
Protecting the Embedded
and IoT Software Build
Environment with Software
Composition Analysis

By &

Sponsored by

2© 2020 IIoT World. All rights reserved.

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

SAFELY NAVIGATING SOFTWARE QUALITY AND SECURITY . 	 03

CHALLENGES OF HARDENING SOFTWARE AND HARDWARE . 	 04

Verifying Non-functional Requirements . 	 04

Reviewing Compiled Binaries . 	 05

Protecting the DevOps Build Environment . 	 05

Software Bill of Materials (SBOM) . 	 06

Identifying Software Vulnerabilities, Paths and Dependencies . 	 06

DECONSTRUCTING THE SOFTWARE AND HARDWARE BILL OF MATERIALS . 	 07

Software Composition Analysis . 	 07

Analysis of In-House Builds . 	 08

Analysis of Third Party Components . 	 08

Security for Hardware . 	 09

Final Product Build, Packaging, and Distribution . 	 09

STANDARDS COMPLIANCE . 	 10

MISRA C 2012 . 	 10

ISO 26262 . 	 10

IEC 62443 4-1 . 	 10

CERT-C . 	 10

CWE . 	 11

ISO IEC TS 17961:2013 . 	 11

AUTOSAR C++14 . 	 11

UNECE WP.29 . 	 11

SUMMARY AND RECOMMENDATIONS . 	 12

BlackBerry Jarvis – Software Composition Analysis for Embedded Systems and IoT . 	 12

ABOUT BLACKBERRY QNX . 	 14

Table of Contents

3

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

OEMs that have licensed software to integrate
into their products focus on ensuring that the
software will meet their business and functional
application requirements; however, licensing
agreements rarely guarantee the delivery of
non-functional requirements, such as security or
secure software development practices, which
can impact how the system should work.

Protecting the software supply chain at each
point within the software development lifecycle
is critical to ensuring the quality and safety of
software without slowing down the software
development and delivery process.

Ensuring the quality, reliability and safety
of software requires navigating a complex
software supply chain made up of software
engineers, operations managers, contractors,
and independent software vendors (ISVs), along
with open source software (OSS) providers.
Oftentimes, device manufacturers that have
outsourced software development or integrated
third-party software are unable to examine the
source code. This makes it difficult to verify that
the software complies with safety standards and
meets the manufacturer’s own best practices
for software development. Original equipment
manufacturers (OEMs) rarely have access to all
the source code used in their products.

Companies that have adopted agile software
development methods have many software
developers coding at the same time and
submitting their code into a shared repository.
Using a constant stream of small, incremental
updates to the code base allows companies
to integrate, build, test, and release software
more quickly and with fewer defects. DevOps
is a methodology that complements agile
development by combining software engineering
and operations to integrate and deliver high
quality software faster and more reliably.
DevOps uses processes and tools to streamline
development and automate the orchestration
and management of software delivery.
Companies that develop their own software
in-house have access to the source code and
can more easily verify what goes into their
applications; however, this does not mean that
the software meets the company’s requirements
and other industry standards such as MISRA C
2012, ISO 26262 and IEC 62443 4-1.

Safely Navigating Software Quality and Security

Software licensing
agreements rarely
cover non-functional
requirements, such as
security or secure software
development practices

4

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

There are many challenges to hardening
software and hardware in manufactured
electronic products. “Hardening” refers to
reducing the surfaces of attack and removing
security vulnerabilities in the software, device,
or system. Some of the primary challenges to
hardening software, include:

Functional requirements define the basic behavior of the software application. Typically, functional
requirements describe what the system should do under certain conditions. For example, a functional
requirement could specify that when you press the button, the green light turns on.

might be that the authentication method should
verify the identity of the user using public key
cryptography and digital certificates in addition
to using a password. If you wanted to be
specific, you could define another non-functional
requirement in this way: “the public/private key
pair used in PKI should be generated using a
hardware security module (HSM).”

Non-functional requirements describe how
the system works in a way that impacts the
user experience but that does not impact
a functional requirement. For example, a
functional requirement might specify that the
system should authenticate the user based on
a username and password. A non-functional
requirement would be that the password
should be a minimum length of 8 characters
and include letters, numbers, and at least one
symbol. Another non-functional requirement

•	 Business rules
•	 Authentication
•	 Reporting requirements
•	 Certification requirements

Challenges of Hardening Software and Hardware

Verifying Non-functional Requirements

Typical functional requirements include:

Reviewing
compiled binaries

Protecting the DevOps
build environment

Verifying non-functional
requirements

Input OutputSystem behavior

•	 Performance
•	 Scalability
•	 Availability
•	 Security
•	 Manageability
•	 Data integrity

Typical non-functional requirements include:

5

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

When designing a system to be secure,
defining the non-functional requirements is as
important, or more important, than defining the
functional requirements because non-functional
requirements can also introduce vulnerabilities.
Too often, companies do not adequately define
the non-functional requirements in sufficient
detail when it comes to security and software
development practices. Also, companies often
eliminate non-functional requirements to reduce
the scope of work (SoW) and cost of product
development.

Verifying the functional and non-functional
software security requirements for a product can
be exceedingly difficult. If some of the software
components are delivered as binaries, it could be
difficult to test the non-functional requirements.
Without testing the non-functional requirements,
companies could fail to identify critical flaws and
vulnerabilities in the software.

DevOps has embraced the practice of continuous
integration and continuous deployment (CI/
CD) for enterprise and cloud applications,
whereby developers submit small, incremental
code updates that are built, integrated, and
tested automatically before being sent to the
operations team to release into production. CI/
CD enables companies to significantly reduce
the software delivery time and increase the
frequency of updates.

For embedded and IoT systems, product and
software engineers are increasingly using
DevOps methodologies to meet the demands
for more frequent firmware updates and
monetization strategies. As the software is being
built and compiled, it is critical to constantly
verify its safety, quality, and authenticity.

Test

Plan

Rele
ase

Monitor

Code

Bu
ild

O
perate

Deploy

Continuous Integration

Continuous Delivery

Reverse engineering compiled binaries back
into source code is difficult and often violates
the software licensing agreement. Binaries can
often be decompiled or disassembled back
into the component libraries that make up the
application. This makes it easier to identify
known vulnerabilities in the software sub-
components and binary libraries that make up
the application.

Reviewing Compiled Binaries

Protecting the DevOps Build Environment

6

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

From a security perspective, software lives in two
worlds. One world is the world of known risks,
and the other is the world of the latent or yet-
to-be-discovered risks. The world of known risks
can be defined at any given point in time through
careful software analysis, yet if unmanaged, will
continue to grow to a potentially unmanageable
level of risk. Moreover, the environment and
configuration of the system and software can
dramatically alter the level of risk exposure, both
in a negative and positive way.

Let’s begin by examining known vulnerabilities.
As security researchers have continued to ply
their trade over the last several decades, various
organizations have taken up the noble project
of compiling the known vulnerabilities into
searchable databases. One of the most common
and well respected of all vulnerability databases
is the Common Vulnerability Enumerator (CVE)
database originally compiled and managed by
Mitre Corporation1.

The CVE database forms the basis for the US
NIST National Vulnerability Database (NVD),2
which is regularly updated and can be accessed
directly via their website or through web-based
APIs, a common access method used by software
composition analysis tools. The NVD is freely
available and perhaps the largest and most
comprehensive database of known software
vulnerabilities globally.

Vulnerabilities are given a score based on a
number of criteria to help determine the severity
of the risk. While this can be a good starting
point for determining how to prioritize risk,
the score must be considered in a contextual
manner in order to properly determine the
true risk exposure of any given application or
system. A software package, for example, may
contain multiple vulnerable libraries that have
been assigned high numerical severity scores,
yet most of the libraries may not be exposed
or accessible in the codebase. In this instance,
the dependencies present at runtime will serve
as a more accurate indicator of real risk. This is
why it is very important to always combine the
information gathered from the analysis software
with expert human and contextual analysis.

Nonetheless, it can be successfully argued
that once armed with the knowledge of what
vulnerable software and hardware is present
in the system and applications, you should
do all that you can to eliminate all known
vulnerabilities. This is important because it is
extremely complicated to narrow down and
prioritize risk when the software is bloated with
a multitude of vulnerable libraries. Another
consideration is that system configuration
changes can dramatically alter the various
runtime workflows and dependencies, and a
once “secure” system or application can suddenly
become high risk. Applying some thorough
software and hardware hygiene and regularly
re-examining the system and applications will
serve to effectively manage security during the
full lifecycle.

A software bill of materials (SBOM) is a list of
components in a piece of software. Developers
often create products that incorporate
open source and commercial software with
proprietary code within a single application or
set of libraries. Understanding what is in the
SBOM is an important first step in addressing the
challenges of hardening software and hardware
products.

Software Bill of Materials (SBOM)

Identifying Software Vulnerabilities,
Paths and Dependencies

1 Mitre Corporation Website. https://cve.mitre.org https://cve.mitre.org

2 US NIST National Vulnerability Database. https://nvd.nist.gov https://nvd.nist.gov

https://nvd.nist.gov/
https://nvd.nist.gov/
https://cve.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov/

7

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

The world of both software and hardware
development has evolved over the years. At
one time both software and hardware were
developed strictly from source code and
painstakingly architected designs. As the world
of software and hardware development evolved,
it became readily apparent that building on
previous work was far more efficient. Software
developers now rely on previously compiled
software libraries that can be obtained from
online open source repositories, commercial
development houses, or previously developed
in-house libraries. This is also true for hardware
developers that incorporate components into
their devices and systems. Building on the
successful work of others is now commonplace
and far more efficient.

The challenge that arises is that both the
internal development team creating the
application and the end user (customer) have
very little (or no) way of knowing the extent
of any vulnerabilities that may exist both in
the software and hardware. This is where a
Software Bill of Materials (SBOM) and Hardware
Bill of Materials (HBOM) become indispensable.
Think of these as “ingredient lists” for software
and hardware. By identifying the software and
hardware “ingredients,” a determination can be
made about the potential vulnerability exposure
for a given application. Once the software and
hardware components are identified, they can
be compared against known databases, such
as the NIST National Vulnerability Database.
Additionally, this information can be periodically
or continuously cross-referenced with
vulnerability databases to track vulnerabilities as
they emerge over the lifecycle of the application,
alerting both developers and users of risk
exposure as it evolves.

Deconstructing the Software
and Hardware Bill of Materials

Applications that are built using previously
compiled libraries can be analyzed through a
type of analysis known as software composition
analysis (SCA). This type of analysis examines
the compiled application and identifies the
component libraries that were used to create
it. It is especially useful because it does not
require access to any source code. Binary
analysis, a form of SCA, can be performed
quickly and is non-destructive. While SCA can
readily enumerate component libraries, typically
it only lists the component libraries without
making a determination of the security risks
associated with the presence of such libraries.
In some cases, SCA will discover that there are
multiple versions of Java contained within a
binary, and most may have significant security
flaws, yet most will not be active in the compiled
application.

It is important to select a SCA solution that can
further analyze the application to determine
dependencies and exposure during runtime.
This can be partially covered by better analysis
software; however, thorough analysis may
require a much deeper view by someone
trained in analyzing the results. Effective SCA
software tools can automate much of this, yet
it is best to look at analysis software that is
well supported by services that can help make
sense of what is discovered. An analogy is a
person who goes to a lab to get blood drawn
and analyzed. While the results may show that
there are some causes for concern, a trained
medical professional will review the results and
take into account many more factors about the
patient in order to determine if there is cause for
immediate concern, or if it is simply important to
make changes that can lead to a better analysis
outcome.

Software Composition Analysis

8

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

SCA is an important tool for
development organizations and
in-house software development.
A sizeable amount of the
codebase created by software
developers is based on building
on previous code. While a
developer may be familiar with
what he or she is adding to the
existing code, the previously
developed codebase may not be
as well vetted. This can be risky
because latent security flaws will
emerge over time as significant
risks. As previously stated,
SCA can be used to enumerate
numerous active and inactive
component libraries, and in
some cases multiple versions
that accumulate as “waste” as the
codebase is modified over time.
Proper code hygiene is essential
to developing clean applications,
and these unused “toxic” libraries
should be purged from the
codebase at every opportunity.

Any organization that relies on third-party software and/or
hardware components is constantly introducing unknown
security risks into their environment. Some estimates indicate
as much as 70 percent of code used by developers today
comes from a third-party providing component libraries and
approximately 90 percent of all code developed today relies on
some level of third-party components during development. The
risk does not stop with developers. Hardware manufacturers
use third-party software applications for everything from
toys to industrial controllers, as well as transportation, as
motorized vehicles become more and more connected to
networks and provide rich applications. Recently, some steps
have been taken by governments to require an SBOM to be
available for mission critical devices, such as medical devices
and other industries are also considering this. SCA can readily
provide this information to organizations looking to create
an SBOM. Coupled with expert analysis, organizations can
determine and manage their risks as they continue to utilize
third-party components, as well as put pressure on third-party
manufacturers to improve their security hygiene.

Analysis of In-House Builds Analysis of Third-Party Components

3 Kirk, Jeremy. (2010, September 22). Third-party Code Putting Companies at Risk. Infoworld.
https://www.infoworld/ https://www.infoworld.com/article/2626167/third-party-code-putting-companies-at-risk.html

4 Wisseman, Stan. (2016, April 7). Third-party libraries are one of the most insecure parts of an application. TechBeacon.
https://techbeacon.com/ https://techbeacon.com/security/third-party-libraries-are-one-most-insecure-parts-application

5 House Sets Deadline for HHS to Develop Bill of Materials Action Plan. (2017, November 22). FDA News.
https://www.fdanews.com/ https://www.fdanews.com/articles/12441-house-sets-deadline-for-hhs-to-develop-bill-of-materials-action-plan

https://www.infoworld.com/
https://www.infoworld.com/article/2626167/third-party-code-putting-companies-at-risk.html
https://techbeacon.com/security/third-party-libraries-are-one-most-insecure-parts-application
https://techbeacon.com/security/third-party-libraries-are-one-most-insecure-parts-application
https://www.fdanews.com/
https://www.fdanews.com/articles/12441-house-sets-deadline-for-hhs-to-develop-bill-of-materials-action-plan

9

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

It is important to understand that in order for a
system or device to be secure, not only does the
software need to be secure, but the hardware
itself needs to be designed and managed to
provide an environment for the applications
to function with optimal security. Additionally,
making a determination of the hardware build
environment and components within a given
system can be used to positively identify the
context in which it operates. An example of this
is identifying a hardware chipset that is known to
have been developed specifically for automotive
components. Identifying this chipset can help
developers and security analysts prioritize
security issues based on known threats,
vulnerabilities, and compliance requirements
specifically for the automotive industry.

In discussing secure hardware, there are
several issues to consider. One issue is the
instruction sets of the chipset used on the
system or device. If secure operations are not
fully supported, then the expected level of
secure operations are compromised. Another
consideration is the design and protective
measures taken in building what is labeled as
secure hardware, and specifically secure silicon.
There are various certification programs that
exist today that serve to deliver some level of
assurance that the hardware on a system or
device meets certain criteria. For example, both
the US NIST Federal Information Processing
Standard (FIPS)6 and Common Criteria for
Information Technology Security Evaluation
(ISO/EIC 15408), referred to as Common Criteria
or CC7 have comprehensive requirements for
multiple security assurance levels. However, it
is important to understand that, despite having
achieved requisite scrutiny for high assurance
security certifications (e.g., FIPS 140-2 Level 3
or CC EAL Level 4+), security researchers and
hackers have been known to find exploits that
are effective against such hardware when given
enough time and determination. This is why
hardware composition analysis is so important.
By analyzing embedded systems at a hardware

composition level, it can be determined if
requisite instruction sets are executing in a
secure manner and what potential latent security
issues may be present.

Software and hardware composition analysis
should be performed on systems and devices
during the final product build in order to
determine if the system remains free of security
vulnerabilities. The development stage can be
quite long, and security issues can arise during
the development time period that were not
present in the earlier development stages. It is
also important to understand that the way the
software and hardware are configured can affect
the security of the final build, since static builds
do not tell the story of dynamic execution.

This is the stage where the product is ready to
go to market. Product distributors and end-users
are beginning to request a bill of materials to
accompany delivered systems, as more of them
become aware of the need to understand what
they are implementing in their own networks
and distributing to their customers. Beyond
software and hardware composition analysis,
it is also important to consider if the physical
packaging used on the system is optimal for
delivering a requisite security level. This can
include anything from how the secure silicon is
physically protected, to the presence or absence
of IO ports either at a deep embedded level
or at the network connectivity level (e.g., JTAG
and USB). As the final product moves through
the distribution network there is a risk of
compromise at each checkpoint. It is important
to have expert analysis determine what potential
security risks may exist that may have been
overlooked during the final build, packaging, and
distribution.

Final Product Build, Packaging,
and Distribution

Security for Hardware

6 Federal Information Processing Standards Publications (FIPS PUBS). US NIST. https://www.nist.gov/

7 Common Criteria Recognition Arrangement. Common Criteria for Information Technology Security
Evaluation. Common Criteria Portal. https://www.commoncriteriaportal.org/

https://www.nist.gov/itl/publications-0/federal-information-processing-standards-fips
https://www.commoncriteriaportal.org/

10

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

The Motor Industry Software Reliability Association (MISRA) C guidance is a set of
software development guidelines for the C programming language developed by
MISRA (Motor Industry Software Reliability Association). Its aims are to facilitate
code safety, security, portability, and reliability in the context of embedded systems,
specifically those systems programmed in ISO C / C90 / C99.

IEC 62443 4-1 specifies process requirements for the secure development of
products used in industrial automation and control systems. It defines a secure
development lifecycle (SDL) for the purpose of developing and maintaining
secure products. This lifecycle includes security requirements definition, secure
design, secure implementation (including coding guidelines), verification and
validation, defect management, patch management and product end-of-life.
These requirements can be applied to new or existing processes for developing,
maintaining, and retiring hardware, software or firmware for new or existing
products. The vulnerability testing requirements lists vulnerability scanning and
binary file analysis as recommended types of testing.

ISO 26262, titled “Road vehicles – Functional safety”, is an international standard for
functional safety of electrical and/or electronic systems in serial production road
vehicles, defined by the International Organization for Standardization (ISO) in 2011,
and revised in 2018.

The SEI CERT C Coding Standard is a software coding standard for the C
programming language, developed by the CERT Coordination Center to improve the
safety, reliability, and security of software systems.

Guidelines in the CERT C Secure Coding Standard are cross-referenced with several
other standards including Common Weakness Enumeration (CWE) entries and
MISRA.

MISRA C 2012

IEC 62443 4-1

ISO 26262

CERT-C

Developers and device designers look to industry standards to certify that their products meet
requirements for safety and security. Software composition analysis platforms help developers and
device designers to comply with industry standards.

Standards Compliance

11

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

CWE™ is a community-developed list of software and hardware weakness types.
It serves as a common language, a measuring stick for security tools, and as a
baseline for weakness identification, mitigation, and prevention efforts.

AUTOSAR was developed in 2003 to address the explosion of automotive software,
defining an open industry standard for electronic vehicle architectures. Over the
years AUTOSAR has evolved to meet emerging automotive use cases such as
autonomous driving and vehicle-to-everything (V2X) connectivity, resulting in the
creation of the AUTOSAR Adaptive Platform.

The purpose of ISO/IEC TS 17961 [ISO/IEC TS 17961:2013] is to establish a baseline
set of requirements for analyzers, including static analysis tools and C language
compilers, to be applied by vendors that wish to diagnose insecure code beyond
the requirements of the language standard. All rules are meant to be enforceable
by static analysis. The criterion for selecting these rules is that analyzers that
implement these rules must be able to effectively discover secure coding errors
without generating excessive false positives.

The UNECE World Forum for Harmonization of Vehicle Regulations (WP.29) is a
worldwide regulatory forum within the institutional framework of the UNECE Inland
Transport Committee. WP.29 defines the safety and environmental performance
requirements for cars, vans, trucks, coaches, buses, powered two wheelers,
agricultural vehicles, locomotives, and inland waterway vessels.

CWE

AUTOSAR C++14

ISO IEC TS 17961:2013

UNECE WP.29

12

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

BlackBerry® Jarvis™ – Software Composition Analysis for Embedded Systems and IoT

Ensuring the safety, quality and reliability of software requires navigating a complex software supply
chain of developers, software engineers and third-party software providers. Original equipment
manufacturers (OEMs) do not have the visibility into the software components that are integrated into
their products. Rarely do OEMs have access to the source code for all the software in the software bill of
materials (SBOM).

Hardening devices and software is difficult due to the challenge of verifying that both the proprietary and
open source binaries do not contain known vulnerabilities. DevOps teams also want to make sure that
the SBOM has been compiled in accordance with their own software development standards as well as
industry standards for software development such as MISRA C 2012, ISO 26262, and CERT-C.

Identifying vulnerabilities and whether the application may be taking advantage of those vulnerabilities
to compromise the system requires both an SCA as well expert services. Understanding the context with
respect to the operating environment (chipset and operating system), industry, compliance standard,
and build dependencies is critically important and is best accomplished with both tooling and security
analysis.

Summary and Recommendations

13

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

© 2020 IIoT World. All rights reserved.

BlackBerry Jarvis is a cloud-based, software
composition analysis platform that analyzes
proprietary and open source binaries to identify
security vulnerabilities without requiring access
to source code. The platform inspects binary
files in an easy, quick, scalable, and cost-efficient
way, delivering deep insights into the quality and
security of software components.

Through cutting-edge system exploration
technology and a world-class, BlackBerry Jarvis
provides powerful capabilities to examine
a complete software product for security
vulnerabilities and software craftsmanship.

Since BlackBerry Jarvis extracts the
characteristics and attributes from compiled
binaries, access to source code is not required
for organizations to gain insight into the final
product. By building an SBOM and comparing
the SBOM to known vulnerabilities databases,
customer development requirements, and
BlackBerry’s own best practices, companies
can understand what vulnerabilities exist and
whether the software meets their functional and
non-functional requirements.

BlackBerry Jarvis integrates with DevOps tools
and CI/CD pipelines to automate binary analysis
capabilities right into the workflow and build
environment so that each build can be tested
and verified before being sent to operations for
deployment into production. BlackBerry Jarvis
is able to identify more than 100 categories of
vulnerabilities and uses context and discovery
techniques to understand whether vulnerabilities
are able to be exploited and whether there is
evidence of an intent to exploit.

BlackBerry Jarvis enables companies to more
easily meet the software development and safety
standards for automotive and manufacturing.
OEMs concerned about securing the software
supply chain and managing their software
build risks should consider implementing the
BlackBerry Jarvis software composition analysis
cloud-based platform.

Comprehensive Binary Analysis:
Identifies more than 100 categories
of vulnerabilities in security and
software craftsmanship

CI/CD Integration:
BlackBerry Jarvis is a SaaS-based tool
with APIs for easy integration with CI/
CD pipeline tools to analyze software
at every stage of the DevOps lifecycle

Intuitive Dashboards:
Quickly identify vulnerabilities and
prioritize response with powerful
dashboards and CVSS scoring

Access to BlackBerry
Best Practices:
Speed remediation with access to
detailed descriptions and remediation
advice based on BlackBerry’s 20+
years of security experience

Contextual Analysis:
Improve vulnerability and
compromise identification with
contextual analysis of hardware,
chipset, compliance, and code
dependencies

Compliance Enablement:
Streamline compliance with industry
standards with access to industry
standards and customer-mandated
assurance standards.

14© 2020 IIoT World. All rights reserved.

Protecting the Embedded and IoT Software Build Environment with Software Composition Analysis

About BlackBerry QNX

BlackBerry QNX is a leading supplier of safe, secure, and trusted operating
systems, middleware, development tools, and engineering services for
mission-critical embedded systems. BlackBerry QNX helps customers
develop and deliver complex and connected next-generation systems on
time. QNX technology is trusted in over 175 million vehicles and more than
a hundred million embedded systems in medical, industrial automation,
energy, and defense and aerospace markets. Founded in 1980, BlackBerry
QNX is headquartered in Ottawa, Canada and was acquired by BlackBerry in
2010.

Learn more at blackberry.qnx.com

About IIoT World

IIoT World is a digital media outlet bringing the latest Industrial Internet
of Things (IIoT) virtual conferences and content to a global community of
200,000 decision makers and influencers. IIoT World focuses on delivering
daily intelligence on the IIoT, artificial intelligence, augmented reality,
predictive analytics, digital disruption, autonomous cars, cyber security,
machine learning and smart cities. Online, IIoT World curates a series of
virtual events that draw thousands of delegates, including IIoT World Days,
the largest Industrial IoT virtual event in the world. www.iiot-world.com

About Farallon Technology Group

Farallon Technology Group is a technology research and advisory firm
focused on embedded, operational technology (OT), and cloud native
cybersecurity. We deliver technical market and vendor research that covers
key security technologies for cloud, IoT and edge computing. Farallon
helps industrial companies, OEMs, and cybersecurity vendors to navigate
business and technology risks and opportunities to reduce cost, drive digital
transformation, and manage supply chains. www.farallontech.com

https://blackberry.qnx.com/
http://www.iiot-world.com/
http://www.farallontech.com/

