to identify and mitigate software vulnerabilities before a
product is released.

Complexity demands more of already-stressed development resources. OEMs
are being pushed to provide more complex functionality. This ranges from
drivers for new devices and interfaces to more sophisticated, intuitive, and
consistent user experiences across product lines and generations, as well as
personalized support and services based on consumer actions. The result is a
shift in how organizations hire and deploy some of their most valuable assets:
the developers in their engineering organizations.

01

02

03

3

Accelerate Innovation with
a Scalable Platform

How the Choice of Operating System
Supports a Platform Strategy

As OEMs become software-driven organizations, the choice of operating system
(OS) becomes a critical factor for success. The OS architecture should support
development of an intellectual property (IP) library that can be reused across the p
roduct portfolio and across generations of products. It must also allow code for drivers
and applications to be easily added or updated without requiring the addition of new
items to the kernel and a kernel rebuild. With those characteristics, software designers
can develop once and share common low-level driver software components (file
system, user interfaces, or standard device drivers such as USB) across products.
This ability to share or re-use components speeds the introduction of new technolo-
gies or out-of-the-box components into as many products as possible, as quickly and
efficiently as possible.

Once a decision is made to standardize on a single microprocessor family, moving to
a commercial OS becomes the next key decision for a successful platform strategy.
With this approach, OS development, updates, and security patches are offloaded to
the OS vendor, reducing the need for difficult, time-intensive, and low-value in-house
maintenance of the OS. OEMs can keep their most experienced development resources
focused on innovating for competitive advantage and preparing for the next wave of
consumer demands. Too often, those valuable resources are focused on OS and driver
maintenance, which provides no added or competitive value but is complex enough
to require senior-level resources. Plus, without a common OS deployed across the
organization, each project or product team will require a senior development resource
for OS maintenance, further multiplying the cost and inefficiency.

Figure 1: Comparing Monolithic vs. Microkernel OS. In a monolithic OS the drivers, file systems, network stacks,

etc. all sit within the kernel space. In a microkernel, these components all run in the user space, so changes to the

drivers or file system don’t affect the kernel.

HARDWAREHARDWARE

SCHEDULER, VIRTUAL MEMORY

FILE SYSTEM

DEVICE DRIVER

VFS

APP

APP USER
MODE

KERNAL
MODE

DRIVER
FILE

SERVER
ETC.

SCHEDULER, VIRTUAL MEMORY

MONOLITHIC OS MICROKERNEL OS

4

Accelerate Innovation with
a Scalable Platform

Microkernel OS Powers a Scalable
Software Platform

Going beyond the need for a standard, commercial operating system, OEMs need a
software platform that is scalable, reliable, and secure, and that provides a rich (and
familiar) development environment and long-term roadmap, as well as technical
support and engineering services. To achieve this, a microkernel architecture offers
distinct advantages over traditional monolithic OS architectures, such as Linux®,
Android®, and Windows™.

A monolithic OS runs all OS services in the kernel space—including all the drivers, file
system, multimedia stack, and network stack. This design means that developers who
need to update or add new driver or system code must modify and rebuild the entire
kernel, thus creating a unique kernel for each product. Having a unique kernel for each
product multiplies the already-intensive testing effort required to release a custom kernel.
This slows down NPI capacity and can grind the development process to a standstill.
Commonality at this layer of the software stack is critical to scaling your entire organiza-
tion—engineering, testing, customer experience, etc.

A perfect example of a monolithic kernel spawning custom kernels is when organizations
use Linux for their OS. Many companies using Linux end up with many different OS
variants. In a Linux environment, each driver or software component sits within the
monolithic kernel, and each component must be integrated, compiled, and tested on
each OS. If every product needs a file system or network stack, extensive work is needed
to integrate that component into each OS variation—it doesn’t scale in individual products
or across product lines. This slows the addition of new features and makes it difficult to
use standard third-party components. Large companies with multiple product lines may
end up with tens or even hundreds of different OS variants, creating an exponential night-
mare when OS updates are required or new features need to be added.

PRODUCT 1

MONOLITHIC
KERNEL A

PRODUCT 2

MONOLITHIC
KERNEL B

PRODUCT 3

MONOLITHIC
KERNEL C

A B C D E F

Figure 2: In a monolithic OS, each product has a unique monolithic kernel that includes drivers, file systems,

stacks, etc (A, B). Unique monolithic kernels must be developed and maintained for each product.

5

Accelerate Innovation with
a Scalable Platform

Unlike a monolithic kernel, a microkernel separates file systems and the multimedia and
network stacks so that they run in user space. This means that a microkernel OS rarely
needs to be recompiled and component integration can be done once and reused across
multiple products. This separation enables the critical innovations of modularity and
scalability. As well, if the same microkernel OS is used across multiple products, device
drivers and connectivity protocols can be shared as applications, eliminating the need
for custom integrations. Developers can easily reuse custom code or drivers, bring up
new hardware, or add off-the-shelf, third-party components to all products quickly. By
standardizing on a commercial microkernel OS, OEMs no longer need to deploy valuable
resources to maintain the critical underlying functionality. Patches and updates are devel-
oped and managed by OS experts, allowing new applications and features to be rolled out
in multiple products with minimal effort.

From a hardware development standpoint, a microkernel OS is inherently modular
and scalable, which allows developers to easily port code up and down the scale of
processors for different product needs. Most commercial OS have a wide range of board
support packages (BSPs) available to help get up and running quickly on new hardware,
in hours rather than weeks.

A commercial microkernel OS is the basis for engineering efficiency and scalability,
especially within large OEMs that have multiple development teams, markets, and
product lines. For OEMs who want to be more agile and responsive to changing client
demands or market opportunities, choosing a standard microkernel OS for all products
and product lines can remove significant pressure from already-stressed development
teams, and allow developers to focus on critical innovations instead of maintenance.

Figure 3: In a microkernel OS, all drivers, network stacks, and other OS services sit outside of kernel space. This

means components and code can be reused across products and updates to them do not impact the kernel.

PRODUCT 3PRODUCT 2

MICROKERNEL A

PRODUCT 1

MICROKERNEL A MICROKERNEL A

A B C D A C

6

Accelerate Innovation with
a Scalable Platform

The Advantages of a Platform Strategy
Accelerate time to market for new products

OEMs can quickly develop new products by leveraging the code base from other products
and developing only software needed to integrate unique components or hardware. This is
especially true if the OS vendor possesses a rich set of BSPs so new hardware can be brought
up quickly. With a microkernel OS and a shared library of software components, OEMs can
increase NPI volume and reduce time to market with the same number of developers.

Reduce hardware supply chain risk
Selecting a standard processor architecture such as Arm or Intel x86, OEMs are no longer at
the mercy of a single board provider. With a commercial microkernel OS and BSPs, OEMs can
swap hardware as needed to address cost concerns or supply chain interruptions without
having to start from scratch for every project.

Drive flexible capabilities across product lines and teams
A standardized platform enables an internal development community to share drivers and
other applications, resulting in faster product development across product lines and teams
worldwide. The common set of tools enables cross-business technology development and
flexibility that was previously impossible. This also increases customer satisfaction, with
familiar capabilities and interfaces across product lines.

Focus on competitive product roadmaps and new revenue streams
With the OS managed by outside experts, OEMs can focus their most valuable engineering
resources on developing competitive new features such as cloud-based services, enhanced
security, or Internet-of-Things (IoT) protocols that differentiate products or meet emerging
customer demands. OEMs gain the ability to redeploy high-level developers to new software
initiatives such as cloud-based analytics—services that drive new revenue streams.

Increase development velocity without increasing headcount
By depending on the OS vendor to maintain and upgrade the OS platform, OEMs improve the
efficiency of the development cycle end-to-end. OEMs can release more products with the
same development staff and deliver more value with the same resources.

Create a consistent user experience
Today’s consumers expect intuitive, smartphone-like interfaces on the devices they interact
with. For many OEMs, user experience (UX) has become a strong differentiator. With a micro-
kernel OS, a common UX can more easily be provided across product lines to provide consis-
tency and a strong brand experience, even across a large product portfolio.

7

Accelerate Innovation with
a Scalable Platform

The Best Software Foundation for
a Successful Platform Strategy

When looking for a commercial microkernel OS, OEMs around the world turn to BlackBerry®
QNX®. The QNX Neutrino® Real-time Operating System is trusted in millions of products across
critical automotive, medical, robotics, transportation, military, and industrial embedded systems.
The BlackBerry QNX RTOS is POSIX-compliant, making it one of the industry’s easiest operating
systems to port to.

In addition, developers ramp up quickly on the QNX OS, as it looks and feels like Linux, and uses
the same tools. Development teams can design and build systems using standards-based tools
(e.g., GCC toolchain, Eclipse IDE) and APIs (e.g., PSE54, Linux, OpenGL ES), while leveraging
trusted foundational software that scales from single and multi-core to high-performance
compute platforms to ensure maximum portability and design flexibility.

BlackBerry QNX offers an extensive range of board support packages, as well as professional
services and service packages such as porting and architecture assessments, to help stream-
line development timelines. While moving from an open source OS to a commercial microkernel
OS increases upfront licensing costs, it significantly decreases other costs, resulting in a strong
return on investment.

8

Accelerate Innovation with
a Platform Architecture

Platform Standardization Case Study:
Zebra Technologies

Zebra Technologies is a global OEM with a wide
portfolio of products that range from barcode
printing to mobile computing, data capture,
locationing and data platforms, as well as related

software, services and supplies. In Zebra’s specialty printing group, Victor Salmons, Vice
President of New Product Development, leads a team of engineers that design enterprise-
level, mission-critical thermal printing products for healthcare, manufacturing, transportation,
logistics and retail applications.

The group’s three specialty printer categories—acquired through mergers and acquisitions—
each had a different OS, or no OS at all. This situation made it difficult to deliver a common
user experience to customers and to integrate, deploy and manage those products over
time. This was frustrating for customers and was also highly inefficient from a development
standpoint. When customers asked Zebra to add USB host capabilities to its products, the
company realized that there was no easy way to add standard third-party drivers without
extensive custom integration and testing. It was time for a new approach.

About 10 years ago, Zebra moved to a standard, scalable platform architecture based on a
family of Arm processors and the QNX Neutrino RTOS. With that platform in place, Zebra
developers could now build features and functionality from an ecosystem perspective. All
of the applications work across the entire portfolio of more than 50 product models and
derivatives. The company has also been able to drive a successful initiative around cloud
analytics, which allows products to be securely managed and provides data Zebra can use
for ongoing product improvements.

Today, Zebra has accelerated its NPI rate from one product per year to four per year, with
new features and functions easily added to existing products. This dramatic improvement
occurred without increasing software or firmware headcount. Zebra was able to redeploy
valuable developers who were working on OS maintenance to focus on value-add features
and components. With the foundation in place, product roadmaps can be developed well
in advance to identify needed features. Because drivers and components sit outside of the
kernel, the microkernel doesn’t change, and by leveraging BlackBerry QNX’s extensive BSP
library, new hardware or features can be brought up in hours or days rather than weeks.

Accelerate Innovation with
a Platform Architecture

When is the Right Time to Switch to a
Platform Strategy?

Ultimately, customer demands for easier setup and manageability, increased functionality
and greater security drive OEMs to a platform strategy. If OEMs don’t make the shift to
a scalable, standard architecture platform, they can’t continue to meet market demands
and their businesses will stagnate. In the meantime, their competitors may be making the
tough changes that are necessary to thrive.

When is the right time to change to a scalable development platform? Whenever business
as usual is no longer feasible. That may be in the early stages of a strategic new product
introduction; before, during, or after an acquisition; or in response to a strong competitive
threat. Whenever the time is right, proven approaches can guide the transformation. And
the initial time investment could be recouped as soon as the second product introduction,
based on the experience of BlackBerry QNX customers.

BlackBerry QNX provides an ideal software foundation that helps companies bring more
new products to market more quickly, frees developers to focus on value-added product
features, and reduces time spent on system maintenance. OEMs with multiple product
lines and development teams owe it to themselves to investigate the significant benefits of
platform standardization.

Contact BlackBerry QNX to learn more.

9

https://blackberry.qnx.com/en/company/contact

About BlackBerry QNX
BlackBerry QNX is a trusted supplier of safe and secure operating systems,

hypervisors, frameworks and development tools, and provides expert support

and services for building the world's most critical embedded systems. The

company's technology is trusted in over 195 million vehicles and is deployed

in embedded systems around the world, across a range of industries including

automotive, medical devices, industrial controls, transportation, heavy

machinery and robotics. Founded in 1980, BlackBerry QNX is headquartered

in Ottawa, Canada, and was acquired by BlackBerry in 2010.

© 2020 BlackBerry Limited. All rights reserved. QNX, Momentics, Neutrino, are trademarks of

BlackBerry Limited, which are registered and/or used in certain jurisdictions, and used under license by

BlackBerry QNX. All other trademarks belong to their respective owners.

