
E-book series

Modernize Your
Applications with
Azure Spring Apps

Modernize Your Applications with Azure Spring Apps | 2

Modernize Your Applications
with Azure Spring Apps

3 / Introduction to application modernization

15 / Steps to modernization

27 / Hosting and deployment options for Azure Spring Apps

38 / Monitoring Azure Spring Apps

42 / Choosing the right Azure Spring Apps tier

45 / Customer success stories

46 / Resources

Modernize Your Applications with Azure Spring Apps | 3

Section 1

Introduction to application
modernization

Businesses need to modernize applications to stay up to date, save costs, and optimize resources,
allowing them to focus on their core business goals and priorities.

The goal of modernization is to enhance the quality of software, boost performance, and
improve the overall customer experience. Modernization also involves taking existing legacy
applications and digitally transforming their platform infrastructure, architecture, or features to
meet modern business demands.

Application modernization, specifically, is the process of updating an organization’s application
estate. This involves improving application lifecycle management and data management through
a cloud-native approach.

As time moves on, every business will find they have a natural need to modernize. The only question
is how. In this e-book, you’ll learn how to approach modernization using Azure Spring Apps. Azure
Spring Apps is a platform as a service (PaaS) solution by Azure that fully manages application
development with built-in service discovery and configuration management. Enterprises can use
Azure Spring Apps as a central part of their application modernization process. Azure Spring
Apps makes implementation and management easy so businesses can focus on business goals.

This guide covers best practices and how to choose the right tools for modernization, as well
as setting up your organization for success post-migration. Whether you’re a technical decision
maker or part of an application team, this e-book has the foundational knowledge you need to
modernize with Microsoft Azure Spring Apps.

Modernize Your Applications with Azure Spring Apps | 4

When to modernize

Most enterprises today have a vast suite of applications in their environment. These applications
have been developed over a period or have been procured off the shelf from various software
providers. Each of these applications caters to a specific business unit, such as finance, payroll,
or even customer-facing functions, such as CRM tools. Over time, technology evolves, and so do
company business models. Some applications that suited business needs for an earlier stage in the
growth of a business may no longer be required. In contrast, another group of applications might
be needed in a different form than they were initially conceived. As an example, we’ll examine
Norway’s Komplett Group and their reason for pursuing a successful migration to the cloud.

IT teams look to modernize applications like Komplett’s—ones that have become outdated due
to moving business needs—to better fit current and future requirements. In some cases, this
involves rearchitecting applications and reworking code directly. In other scenarios, teams might
look to take advantage of PaaS and other cloud-native solutions, such as Azure Spring Apps.

PaaS solutions manage the underlying components required in an enterprise application,
enabling teams to focus on innovation and delivering business logic. This shifts the work of
necessary administration and maintenance tasks away from developers to the PaaS provider,
freeing development teams to focus on faster delivery of business value.

Modernize Your Applications with Azure Spring Apps | 5

Delivering e-commerce success at scale

Komplett Group is a household name for 1.8 million e-commerce customers throughout
Scandinavia. With 10 web stores located across the Nordic region, Komplett’s business model
connects product manufacturers with a variety of customers—from consumers and businesses to
resellers and public enterprises.

In the past, Komplett relied on its on-premises datacenters to operate and fulfill a complex
e-commerce operation. This was not only expensive and time-consuming to maintain but also
limited in its ability to scale at speed. So, Komplett decided to explore cloud offerings, attracted
to the cloud’s ability to improve service while reducing costs. “We were looking for a platform we
could grow with,” said Thomas Wilhelmsen, Head of IT Operations for Komplett. “For us, Azure
was the perfect platform to transition from the datacenter to the public cloud.”

The cloud migration journey

The company moved almost everything to Azure, eliminating the complexity of virtual machines
and going straight to Azure App Services environments. But the ultimate test of Komplett's
e-commerce operations would come during the busy holiday season, when the company
handled up to 30 times its typical daily volume of web traffic on a single day—Black Friday.

Before migrating to the cloud, capacity planning for such peak events meant buying physical hardware,
including additional servers and software licenses, to handle an exponential increase in website visitors.
Boosting capacity also required the extra space and resources to house and power the new equipment.

Thanks to Azure’s PaaS offerings, Komplett’s ability to scale quickly was immediate and
invaluable. Komplett found it could scale up or down on a daily basis if needed rather than being
fully provisioned 24 hours a day, 7 days a week. The speed of development and deployment on
the Azure platform also proved to be a game changer.

“We saw more than 500 views a second and delivered 21 TB of data to our customers, with great
response times,” Wilhelmsen said. “Using Azure, we were easily able to scale on demand to get
the performance we needed.”

Modernize Your Applications with Azure Spring Apps | 5

Modernize Your Applications with Azure Spring Apps | 6

Benefits of application modernization

Modernizing your applications comes with several benefits:

• Modernization helps developers deliver new features to their customers faster: A
modernized application on the cloud is much easier to manage than its on-premises
counterpart. Unlike an on-premises platform, a managed PaaS platform automatically
performs many manual administration tasks to which the team would typically have to
devote time and energy. This enables your team to focus on delivering new experiences.

• Modernization improves scalability: By shifting to a cloud-based platform, it’s easier
to handle changes in traffic without over-investing in on-premises hardware. The Azure
cloud provides scalability to allow an application to manage and handle traffic increases
seamlessly compared to its on-premises counterpart.

• Modernization improves security: Security benefits from using a host on the cloud since
the PaaS provider adds their security practices and defenses to yours. The Azure cloud adds
its own pillars of security to any application, ensuring it is protected from attacks.

• Modernization brings down costs: Applications that have been modernized to fit the
requirements of the business more closely can almost immediately bring down the overall
cost of ownership. Organizations can derive the most value from modernization simply by
ensuring their applications align with their evolving business goals.

• Modernization provides flexibility: In a changing business environment, microservices
architecture can provide the flexibility required to ensure that applications are always ready
to adapt. Businesses can deliver new functionality to their users through containerization
technologies such as Azure Spring Apps and Azure Kubernetes Service (AKS).

Any organization considering modernization is best served by exploring various technologies
that can be used for application modernization to identify which option would be best for their
specific use case.

Modernize Your Applications with Azure Spring Apps | 7

Choosing the right app
modernization services

Enterprise teams evaluate different technologies depending on their business requirements.
Teams wanting to improve day-to-day manageability might choose PaaS solutions such as Azure
App Service as the primary approach since, in this case, Azure takes care of the entire underlying
infrastructure and middleware components.

Teams that might be looking to expose their application back end to external sources can look
at Azure API Management as their approach of choice since it offers a single gateway to manage
all their needs. Similarly, AKS and Azure Spring Apps can be great choices for microservices and
container-based approaches. Azure Spring Apps is built on top of AKS and gives a fully managed
infrastructure to teams who might want to deploy their Spring applications on it.

We’ll use Azure services as our frame of reference, but whichever service you choose, it will fall
into one of the following four types:

1. PaaS solutions, such as Azure App Service

2. API management, such as Azure API Management

3. Microservices and container support, such as AKS

4. Fully managed PaaS solutions, such as Azure Spring Apps

We’ll go through each type, using Azure technologies as examples.

Modernize Your Applications with Azure Spring Apps | 8

PaaS services

A PaaS solution, such as Azure App Service, can build the underlying components of an
architecture, such as the operating system, runtime, and middleware. This allows teams to focus
on code while the PaaS takes care of necessary maintenance tasks, such as operating system
patching. This fosters better productivity, as your team now focuses on delivering newer features
and bringing them to market faster. At the same time, the PaaS manages your key concerns
around availability, scalability, and security.

Azure Active
Directory

Internet

Azure DNS

Microsoft
Azure

Azure Key
Vault

Diagnostic logs and metric data

Diagnostic logs and metric data

Audit and
diagnostic

logs

Metric data

Azure Monitor

Log Analytics

Logical server

Database Database

App Service
plan

App Service
web app

Production Stage Last good

Slots

Resource
Group

Figure 1: Application deployed over Azure App Service

Figure 1 represents a standard reference architecture for Azure App Service, including the
application, its staging environments, monitoring and logging systems (in this case, Azure
Monitor), and the database. Azure App Service is the popular choice for a modernization tool
since this approach involves little to no code change in most cases.

Modernize Your Applications with Azure Spring Apps | 9

If the runtime is supported in Azure, developers can simply deploy the code to Azure App
Service. In organizations with no robust DevOps practices, developers can ship code and transfer
it via FTP to their Azure App Service plan. The team can then utilize deployment slots to perform
zero-downtime deployments, with no complex operations required to be carried out by your
release teams.

Any PaaS needs to be able to monitor performance and keep meaningful logs. Azure App
Service can use its native tools, such as Azure Monitor and Application Insights, to monitor the
performance of the application logs and metric data without the overhead of managing it.
Azure App Service is one of the fastest ways to modernize a legacy application. This approach
almost instantly eliminates all the maintenance activity that you require to keep the application
up and running.

We were looking for a platform we could grow with. For us, Azure was the
perfect platform to transition from the datacenter to the public cloud.”
Thomas Wilhelmsen, Head of IT Operations for Komplett

API management services

API management services, such as Azure API Management, are platforms that enable teams to
manage their APIs through a single gateway. Teams looking for a single, unified management
experience across all their APIs will find that an API management service makes it easy. Azure API
Management supports APIs not only on Azure but also on third-party clouds and on-premises
datacenters.

Azure API Management offers full observability across all internal and external APIs. Teams can
build products and deliver value to customers through an API-first approach, and APIs can be
monetized when required. Good API management fosters the decoupling of front-end and
back-end resources, and the APIs can be managed separately outside the lifecycle of back-end
systems.

Modernize Your Applications with Azure Spring Apps | 10

(micro)services

Abstract
Secure
Evolve
Observe
Monetize

Apps on devices

Management
plane

API

API
providers

Data plane

Gateway

Developer portal

User plane

Employees
Partners

Customers

Discover
Learn

Try
Onboard
Get help

App
developers

Figure 2: An Azure API Management diagram

The best API management tools offer clear documentation, security, rate-limiting tools, and the
ability to handle multiple requests. Azure API Management provides the following benefits:

• External developers can learn how to build integrations and mock responses through the
documentation portal.

• A robust security mechanism means that teams can block traffic from an IP address—
immediately identifying suspicious requests and blocking them before they can cause any
damage.

• Rate limiting ensures that requests from a particular source do not drown your API
Management platform.

• All back-end resource requests can be handled through Azure Active Directory (Azure AD)
or other means, such as JSON Web Tokens.

• Multiple versions of APIs can be launched and hosted in parallel without maintaining a
separate codebase in the back end.

Modernize Your Applications with Azure Spring Apps | 11

Teams that are looking to expose their applications through API endpoints that can be consumed
by internal or external clients will find that an API management tool is essential. Azure API
Management provides robust scalability and enterprise-grade security, which allows developers
to focus on building business logic. At the same time, the entire administration and maintenance
workflow can be owned and managed by Azure.

Container platforms

Many applications are now packaged in the form of Docker containers. Building and running
an application in a single container can be easy; however, the complexity grows when the
application itself consists of multiple Docker containers running over multiple servers. This is
where a container orchestration platform, such as AKS, a managed Kubernetes platform from
Microsoft, comes in. Many legacy applications are refactored into microservices, which can then
be hosted on a Kubernetes cluster.

AKS can manage both stateful and stateless applications. You can build portable
microservices-based applications and use AKS to manage their availability and orchestration.
Applications written in any programming language, for example, Java, .NET, or Python,
can be deployed on AKS.

Applications can be deployed using a declarative syntax model. Deployment configurations
are written in YAML format and submitted to the Kubernetes cluster. The cluster can then make
decisions on how to host the application. Any existing DevOps tool, such as Azure DevOps or
GitHub, can be used to coordinate and manage your releases on AKS.

Modernize Your Applications with Azure Spring Apps | 12

Client apps

Dev/Ops

Azure Load
Balancer

CI/CD

Azure Kubernetes
Service (AKS)

Azure Active
Directory

Monitor Azure Key
Vault

External
data stores

Front-end

Pod
autoscaling

Azure
Pipelines

Container
registry Virtual network

NamespaceNamespace

docker pull

helm upgrade

RBAC

docker push

Back-end services

Namespace

Utility services

Elasticsearch Prometheus
Kubernetes

cluster

Ingress

Figure 3: Standard Kubernetes cluster with deployments and DevOps pipeline

Figure 3 represents a basic AKS cluster. An AKS cluster consists of nodes where the actual
deployments or the application workloads are hosted and run. In the event of a surge in traffic,
the cluster can spin up additional worker nodes or VMs through the cluster autoscaler.

In the case of a horizontal pod autoscaler (HPA), a number of replica pods are distributed across
the existing set of worker nodes. AKS performs well on scalability; however, it still leaves a lot of
infrastructure to be managed by the customer themself.

AKS may be right for you if you have the skill set to configure and manage Kubernetes containers
in-house. For Spring applications, this is where offerings such as Azure Spring Apps help with fully
managed platform services.

Modernize Your Applications with Azure Spring Apps | 13

Fully managed PaaS services

Fully managed PaaS services bring together a PaaS solution along with development
management and containerization built in. For example, Azure Spring Apps is a fully managed
PaaS service with built-in application lifecycle management. Developers can use Azure Spring
Apps to host their Spring Boot and Steeltoe .NET core apps and make them more cloud-
native. This helps them to focus on the code without bothering themselves with the underlying
infrastructure.

Under the hood, Azure Spring Apps runs on the Kubernetes infrastructure; however, teams can
host their applications over it without having to learn how to manage Kubernetes. This can help
a team to get up and running with their microservices applications within a very short period
of time.

Teams can struggle to manage the application lifecycle along with managing the underlying
infrastructure for Spring Boot applications. On Azure Spring Apps, developers can also use Spring
Cloud components to coordinate between microservices.

Components such as the config server, service registry, and log stream are built-in and native
to the platform. Once modernized, the applications can easily be monitored from Azure itself
without having to integrate any other additional service. Spring Boot applications require no
code changes for running on Azure Spring Apps.

We saw more than 500 views a second and delivered 21 TB of data to our
customers, with great response times. Using Azure, we were easily able to scale
on demand to get the performance we needed.”
Thomas Wilhelmsen, Head of IT Operations for Komplett

Modernize Your Applications with Azure Spring Apps | 14

CI/CD

Config
Source

Service
Binding

Azure Cosmos DB

Azure DevOps

Jenkins

Azure Kubernetes Service

Azure Cache
for Redis

Azure Database
for MySQL

GitHub

User Git repository

Azure Monitor

Metrics Logs Tracing Managed identities Service principals

Azure Active Directory

Service runtimeUser environment

Azure Spring Cloud

Service registry

Data encryptionLog stream

Config server Lifecycle management

Custom domain Self diagnostics

App resiliency

VMware Tanzu
Build Service

Azure Spring
Cloud agents

App 1 App 2 App N

Figure 4: Azure Spring Apps with a deployment, monitoring, and identity ecosystem

Azure Spring Apps comes with workloads and service runtime component features such
as distributed tracing and a circuit breaker available out of the box, and they need not be
implemented separately. Scalability for Azure Spring Apps can be achieved through simple
options available on the platform itself. Every single request can be traced, which makes
troubleshooting the application much easier. The entire application lifecycle can be managed
through the service, reducing the need to manage the application manually and helping teams
bring applications to the market faster.

Modernization can often be a vast discussion and can mean different things to different teams.
However, the choice of modernizing an application is often driven by changes in business
requirements. Applications are required to be updated to suit their current and future use cases.

Modernization often involves breaking the application into microservices so it can run efficiently
on containers. This is where services such as AKS, Azure Spring Apps, and also Azure API
Management can bring value to businesses. Teams for which manageability is a key concern
should consider fully managed platform services such as Azure Spring Apps.

Modernize Your Applications with Azure Spring Apps | 15

Section 2

Steps to modernization

Azure Spring Apps takes on the responsibility of the underlying layers, enabling the development
team to focus on IP creation. All components of application lifecycle management can now
be managed by Azure Spring Apps itself. This reduces the overall development time, thereby
improving developer velocity. Azure Spring Apps brings the focus back to feature development
while taking care of the Spring components, such as Config Server. With reduced workloads for
the team, organizations can improve their capability to deliver applications faster.

Organizations looking to modernize their applications should start by identifying the features
required in the new platform. This involves deciding what the application is expected to deliver or
achieve. Once the requirements have been defined, the team can evaluate the best approach for
their use case.

Migration is always easiest when an app is well-architected and created according to best
practices. To keep migration smooth, it’s important to know the available guidelines to help
developers design an efficient and reliable architecture.

Modernize Your Applications with Azure Spring Apps | 16

Azure Spring Apps best practices and reference architecture

An Azure Spring Apps architecture should be developed with careful design consideration of the
Microsoft Azure Well-Architected Framework. The Well-Architected Framework is a set of best
practices and guidelines that help teams design an architecture while keeping in mind the five
pillars of architectural excellence:

Reliability Security Cost
optimization

Operational
excellence

Performance
efficiency

These pillars are a guide to evaluating a design’s potential for success. A well-designed
architecture should try to excel on all of these fronts.

The Well-Architected Framework is not a rule but rather a set of principles on which the success
of your architecture can be evaluated. Most teams look at these same pillars while designing an
application architecture on Azure to meet their needs.

Let’s discuss the pillars of the Microsoft Azure Well-Architected Framework in a bit more detail
and see how each of these pillars contributes toward a resilient application architecture on Azure.

https://docs.microsoft.com/azure/architecture/framework/

Modernize Your Applications with Azure Spring Apps | 17

Reliability

Azure Spring Apps is built on the underlying AKS engine. This means the principles of scalability
and reliability for AKS clusters are also applicable to Azure Spring Apps. Microsoft recommends
using a hub and spoke design to help increase the availability of the application in terms of the
failure of individual services.

The architecture can be scaled up to deploy it to multiple regions. For the public application
use case, Azure Front Door and Azure Application Gateway ensure availability. In contrast, a
private Domain Name System (DNS) can provide access whenever failover is required for internal
applications.

Security

The application architecture should comply with standard industry-defined controls and
benchmarks. Design principles of identity, access management, and storage must be considered
while building the architecture. Architecture should always follow the principle of least privilege.

Microsoft recommends a few best practices and benchmarks, such as the Cloud Control Matrix.
This includes a series of mappings and implementation guidelines for application security. In
addition, Microsoft provides guidance and best practices for implementing solutions on Azure.
The team should look at implementing the Azure Security Benchmark for application and
infrastructure security.

https://cloudsecurityalliance.org/research/cloud-controls-matrix/
https://docs.microsoft.com/security/benchmark/azure/overview

Modernize Your Applications with Azure Spring Apps | 18

Cost optimization

Cost is always an important point to consider when designing an application. Teams should look
to efficiently utilize their resources to get maximum value from their investments. This includes
computing resources and operational overheads that application deployments bring along.

Teams can plan and deploy multiple applications of varying sizes to share resources of a single
instance of Azure Spring Apps. The instance supports the autoscaling of applications to improve
utilization and cost efficiency. Services such as Azure Monitor and Application Insights can help
lower operational costs. Using insights from these solutions, you can implement automation to
scale the components of the system in real-time.

Operational excellence

Azure Spring Apps can be complemented with Azure cloud components to build a reliable
architecture that is much more manageable than its on-premises counterpart. DevOps pipelines
can ensure that manual errors are eliminated from deployments. The inbuilt monitoring
capabilities of Azure can make it very easy to identify any errors with the application. Finally,
the security posture can be improved by using Azure WAF and Microsoft Defender for Cloud to
analyze the data.

Performance efficiency

Performance efficiency is the ability of your workload to scale to meet the demands users place
on it in an efficient manner. In the past, good performance efficiency would require the provision
of enough capacity for peak usage; in the modern era, the main way to achieve performance
efficiency is to use scaling appropriately and implement PaaS offerings that have scaling built in.

These pillars can be easier to understand by looking at an example, so in the next section, we’ll
look at a well-architected Azure Spring Apps reference architecture.

Modernize Your Applications with Azure Spring Apps | 19

Azure Spring Apps
reference architecture

The following Azure Spring Apps reference architecture is designed keeping in mind the
architectural tenets and best practices of the Microsoft Azure Well-Architected Framework.

VNet
link

VNet
link

Azure Spring Apps
private DNS zone

Azure Spring Cloud
management addresses

ExpressRoute
circuit

On-premises network

Virtual
network
peering

spoke-virtual-network

Gateway

hub-virtual-network

Datas services
subnet

Data
services

Azure
Cosmos DB

Azure Load
Balancer

Service
Registry

Spring Cloud
Gateway

Service Runtime subnet

Azure Spring Apps

Azure Load
Balancer

Apps subnet

Private FQDN

Centralized
services subnet

DNS services

Gateway subnet

ExpressRoute
gateway

Security
infrastructure

Key
Vaults

Security
Center

Monitoring
infrastructure

Application
Insights

Azure
Monitor

CI/CD pipelines

Azure
DevOps

Jenkins GitHub
Actions

Ingress
Egress

Corp application
gateway

App Gateway
subnet

Azure Firewall
subnet

Corp firewall

Figure 5: Azure Spring Apps reference architecture in the Standard tier

Figure 5 shows a foundation using a typical enterprise hub and spoke design for the use of Azure
Spring Apps. In this design, Azure Spring Apps is deployed in a single spoke, dependent on
shared services hosted in the hub.

The Standard tier comprises the Spring Cloud Config Server, Spring Cloud Service Registry, and
kpack build services. These are standard Spring components that enable microservices to interact
and communicate with each other, which is essential for microservices to perform their duties.

Modernize Your Applications with Azure Spring Apps | 20

Let us also review some key Azure services used other than Azure Spring Apps components:

Serves as the
corporate firewall
for all ingress
traffic to the
application.

Responsible
for monitoring
application
availability and
performance.

Both services are
part of the security
infrastructure.
Key Vault holds
application
secrets, while
Azure Security
Center offers
unified security
management and
threat protection.

Part of the
deployment
infrastructure,
deployments can
be done through
any DevOps tool,
such as Jenkins,
Azure DevOps,
or GitHub.

Azure WAF Application
Insights and
Azure Monitor

Key Vault and
Security Center

Continuous
integration/
continuous
deployment
(CI/CD) services

The Spring Apps standard architecture serves as a benchmark for applications running on the
Standard tier utilizing standard Spring components.

Modernize Your Applications with Azure Spring Apps | 21

Ingress to
app gateway

Egress to
internet

Azure Spring Apps
private DNS zone

VNet
link

VNet
link

ExpressRoute
circuit

On-premises network

Virtual
network
peering

spoke-virtual-network

Gateway

hub-virtual-network

Data services
subnet

Data
services

Azure
Cosmos DB

Azure
Load

Balancer

Application
configuration

service

Service
Registry

Spring
Cloud

Gateway

API
portal

Tanzu
Build

Service

Service runtime subnet

Azure Spring Apps

Apps subnet

Private FQDN

Centralized
services subnet

DNS services

Gateway subnet

ExpressRoute
gateway

Security
infrastructure

Key
Vaults

Security
Center

Monitoring
infrastructure

Application
Insights

Azure
Monitor

CI/CD pipelines

Azure
DevOps

Jenkins GitHub
Actions

Ingress
Egress

Azure Firewall
subnet

Corp firewall
Corp application

gateway

App gateway
subnet

Figure 6: Azure Spring Apps reference architecture for the Enterprise tier

As you can see in Figure 6, the Enterprise tier of Azure Spring Apps is composed of VMware
Tanzu service components, such as VMware Tanzu Build Service, Application Configuration
Service for VMware Tanzu, VMware Tanzu Service Registry, Spring Cloud Gateway for VMware
Tanzu, and the API portal for VMware Tanzu.

These are components designed and built by VMware for applications that require high reliability
in their architecture. This is a great option for large enterprise applications running on Azure
Spring Apps.

Teams migrating applications over to a service such as Azure Spring Apps should carry out the
following steps before the applications are ready to be hosted.

Modernize Your Applications with Azure Spring Apps | 22

Pre-migration

Pre-migration involves a series of actions and ideas that need to be considered by engineering
teams as they embark on the journey of using Azure Spring Apps. This involves design-based
guidelines, which simply help with the migration and hosting of their application on Azure. This is
true for both brownfield and greenfield projects.

Application code changes

Certain changes to the existing application code may be required during pre-migration to make
the application stateless. These changes aim to remove all state information from the code and
store it separately, including any operating system-level dependencies.

Separating the data from the logic in the code is the best practice for creating reusable units of
code and is necessary to get the most out of a PaaS system such as Azure Spring Apps. Azure
Spring Apps offers specific versions of Java, Spring Boot, and Spring Cloud.

Some example code changes might be:

• If the application is storing state, then the code must be changed to store state outside the
application, typically in a database or a caching system, such as Azure Cosmos DB, Azure
SQL, or Azure Cache for Redis.

• If the application contains any operating system-specific code, those dependencies must
be removed. Any static content posted by the application on the local file system can be
moved to services such as Azure Blob storage.

• Application aspects such as external data providers, brokers, and identity providers such as
OAuth2 need to be reviewed to identify any dependencies for migration. For Spring Cloud,
determine whether your application has explicit dependencies on Zipkin. External clients
communicating through ports other than 80 and 443 will have to be modified.

https://docs.microsoft.com/azure/spring-cloud/how-to-prepare-app-deployment?tabs=basic-standard-tier&pivots=programming-language-java

Modernize Your Applications with Azure Spring Apps | 23

Application configuration changes

Certain applications might require changes to their existing custom configuration. This
involves standardizing certain aspects, such as the application ports, dependencies, and secret
management.

Some key configuration points to consider are:

• Azure Spring Apps can be integrated with Azure Monitor for performance management
and to monitor any changes in the application.

• All communication must take place through these standard ports, such as 80/443.

• Azure Spring Apps should be given access to Spring Cloud Config Server data, which is
stored on-premises.

• In addition to the previous points, compute requirements for the application need to be
considered to run the application on Azure Spring Apps.

• The application can use Azure Key Vault for secrets. You can also configure Spring Cloud
Vault to access secrets.

• Check application identity providers to identify any dependencies required during migration.

Pre-migration activities assess and review existing application capabilities. They identify key areas
where changes are required before the application can be migrated to Azure Spring Apps. Once
the set of pre-migration actions has been completed, what is left is a standardized application
that can now easily be migrated to Azure Spring Apps.

Pre-migration activities introduce reliability into the migration process, ensuring that the
resulting application is ready to be hosted on Azure Spring Apps.

Modernize Your Applications with Azure Spring Apps | 24

Migration

The migration process consists of steps that will help you successfully host a Spring application
on Azure Spring Apps. This includes the creation of resources, design considerations, security and
performance benchmarking, and, finally, monitoring.

Resources Design
considerations Security Performance

benchmarking Monitoring

Here are some of the key considerations for ensuring successful hosting:

• For Spring Cloud apps, Spring Vault secrets can be migrated to Azure Key Vault.

• All certificates can be moved to the Azure Key Vault application; code will need to be
configured to access certificates from Key Vault.

• Any explicit configuration server settings in Spring Cloud can be removed. For example,
Eureka settings can be removed.

• Azure Spring Apps provides 5 GB of temporary storage per Azure Spring Apps instance,
mounted in /tmp. Ideally, the application should write data to a persistent store, such as a
database or blob storage. In cases where the data exceeds 5 GB, the application code needs
to be modified. Once the application is deployed, the output should be directed to the
console and not to files.

Modernize Your Applications with Azure Spring Apps | 25

• Static content for the application can be served from Azure Blob storage; higher-
performance data can be served from Azure CDN.

• Any per-service configuration settings need to be added as environment variables.

• Remove any explicit Zipkin dependencies and replace them with Spring Cloud Starters.

• Configure identity provider solutions such as Azure AD to be accessed from the Spring
application. A hybrid solution may be needed if the identity provider is on-premises.

• In the case of external on-premises solutions, Azure AD Connect can be used. The
application can also use external solutions through SAML/OAuth2 or OpenID.

By following the pre-migration and migration steps, teams can analyze their existing applications
and make changes before the application is migrated. Once the application is prepared for
migration, resources can be created on Azure as per the finalized design.

https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-install-custom
https://docs.spring.io/spring-security/reference/index.html

Modernize Your Applications with Azure Spring Apps | 26

Post-migration

Post-migration steps involve validating the functionality and behavior of the application. This
includes best practices and guidance on application management.

In post-migration, we will look at some key components, such as security, monitoring the
application, and modifications required for Spring components:

• Monitoring: Azure Application Insights can monitor the performance and availability
of your applications. Azure Monitor alerts can help identify and detect issues with the
application quickly.

• Security: Use Azure WAF to monitor incoming traffic and Azure Application Gateway for
SSL offloading.

• Availability: In the case of multi-region deployments, Azure Traffic Manager can help
distribute traffic across regions and introduce higher reliability and fault tolerance in the
architecture.

• Spring components: The application should be designed to work with Spring Cloud
Registry. This allows the application to be dynamically discovered by other deployed Spring
applications in the infrastructure. This way, the client can find an instance that works if one
of the instances is down. All public applications can be accessed via a single endpoint if a
Spring Cloud Gateway instance is used.

Post-migration activities target some of the most critical parts of an application. Once the
application migration is completed, the post-migration activities take over. This includes factors
such as monitoring and security posture. Post-migration typically targets the minimum set of
actions that a team must take before an application can be declared as successfully migrated.

A more comprehensive list of post-migration actions is typically the same as the one for best
practices for Spring applications.

Modernize Your Applications with Azure Spring Apps | 27

Section 3

Hosting and deployment options for
Azure Spring Apps

There are a few different hosting and deployment options available for Azure Spring Apps , and
it’s important to make the right choices for your app and your organization. The majority of
Spring apps currently run on an on-premises server or a self-managed cloud server.

Later in this section, we’ll discuss how and why an organization might move an on-premises or
self-managed Spring app to a managed PaaS solution.

Modernize Your Applications with Azure Spring Apps | 28

Public and private applications

Applications can be broadly classified into two categories—public applications, which are
accessible to everyone on the internet, and private applications, also known as intranet
applications.

Private intranet applications are accessible only to certain employees within the organization.
There can also be private applications that are accessible on the web, although only verified users
or requests are allowed to gain access to them through identity and authorization solutions.

All Spring applications will fall into one of these categories, so each category has an associated
design element that enables or blocks outside requests.

Hosting requirements

Both public and private applications have different needs when it comes to scalability, security,
and governance. This requires critical decisions to be made at the time of architecture planning
and designing.

Planning address space for the applications is one such requirement in design planning. A well-
architected application can effectively manage its IP address requirements. Azure Spring Apps
requires two dedicated subnets:

1. Service runtime

2. Spring Boot applications

Each of these subnets requires a dedicated Azure Spring Apps cluster. Multiple clusters cannot
share the same subnets. The minimum size of each subnet is /28. The number of application
instances that Azure Spring Apps can support varies based on the size of the subnet.

Modernize Your Applications with Azure Spring Apps | 29

Public applications

In public applications, the key changes required are from the network side since a public
application needs to be accessible by anyone via the internet. Anyone with the application URL
can access these applications. This depends on your business use case.

For example, an e-commerce site is designed to be accessible to anyone with the URL for the
site. This means traffic could originate from the internet or other applications hosted on an on-
premises network.

All traffic should land on the application gateway, which has a firewall configured with rules
determined by the network security team. On-premises applications from your on-premises
network should be able to hit the app gateway by utilizing systems such as an ExpressRoute
circuit.

Ingress to
app gateway

Egress to
internet

Azure Spring Apps
private DNS zone

VNet
link

VNet
link

ExpressRoute
circuit

On-premises network

Virtual
Network
peering

spoke-virtual-network

Gateway

hub-virtual-network

Data Services
subnet

Data
services

Azure
Cosmos DB

Azure
Load

Balancer

Service
Registry

Spring
Cloud

Gateway

Service runtime subnet

Azure Spring Apps

Apps subnet

Private FQDN

Centralized
services subnet

DNS services

Gateway subnet

ExpressRoute
gateway

Security
infrastructure

Key
Vaults

Security
Center

Monitoring
infrastructure

Application
Insights

Azure
Monitor

CI/CD pipelines

Azure
DevOps

Jenkins GitHub
Actions

Ingress
Egress

Azure Firewall
subnet

Corp firewall
Corp application

gateway

App Gateway
subnet

kpack

Figure 7: Best practices for a public-facing app on Azure Spring Apps

The architecture in Figure 7 shows a hub and spoke methodology with connectivity to an on-
premises network. All data coming into and going out of the hub passes through the firewall. The
hub has a VNET peering with the spoke VNET.

These security and network key points apply to public and private applications:

Modernize Your Applications with Azure Spring Apps | 30

Security

• Data at rest and in transit should always be encrypted. Similarly, all egress traffic should
travel through a firewall, while Application Gateway or Front Door should manage the
incoming ingress traffic.

Network

• The internet-routable addresses should be stored in an Azure public DNS, while application
host DNS records should be stored in an Azure private DNS. A subnet must only have one
instance of Azure Spring Apps.

• Service dependencies should communicate via service endpoints or a private link.

• Name resolution of hosts on-premises and in the cloud should be bidirectional.

Private applications

The architecture for private applications is similar to public applications except for differences in
network security rules and security. In private applications, if Azure Spring Apps Config Server
is used to load configuration properties from a repository, the repository must be private.
All the other points remain the same, and the reference architecture also remains the same
in both cases.

Once the nature of the application, whether public or private, has been determined, teams can
explore other aspects of the application. One such aspect is the deployment mechanism for the
applications. The team can perform manual deployments; however, they are slow and often
prone to errors. The recommended approach is to automate the deployments through DevOps.

https://docs.microsoft.com/azure/spring-cloud/how-to-config-server

Modernize Your Applications with Azure Spring Apps | 31

Deployment options

Using DevOps is a standard practice for automating deployments in your infrastructure.
Automating deployment is faster and inherently superior to the manual process. Automating
deployments eliminates the possibility of manual errors during deployments, thereby improving
the availability of the application. In the following section, we will look at some approaches using
popular tools, such as Azure DevOps and GitHub.

CI/CD with Azure DevOps/GitHub

CI/CD is an approach to DevOps that enables teams to deploy applications with ongoing
automation and continuous monitoring. This reduces the time required for deployment and
eliminates the chance of manual error. The manual approach to deployment can be complex and
prone to errors; thus, using an automated approach through DevOps should be the first choice
when deploying Azure Spring Apps.

As a starting point, the team should create an Azure Spring Apps instance and have their
code ready to be deployed from their DevOps tool of choice. We’ll now cover some high-level
strategies and steps required for the team to perform their first deployment to Azure Spring
Apps using Azure DevOps.

Typically, there are two common types of deployment strategies: rolling and Blue-Green. Both
strategies are extremely popular and can be chosen carefully after a review of your business
strategy and use cases.

Rolling deployment

In rolling deployment, the strategy is gradually introducing new versions of the application
to the environment. Rolling deployment is often the simplest and cheapest strategy to execute
and host.

Modernize Your Applications with Azure Spring Apps | 32

The team should create an ARM service connection to their Azure DevOps project to set up
rolling deployments. You can find the instructions here; it should be in the same subscription
as your Azure Spring Apps service instance.

First, create a new pipeline in Azure DevOps and use the Azure Spring Apps template. Then,
disable “Use Staging Deployment” and set the package or folder value. You can add the following
tasks to your pipeline, as shown in Figure 8.

Figure 8: Adding tasks to your pipeline

In the deployment shown in Figure 8, the steps in the YAML ensure that the deployment will
receive application traffic immediately as soon as it is deployed. This enables testing of the
application in the production environment before it gets any external traffic.

https://docs.microsoft.com/azure/devops/pipelines/library/connect-to-azure

Modernize Your Applications with Azure Spring Apps | 33

Blue-Green deployment

In a Blue-Green model, the team creates two environments at the time of deployment. Both
environments are similar in nature. Blue is the current environment, while Green is used to signify
the environment with a newer version.

The idea behind Blue-Green deployment is to switch traffic back to an earlier environment if the
new version has any technical issues. It improves the reliability posture of the deployments while
shielding users from any downtime.

The steps to create a Blue-Green deployment are similar to the preceding method, with the key
difference being the creation of another identical environment. Therefore, a main, as well as
staging, environment can be created within Azure DevOps under release.

The artifacts created by each of the versions should be made available to the release pipeline.
The app’s current release status can be checked by selecting “View release.”

For a detailed set of steps to build release pipelines on Azure DevOps, you can refer to the
documentation here. To automate deployments using GitHub Actions, you can refer to the
official Microsoft documentation for using GitHub YAML samples for Azure Spring Apps.

Disaster recovery

A Spring application can be deployed to any region that supports the Azure Spring Apps service.
For disaster recovery (DR) architectures, the application should be deployed in region pairs. In
region pairs, only one region is updated at a time.

This means the application can continue to serve traffic from a different region even when there
is a region-level outage. Azure ensures that one region in a region pair is prioritized for recovery.

https://docs.microsoft.com/azure/spring-cloud/how-to-cicd?pivots=programming-language-java
https://docs.microsoft.com/azure/spring-cloud/how-to-github-actions?pivots=programming-language-java

Modernize Your Applications with Azure Spring Apps | 34

Any DR architecture should look at three parameters in Azure whenever designing an
application:

1. Azure region pairs: Microsoft recommends using paired regions within your chosen
geographic area to ensure that only one region is updated at a time. Even in the event
of a multi-region failure, one of them is prioritized for recovery.

2. Service availability: Decide whether your paired regions should run hot/hot, hot/warm,
or hot/cold.

3. Region availability: Use the geographic area closest to the users. This helps reduce latency
and improves response time.

Azure Traffic Manager is a DNS-based traffic load-balancer that can distribute network traffic
across multiple regions. Traffic Manager can help direct customers to their closest Azure Spring
Apps service instance. This improves the availability and performance of the application.

Typically, in multi-region deployments, a recommended practice is to direct all application traffic
through Azure Traffic Manager before sending it to the Azure Spring Apps service.

Azure Traffic Manager is an effective service to control the flow of traffic to your applications
in different regions. The Azure Traffic Manager endpoint for each service uses the service IP.
Customers should connect to an Azure Traffic Manager DNS name pointing to the Azure Spring
Apps service.

Azure Traffic Manager load-balances traffic across the defined endpoints. If a disaster strikes a
datacenter, Azure Traffic Manager will direct traffic from that region to its pair, ensuring service
continuity.

These deployment options and disaster recovery considerations need to be taken into account
when you’ve built a new application or when you move an existing application from an on-
premises server or self-managed cloud server to a PaaS model.

https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview

Modernize Your Applications with Azure Spring Apps | 35

Moving from self-managed
Spring Apps to PaaS

The vast majority of Spring apps today are hosted on either on-premises servers or self-managed
servers on the cloud. As the size of IT infrastructure grows, teams look to spend more on
performance and optimizing their operations rather than trying to keep applications up
and running.

Teams that focus on agility and speed of execution are looking to move away from this model.
Given these business shifts, there is a great opportunity for self-managed Spring applications
to benefit from modernizing to fully managed solutions on the cloud.

Responsibility always
retained by the customer

Responsibility varies by type

Responsibility transfers
to cloud provider

Responsibility

Information and data

Devices (mobile and PCs)

Accounts and identities

Identity and directory infrastructure

Applications

Network controls

Operating system

Physical hosts

Physical network

Physical datacenter

PaaS On-premises

Microsoft Customer Shared

Figure 9: Shared responsibility in the cloud

Modernize Your Applications with Azure Spring Apps | 36

As the application moves from on-premises or infrastructure as a service (IaaS) to PaaS,
the responsibility of managing the underlying infrastructure moves from your team to the
cloud provider.

Server management

The Azure cloud offers the capability to manage the infrastructure of the Spring application
completely. This empowers the development team by eliminating tasks such as upkeep and
management of the server inventory. The Azure cloud manages the latest operating system
patches and prevents security vulnerabilities from making their way into the application. Azure
ensures that your platform is always patched to the latest patch level, and you only pay for the
computing power your application uses. This helps reduce the team’s overall spending on hosting
and managing the application.

The cost saving, as well as the valuable time saved in managing the application, enables the
engineering team to focus on innovation.

Application security

Security is one of the most critical aspects of application design. Azure uses Zero Trust
fundamentals to secure an application in the cloud. Most technology teams spend a huge
portion of their time and budget on making the applications more secure. Security needs to be
baked into the application at each layer rather than being implemented as an afterthought.

Azure ensures the security of the underlying infrastructure for the application, which involves
major bug fixes for the operating system that arrive from time to time required to mitigate and
prevent security vulnerabilities in the application.

A Microsoft RBAC solution such as Azure AD can be easily plugged into the application
to grant roles and permissions to users. Finally, Azure can monitor and filter traffic coming
into the application using Azure WAF while continuously testing the security posture using
Azure Defender.

Modernize Your Applications with Azure Spring Apps | 37

Monitoring the application

Azure comes with out-of-the-box monitoring solutions such as Azure Monitor that can be
combined with a log aggregating system such as Log Analytics to create a powerful monitoring
and aggregation system.

This means application teams can take advantage of the powerful capabilities of Azure Monitor
and quickly identify the root cause of issues. Since teams don’t need to host a physical or virtual
server for monitoring, server administration tasks are removed from the team’s responsibilities.

Azure Monitor is easy to set up and can start quickly, offering details on the health of your
applications. Application Insights, which is covered in great depth in the next section, can track
and trace the health of individual microservices.

All the logs generated can be pushed into a Log Analytics workspace, which can be tracked
through Kusto queries. Log Analytics can search a large amount of log data for any insights or
events, such as queries that take an unusually long time to process. The teams can deploy the
application on Azure and use the already-available monitoring and logging features without
requiring a separate dedicated monitoring tool.

Monitoring Azure Spring Apps is essential whether you’ve moved a self-managed Spring app to a
PaaS or you’ve modernized an old app with a completely fresh approach using Azure Spring Apps.

Modernize Your Applications with Azure Spring Apps | 38

Section 4

Monitoring Azure Spring Apps

Monitoring and observability are important aspects of any application. Engineering teams need
visibility of the performance of an app running in production. This includes some key metrics,
such as availability, total requests, and logs. Modern PaaS services, such as Azure Spring Apps,
also offer new tools to facilitate the analysis of this data.

When Azure Spring Apps produces logs, it allows the team to add a diagnostic setting to the logs
so they can be sent to a retrieval system or an analyzing system, such as Azure Log Analytics.
Azure Log Analytics offers the capability of reading or searching the logs to identify or trace an
event in the application.

Modernize Your Applications with Azure Spring Apps | 39

This can be used to also locate any error messages for troubleshooting. Similarly, the logs can be
sent to Azure Event Hubs, which can be used to ingest and process events.

Azure Application Insights is an application performance management (APM) tool through
which we can trace any event/action or any performance anomaly in the application in real time.
Application Insights can provide information on the following areas:

Application map Performance Failures Metrics

Live metrics Availability Logs

The screenshot of Application Insights in Figure 10 shows the interactions between different
microservices and their performance. This makes it easy for any team to identify the potential
bottlenecks and breakdown areas visually.

https://docs.microsoft.com/azure/spring-cloud/how-to-application-insights?pivots=sc-standard-tier

Modernize Your Applications with Azure Spring Apps | 40

Figure 10: Application map along with performance and live metrics using Application Insights

Application Insights can serve as a single component for all the observability required in the
application and is well integrated with other Azure service components. Another area where
Application Insights can help is viewing different live metrics related to the application. In Figure
11, Application Insights displays live metrics for all individual microservices in an application.

Figure 11: Live metrics for individual services

Modernize Your Applications with Azure Spring Apps | 41

When combined with the application map in Figure 10, this view can give deep insights into the
performance of any production-grade application. This makes identifying application issues and
bottlenecks very easy.

Teams can quickly trace the origin of an individual request and its performance as it traverses
through different services. A new feature, “Diagnose and solve problems,” can automatically
identify some common issues and fix them automatically with no manual help needed by the
system administration teams.

Large enterprise applications that might require more feature support can use VMware Tanzu
services, which are offered as part of the Enterprise tier in Azure Spring Apps.

Modernize Your Applications with Azure Spring Apps | 42

Section 5

Choosing the right Azure Spring
Apps tier

Azure Spring Apps is offered in three tiers: Basic, Standard, and Enterprise. Each tier is suitable for
different use cases. For example, the Azure Spring Apps Basic tier is helpful for development and
testing purposes; it is not suitable for production. Therefore, it does not come with a service-level
agreement (SLA).

Teams that would like to test their applications on Azure Spring Cloud are most likely to use the
Basic tier. Since these are non-production instances, they are smaller in size, and the Azure Spring
Apps Basic tier supports a maximum app instance size of 1 vCPU, 2 GB.

Teams looking to host a production-grade application typically opt for the Standard tier. The
Azure Spring Apps Standard tier is the most popular tier within Azure Spring Apps. It comes with
an SLA and so is suitable for deploying production workloads.

The app instance size is larger in this case and can support a maximum of 500 app instances. The
Standard tier of Spring Apps comes with OSS Spring Cloud components. Most general-purpose
production workloads find this tier suitable for their use case. However, this tier lacks features
such as Spring Cloud Gateway and the API portal; teams who want VMware enterprise features,
such as the API portal and gateway, can opt for the Enterprise tier, which offers increased reliability.

The Spring Apps Enterprise tier includes VMware Tanzu technology and offers enterprise-grade
support, configurability, flexibility, and portability for enterprise Spring developers. In the Azure
Spring Apps Enterprise tier, Tanzu components are enabled on demand according to your needs.

Modernize Your Applications with Azure Spring Apps | 43

You can select the components you need before creating the service instance. Some of the most
common Tanzu features are Tanzu Build Service, Tanzu Application Configuration Service, and
Tanzu Service Registry. Tanzu Build Service supports customizable buildpack configurations that
automate container creation and governance.

Azure Spring Apps Enterprise includes VMware Spring Runtime support for Spring projects,
giving you access to Spring experts to help you make the most of the entire Spring ecosystem.

In the following table, we’ve outlined some of the major feature differences between the
three tiers:

Feature Basic Standard Enterprise

Use case Dev/Test Production Production

Maximum allowed app instance size 1 vCPU, 2 GB 4 vCPUs, 8 GB 4 vCPUs, 8 GB

Maximum allowed app instances 25 500 500

Deploy from source NA Open-source buildpacks Tanzu Buildpacks

Build Service NA Available Available

API portal NA NA Available

Spring Cloud Gateway NA NA Available

Choosing the right tier depends on your use case. Development and test use cases are usually
well served by the Basic tier, while a general-level production use case can be covered using the
Standard tier. Applications that might look to utilize VMware components for Spring, such as the
Spring Cloud Gateway and the API portal, can specifically look to deploy their applications on the
Enterprise tier.

Modernize Your Applications with Azure Spring Apps | 44

Conclusion

Modernizing your apps isn’t just a good idea; it’s essential to keeping your business relevant
and functional in a changing technological landscape.

Azure Spring Apps is the platform of choice for modernizing your apps. The service focuses
on delivering a great experience to developers with capabilities such as native out-of-the-box
integration with Azure services.

The platform manages the entire lifecycle of Spring applications, including monitoring,
configuration, and DevOps. This makes it easier for the team to build Java applications at the
same time, reducing the overall period from project development to release.

Modernization aims to reduce the time your teams spend on repetitive maintenance and
administration tasks. With more time to spend on value, teams experience faster time to market,
increasing their overall efficiency. Fully managed PaaS solutions, such as Azure Spring Apps,
are the key to unlocking the true value of development teams.

Modernize Your Applications with Azure Spring Apps | 45

Customer success stories

The following four success stories show how Azure Spring Apps has helped customers make
meaningful progress in their modernization journey. Read through them to understand how
Azure Spring Apps could help you.

’Cloud-native’ must provide tangible results. Azure Spring Apps helps by taking
away the implementation and management effort so we can focus on our core
competencies.”
Jonathan Jones, Lead Solutions Architect, Group Finance IT, Swiss Re
Read the story

Azure Spring Apps was a strategic fit for Liantis because we can really focus
on building the practice application, while Microsoft provides and secures the
application platform. That’s why Azure Spring Apps is a great fit.”
Kurt Roggen, Infrastructure and Security Architect, Liantis
Read the story

We are Java developers. We are not infrastructure guys. We are not system
administrators. With Azure Spring Apps, we don’t have to worry about
managing Kubernetes or cluster downtime.”
Philipp Stussak, Software Architect, Bosch
Read the story

Azure Spring Apps is paramount to our architecture because of its ease of use
and the fact that it’s a fully managed offering. Coupled with the REST APIs that
we have developed, we have a truly powerful, resilient, and global platform.”
Devon Yost, Enterprise Architect, Digital Realty
Read the story

Modernize Your Applications with Azure Spring Apps | 45

https://customers.microsoft.com/story/1358540087031302788-swiss-re-accelerates-java-app-modernization-using-azure-spring-cloud
https://customers.microsoft.com/story/1449469395802117015-liantis-professional-services-scales-hr-affairs-applications-azure-spring-cloud
https://customers.microsoft.com/story/1475571259638279673-bosch-delivers-supply-chain-efficiencies-java-azure
https://customers.microsoft.com/story/1481416780494356121-digital-realty-powers-global-portal-rest-apis-azure-spring-cloud

Modernize Your Applications with Azure Spring Apps | 46

Resources

• Product overview—Azure Spring Apps

• Azure Spring Apps official documentation

• Deploy your first Spring app on Azure

• Azure Spring Apps training

Modernize Your Applications with Azure Spring Apps | 46

Modernize with Microsoft today

 Simplify and accelerate your cloud
journey. Move forward confidently
with a proven approach, expert help,
and cost-effective offers with the
Azure Migration and Modernization
Program.

Get started with Azure

 Ready when you are—set up your
Azure free account.

 Get in touch with an Azure Sales
Specialist today.

https://azure.microsoft.com/products/spring-apps/
https://learn.microsoft.com/azure/spring-apps/
https://docs.microsoft.com/azure/spring-cloud/quickstart?tabs=Azure-CLI&pivots=programming-language-java
https://github.com/microsoft/azure-spring-cloud-training
https://azure.microsoft.com/migration/migration-modernization-program/
https://azure.microsoft.com/migration/migration-modernization-program/
https://azure.microsoft.com/free/
https://azure.microsoft.com/contact/sales-number/
https://azure.microsoft.com/contact/sales-number/

	Introduction to application modernization
	Steps to modernization
	Hosting and deployment options for Azure Spring Apps
	Monitoring Azure Spring Apps
	Choosing the right Azure Spring Apps tier
	Customer success stories
	Resources

