
Tackle Application Modernization
in Days and Weeks, Not Months
and Years

W H I T E PA P E R – M AY 2 0 2 0

W H I T E PA P E R | 2

Tackle Application Modernization in Days and Weeks, Not Months and Years

Table of contents

Why you need application modernization 3

Our application modernization approach 3

Types of application modernization 4

Tenets of application modernization 4

Prerequisites for the application modernization journey 5

Organizational commitment 6

A list of viable application candidates 6

The right people (aka a seed team) 6

Give your applications a modern runtime with a
production-grade platform infrastructure 6

Start and scale portfolio transformation 7

How to select an initial set of applications 7

Analysis: Prioritize modernization across your app estate . 8

Analysis: Quickly assess technical suitability . 8

Analysis: Automated source code analysis . 8

Define the path to production . 9

Initial set of objectives and key results . 9

How to replatform your applications 10

Establish three work tracks and apply their respective OKRs 10

Automate testing to boost code quality . 10

Improve your continuous integration automation . 10

Refactor and optimize complex systems 11

Swift methodology yields a shared understanding of desired system behavior 11

Storming uncovers what matters: Critical input for any modernization project 12

Boris exercise models the relationships between system capabilities 13

SNAP documents the outcomes of a Boris exercise . 14

Thin slices of modernization, shaped by Swift and captured as MVPs 14

Initial backlog gets your team hands-on in days . 14

Use quantitative measurements to track your success 15

Next steps and recommended reading 15

W H I T E PA P E R | 3

Tackle Application Modernization in Days and Weeks, Not Months and Years

Why you need application modernization
Most developers work on existing applications: products and services that have been built,
maintained and updated over long periods of time. Normally, these apps exist as a web of
tightly coupled, sparsely documented systems.

Over time, large organizations develop layers of manual processes designed to minimize
risk and ensure compliance. As a result, software releases are often infrequent, high-
ceremony events that require heroism and brute force. This bleak status quo is untenable
for businesses that want to compete and win in the digital age. The question you need to
answer is simply: “How can I refactor my most important apps, so I can get new features to
production faster?”

Pivotal Labs (now part of VMware) has answered this question for hundreds of enterprises.
The foundation of this success: a modernization methodology that leverages cloud native
patterns and continuous delivery (CD) automation across your existing application portfolio.

The benefits of CD are clear (and outside the scope of this paper), but getting there is a
universal challenge. We take an iterative approach to modernization by starting in a small,
focused way. We help you realize incremental time, cost and operational efficiencies while
improving security, resilience and compliance. We pair with you to update and automate
processes incrementally, while transforming your applications. This yields a win-win for you
and your teams: It reduces the pain of releasing updates more often, while meeting uptime,
security and compliance requirements. Let’s take a closer look at this methodology.

Our application modernization approach
There are different reasons and many ways to start a modernization journey. Two rationales
are most common:

1. Portfolio transformation – Focused on broad and strategic efforts to migrate, refactor
and transform an existing portfolio to cloud-based technologies. Enterprises well on their
way to cloud still find it very challenging to realize desired outcomes as they continue to
fight against technical debt and organizational inertia. Stakeholders want to move quickly,
retire heritage assets, and capture time and cost-centric outcomes across the portfolio.

2. System modernization – Relates to an existing system of systems that’s business-critical,
expensive to update, technically complex and under active development. New feature
demand or business direction prolongs delivery time and increases cost while
magnifying architectural complexity. Cloud technology and cloud native architectural
patterns provide an opportunity to solve problems.

Portfolio transformation is challenging from a technical, business and human perspective.
It requires your teams to develop new skills, while making major changes to architecture
and software development lifecycle (SDLC) processes. Change can often result in IT
reorganization, a frightening prospect. To be successful, organizations must perform a
delicate balancing act: Dedicate their most talented people to the effort, while ensuring
that the entire portfolio continues to operate.

The keys to system modernization success lie in understanding the root cause (e.g.,
bloated, monolithic code base) before a solution is determined. Sometimes, a technology
change is all that is needed. But more often, the problem is complex and requires strategic
thinking, planning and iteration. Either way, it’s critical to quickly get to the heart of the
concern. Avoid the temptation of fixing symptoms (e.g., UI responsiveness), even though
those are easier to see.

Pivotal Labs has helped hundreds of organizations on this journey. Our approach defines
incremental steps that gradually increase the cloud maturity of existing systems, the
automation in your SDLC and the knowledge of your team.

https://content.pivotal.io/intersect/the-cios-guide-to-ci-cd

W H I T E PA P E R | 4

Tackle Application Modernization in Days and Weeks, Not Months and Years

Before we get into detail, let’s define some vocabulary and core tenants.

Types of application modernization
The word “modernization” can mean different things to different people. We see
modernization as an approach that improves an existing piece of software. We define
improvement as making updates that align with IT and business outcomes. We also have
seen technology companies, analysts and system integrators articulate options for this
type of work, including, for example, lift and shift (focused on workload containerization).
However, we like to keep it simple and, when possible, avoid buzzword bingo. As such,
we believe there are two general ways to modernize existing systems:

Replatform – Targets self-contained applications or sub-system modules, and uses
minimal effort to run executables in OCI-compliant containers. Outcomes are IT-focused
and often related to goals such as higher operational efficiency (e.g., fewer people to run
more containers) and better infrastructure density (e.g., multiple containers per virtual
machine). Effort is low.

Refactor – Code is converted to run in a 15-factor-compliant way by moving thin slices
of functionality to cloud native patterns. The goal: Deliver fast, iterative results while
providing interoperability features for continuous operation with the old system. This
process starts with rapid investigation of an existing system to find root problems and
opportunities. The output of this exercise flows into the next step: iterative work to make
improvements. Effort can be moderate to high depending on slice definition, intended
outcomes and degree of technical debt. The work is crucial to unlocking the desired
business outcomes.

These types are not mutually exclusive. Portfolio transformation typically starts with
replatforming efforts that emphasize SDLC process and skill improvements, before getting
into larger, more complex modernization work. Modernization projects, especially those
that span multiple systems, will likely also include replatforming. More than anything, it’s
about outcomes and getting there as quickly as possible in a sustainable way.

Tenets of application modernization
These are the four elements of a successful application modernization initiative:

1. Start small – Even if your portfolio contains thousands of apps, start with a single
business unit and a handful of applications that matter.

2. Automate everything – Use test-driven development, continuous integration and
continuous deployment to reduce manual process time and SDLC cost.

3. Learn by doing – Inform strategy and build new skills through hands-on effort, rapid
feedback, measuring results and by creating a cookbook of patterns as you go.

4. Break things down – Iterate quickly and continually on thin slices of complex systems.

We emphasize these tenants to quickly focus on the right things and deliver impactful,
iterative results.

http://opencontainers.org
https://content.pivotal.io/blog/beyond-the-twelve-factor-app

W H I T E PA P E R | 5

Tackle Application Modernization in Days and Weeks, Not Months and Years

Prerequisites for the application modernization journey
Starting the work requires a list of viable apps to migrate, organizational commitment and
the right people. It’s critical to start small; initial efforts will be intense and learning-oriented.

A list of viable application candidates
Start portfolio transformation with a set of custom apps that have business relevance and
are active use.

Organizational commitment
A motivated business unit with leadership committed to cloud and a willingness to invest
time and dollars in transformation.

The right people
A small team of people that understand the application domain(s), who are made available
to work on the initiative in a dedicated way.

FIGURE 1: Apps, commitment and people .

Motivated
Business Unit

A Committed
Executive Inside
of a Motivated
Business Unitt

App Developers
with Domain
Knowledge

An Empowered Tanzu Ops Team
with Ties to Business Units

An Initial Set of Apps
Identified by Archetype,
Suitability and Priority

Your
VMware Tanzu™

Product Team

Technical Business

W H I T E PA P E R | 6

Tackle Application Modernization in Days and Weeks, Not Months and Years

Give your applications a modern runtime with a production-grade
platform infrastructure
If possible, a production-grade platform should be available as a prerequisite. It should be
operated by a dedicated platform product team. Expect frequent interaction with the
platform group, as this team will assist with configuration updates (networking, storage,
logging, etc.) to fit application requirements.

CORE ROLES WITHIN SMALL CROSS-FUNCTIONAL TEAMS

Product owner Represent business interests through backlog prioritization and
internal coordination to unblock encountered issues by the team
to ensure maximum project velocity .

Project anchor Hands-on technical leaders who pair with product owners on
backlog concerns, guide technical practices, oversee quality and
do technical work .

Developer Skilled architect/developers who know the existing app and
underpinning stacks being worked on as they grow cloud native
skills and experience by doing the work .

Organizational commitment
The application modernization journey must begin somewhere, usually within a business
unit. It’s critical that local leadership be motivated and willing to invest time and money
into the transformation. A series of small successes are needed before application
modernization can spread across the larger organization.

Sponsorship is usually a CIO or senior executive responsible for transformation within the
target business unit and who controls a relevant budget. The sponsor must have the
political capital to unblock existing policy and process, as well as other obstacles standing
in the way of the app transformation team.

The other aspect of organizational commitment: mission and goals. A broad North Star
goal and tangible, near-term objectives are critical to defining the effort. This will
determine funding, measurement and intended duration. These things may (and often
should) evolve. But it’s important to both motivate and measure people against what
success looks like.

A list of viable application candidates
Portfolio transformation starts with a basic understanding of technical suitability. This is
how you’ll choose a first set of applications to be refactored. Applications will be selected
based on a combination of Pivotal Labs technical, business and organizational factors.
Selection criteria will be codified into a decisioning model, discussed in Start and scale
portfolio transformation. That said, establish a rough sense of apps that matter from a
business perspective. The ideal candidate apps should run without high cost or complexity
on the chosen cloud platform.

The right people (aka a seed team)
Our most successful Pivotal customers have assembled a small team of employees to drive
the application modernization initiative. The dedicated team includes a product owner and
(ideally) developers familiar with the initial candidate applications to be transformed. The
team should also have experience (and/or training) with the target platform and cloud
native architecture principles. And, finally, it’s critical that the seed team be empowered
by leadership to make decisions without lengthy process ticketing or sign-offs.

W H I T E PA P E R | 7

Tackle Application Modernization in Days and Weeks, Not Months and Years

Start and scale portfolio transformation
Effective decision-making is critical. We recommend establishing an ongoing work stream,
running parallel to a technical track of modernizing applications. You’ll need to designate
someone to own identifying business and technical criteria, governance and measurement.
You’ll also need this person to wade through the inter-company processes (funding,
people, incentive structure, etc.) needed to facilitate the work. Ideally, this effort yields a
set of assumptions used to make decisions around technical suitability, business
characteristics and organizational factors—key inputs for prioritization.

We measure technical suitability using 15 technical factors, an update to the 12-factor app
manifesto published by Heroku. Compliance with all 15 factors generally means your app is
cloud native, will run on a modern cloud platform and take full advantage of elastic cloud
features, such as auto-scale. In our experience, most applications in your portfolio don’t
require the full cloud native treatment. Instead, they can be replatformed to achieve IT
outcomes with minimal time and cost. Full cloud native compliance is best achieved
through new greenfield initiatives or via modernization projects having a supporting
business case.

How to select an initial set of applications
Select an initial sampling of apps representative of the broader portfolio in terms of technical
design or archetype. The perfect apps would be of lower technical complexity. This allows the
new team to learn, earn some wins and spend their time on process improvements (instead
of tedious code refactoring). Companies in regulated industries should ensure that these apps
reflect common policy, security and compliance constraints. And remember to look at data—
apps tightly coupled to a shared monolithic database are harder to refactor due to collateral
impact on other connected systems.

FIGURE 2: Modernization decision-making fundamentals .

Technical Business

What can we move?

• Business criticality

• Risk tolerance

• Change frequency

• Lifecycle stage

• Domain expert
availability

The modernization funnel
A framework for disposition
planning, prioritization and
governance

Org factors
(the when and how)

• Domain expert
availability

• Lifestyle stage

• Calendar dependencies

Why move?

• Licensing costs

• Time-to-market factors

• Revenue opportunities

• Business criticality

• Risk tolerance

• Chance frequency

VMware Tanzu

https://content.pivotal.io/springone-platform-2018/buckets-funnels-mobs-and-cats-or-how-we-learned-to-love-scaling-apps-to-the-cloud
https://www.oreilly.com/library/view/beyond-the-twelve-factor/9781492042631/
https://12factor.net/

W H I T E PA P E R | 8

Tackle Application Modernization in Days and Weeks, Not Months and Years

Analysis: Prioritize modernization across your app estate
Prioritization requires a clear sense of business and organization factors that signal the why,
how and when of modernization. Defining these factors is subjective and will be far from
perfect. What’s most important is to use ongoing feedback to sharpen your selection
criterion over time as the initiative grows.

Pivotal Labs generally uses a simple 2x2 matrix and facilitated conversation to quickly
determine prioritization and to flag questions, assumptions and risks. The X and Y axes often
frame complexity and value from low to high to categorize apps in scope. When a large
number of apps are plotted, they tend to cluster together and it’s useful to create a child
matrix for deeper probing. This exercise will help establish a general consensus around
which apps balance technical suitability with business impact. From there, more analysis is
required in context of apps deemed highest priority.

Analysis: Quickly assess technical suitability
SNAP (snap not analysis paralysis) is an approach used to evaluate the technical suitability
of application candidates when source code is unavailable. SNAP covers app usage,
architecture and configuration. It can be done manually in 10-15 minutes on a small set of
apps. Pivotal Labs conducts this exercise using facilitated conversation and stickies, or by
using a web application (see Figure 3).

FIGURE 3: Web version of SNAP .

Analysis: Automated source code analysis
Application code has a story to tell and, when available, you can perform SNAP
automatically on hundreds or even thousands of apps using our industry-leading
automated assessment tooling combined with leading open-source frameworks. We can
provide insight in terms of cloud suitability, security, language, licensing and quality.

FIGURE 4: VMware Tanzu report generator .

W H I T E PA P E R | 9

Tackle Application Modernization in Days and Weeks, Not Months and Years

Define the path to production
Chances are your existing SDLC processes have been in place for a long time. They likely
involve diverse sets of people and approved tooling standards. Further, your incumbent
practices are likely organized around important policies and regulations. Getting source
code from a developer’s laptop into production requires manual effort and time. Cloud
platforms, when combined with CI tooling and CD techniques, can automate much of the
toil, and significantly accelerate the frequency of production deployments.

To refactor your path to production, you should first baseline what exists today. Pivotal
Labs uses in-person techniques such as event storming to discuss, probe and plot the
sequence of activities involved in releasing software. This can often be done in a couple of
hours. The end result: a rough approximation of process flow, opportunities and areas of
risk. Then, we map the findings and translate our notes into a spreadsheet and continue to
quantify cycle time and cost.

Initial set of objectives and key results
Clear and quantifiably measured goals help the team stay focused on tangible outcomes,
not busy work. As such, these goals are critical to achieving realizing iterative results.

Our clients have seen success with the objectives and key results (OKR) format. We start by
assembling a cross section of the team (stakeholders, infrastructure, development, business)
into a workshop. The first task: Map near-term goals (mission and high-level objectives)
along with specific, quantifiable key results. From there, the sub-team prioritizes what can
(and should) be accomplished within the first weeks of the initiative. Be as specific as
possible. Ensure your OKRs speak to results and avoid (as best you can) using yes/no
metrics that state if something is done or not.

FIGURE 5: A value stream for traditional custom app development .

75 Requests

Lead Time
7 Months

Lead Time
2 Months

Lead Time
3 Weeks

Lead Time
2 Months

80
Releases
Per Year

20 Requests 45 Tickets

Backlogs & Queues Hand-offs Team Size Tasks

IT PMOFunding Dev & QA IT Ops

Business Unit
Initiative

Business Unit
Initiative

XXXX

5 3 135 30

Annual
Planning
Monthly

Approvals

W H I T E PA P E R | 1 0

Tackle Application Modernization in Days and Weeks, Not Months and Years

How to replatform your applications
Make the minimal testable changes to each application required to run it on cloud
The first phase of the app modernization efforts moves the initial sample set of
applications, those candidate apps selected with the process previously described.
Migrated apps should work identically, or better, on cloud than on their current runtime.
You can achieve this result even when your apps only conform with a few cloud native
factors. In parallel, we work to deploy the required changes with an automated
CI pipeline.

Establish three work tracks and apply their respective OKRs
There are three parallel work tracks, each with their own OKRs:

1. Technical – The application modernization team will work in week-long sprints. A first
app can generally be rehosted or replatformed within hours or days. OKRs for this work
track typically measure the number of apps that have been moved.

2. Process – Work through process and policy issues required to get the migrated apps
into production. This might include release management; infrastructure issues (network,
firewall, DNS); security considerations (OSS, credential management, code scans);
application telemetry (logging, health monitoring); risk mitigation (standards adherence,
regulation); and business issues (business validation, training readiness). Analysis might
result in a new CI pipeline, the adoption of advanced deployment techniques (blue-
green, canary) or automated dependency management. OKRs might include pipeline
improvements to increase delivery speed or reduce time to resolution.

3. Patterns – Popular technologies such as Java and .NET use standard architectures and
employ common messaging patterns. As a result, the technical challenges you solve
(e.g., how to modify JBoss code to run on a chosen cloud technology) can be
documented as a set of patterns and be reused broadly. This action helps accelerate
and de-risk future efforts. This is why you want your initial apps to represent most
archetypes in the portfolio. Once the apps have been migrated, the resulting patterns
can be used to transform thousands more apps. OKRs should cover documentation and
usage of these patterns.

Automate testing to boost code quality
There may be little to no automated test coverage for an existing application portfolio.
Retrofitting full coverage is unrealistic. Instead, when writing new code, you should
include unit and integration tests, preferably using TDD practices. All migrated code
should include smoke and health check tests for backing services and, if possible,
acceptance tests.

Integrate testing into the CI pipeline wherever possible. This way, testing becomes a
standard part of release management. Push migrated applications to production. Start to
transition the central QA role to a more exploratory, functional testing role. Document your
new testing practices. This will help you standardize modern QA practices throughout your
organization as the app transformation efforts scale up.

Improve your continuous integration automation
Many large organizations have release processes that take weeks or months. These
processes often become more complex and more opaque over time. Revisit, challenge
and make updates to your path to production process model for the migrated apps. This
way, you can continuously eliminate wasted effort through automation. Add incremental
efficiencies by first automating human-centric, manual processes. We’ve seen cases where
an eight-month release process was reduced to a few weeks, and further shortened
to days.

A full tool chain must be available to push to production. This could be an existing tool
chain provided by the platform team, a new tool chain selected by the app modernization
team or some combination of the two.

https://builttoadapt.io/why-tdd-489fdcdda05e

W H I T E PA P E R | 1 1

Tackle Application Modernization in Days and Weeks, Not Months and Years

Refactor and optimize complex systems
The goal of modernization: Make testable changes to applications and make them run
natively on cloud, aiming for 15-factor compliance. This effort is commonly summarized as
break monoliths down into microservices.

Refactoring typically results in decomposition of an existing system wherein business logic
(and data) is refactored into domain-specific services. Typically, these are long-lived core
systems. They tend to be important to the business. The status quo (costly to operate,
difficult to improve) is unacceptable. Further, the systems can suffer from lackluster uptime
and are near-impossible to scale. These monoliths have served the business well over the
last decade, but you need a new model for the next 10 years. That’s where microservices
come in. How can you navigate this transition cleanly? Simple: by gradually replacing your
monolith with microservices.

This process goes something like this. Each resulting microservice often gets its own
database(s) to store information it cares about. Collections of related microservices that
live in multiple bounded contexts can use eventing to keep data synchronized across data
stores. New microservices and replatformed slices will continue to work seamlessly with
legacy code until the entire monolith has been moved.

Swift methodology yields a shared understanding of desired system behavior
Swift is a set of lightweight techniques, using agile and Domain-Driven Design (DDD)
principles to help teams plan enough to get started, and organized around a backlog
of work. These include:

1. Event storm the system, using language that business and technical people understand.

2. Conduct a Boris exercise that models the relationships between capabilities in a system.

3. Conduct a SNAP that documents the technical capabilities identified during Boris in
real time.

4. Identify tactical patterns, like anti-corruption layers and service choreography.

5. Define OKRs.

6. Create a backlog of prioritized user stories tied back to OKRs.

7. Start hands-on experimentation, feedback and iterative progress.

8. Swift aligns business leaders and technical practitioners. Use this approach and, at its
conclusion, you’ll have an architectural plan that maps future goals with the way the
system wants to behave. We’ve found this to be especially important for critical
systems modernization.

Information gained through the use of Swift informs decisions on how to organize
development teams and prioritize stories (from both a business and technical perspective).
It’s also helpful as a catch-all way to define a path between the status quo and the
desired state.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.eventstorming.com/
https://en.wikipedia.org/wiki/OKR

W H I T E PA P E R | 1 2

Tackle Application Modernization in Days and Weeks, Not Months and Years

FIGURE 6: A simple event storming example .

Domain Events

Bounded Context

Customer
Profile

Updated

Delivery
Location

Determined

Available
 Restaurants
Determined

Delivery
Time

Determined

Payment
Authorized

Order
Started

Food
Purchaser

Selects
Menu Items

Order
Placed

Food
Purchaser

Customizes
Items

Restaurant
Selected

Order
Canceled

Driver
Ready

Discount
Applied

Driver
Accident

When
to Charge

Customer
Notified

Payment
Finalized

Storming uncovers what matters: Critical input for any modernization project
Event storming is a cross-functional facilitation technique. It can be applied to a business,
a process or a system. In the context of modernization, we use event storming to help
reveal logical entities, bounded contexts, trouble spots, questions and starting points. But
in simple terms, event storming helps you make sense out of a large mess (like a process
or system, for example) and get consensus on what’s important as you begin to find the
scope of work.

A facilitator leads a mixed business and technical audience through a conference room
exercise, documenting the logical flow of a system (or process) from end to end. At Pivotal
Labs, we worry less about strict adherence to event storming jargon and rules. We use the
exercise to quickly make sense of complexity. Getting people together in person is hard;
expert facilitation assures that the best possible result.

Once the system scope and problem context is captured, we proceed to identify notional
service candidates. The service candidates will be instrumental to the Boris exercise. This
effort is discussed next.

http://

W H I T E PA P E R | 1 3

Tackle Application Modernization in Days and Weeks, Not Months and Years

FIGURE 7: Sample Boris diagram based on event storm output from Figure 6 .

Boris exercise models the relationships between system capabilities
The Boris exercise (name inspired by this song) helps us identify system components
and relationships. A Boris exercise uses graph theory to model the relationships between
the capabilities in a system. It generates information about how the system wants to be
designed and attempts to avoid the tendency of designing a solution before really
understanding the problem. Similar to event storming, Boris depends on live collaboration,
a lot of sticky notes and working space (usually a conference room).

The Boris exercise uses insight discovered by event storming and graph theory to identify
system components and model their relationships. Colored tape connects sticky notes to
indicate communication paths (e.g., direction) and types (e.g., asynchronous). This yields a
system diagram that often resembles a spider’s web. As the diagram is built, the team
performs SNAP analysis (discussed next) to rapidly document findings.

Service

Topic/Queue

External System

Async

Sync

Order

UI

Order
 Placed

Driver

Restaurant

Food
Purchaser

Review/
Feedback

Marketing

Analytics

Driver
Assigned

Payment

Order
Complete

Food
Picked

Up

Payment
Complete

Food
Delivered

PayPal

Food
Ready

https://en.wikipedia.org/wiki/Boris_the_Spider

W H I T E PA P E R | 1 4

Tackle Application Modernization in Days and Weeks, Not Months and Years

Thin slices of modernization, shaped by Swift and captured as MVPs
Thin slices are short domain event flows. Think of them as the architectural components
required to produce those events. Thin slices are informed by event storming, Boris
and SNAP activities. They become actionable when captured in the backlog as MVPs
or collections of stories. We’ll partner with your team to identify and prioritize the thin
slices, with an eye to balancing business value, technical risk and effort. The goal is to
incrementally move the system toward behaving the way it wants to; the implementation
of each successive slice gets us that much closer to this goal. As we define the slices, we
also discuss tactical implementation patterns (e.g., anti-corruption layers, Facade, Proxy,
Strangler, etc.), risks and challenges.

Initial backlog gets your team hands-on in days
Next, you’ll translate many sticky notes into an initial backlog that’s prioritized to guide
the implementation of thin slices. The backlog contains user stories, component stories
for implementing architectures, and experiments (spikes) to address challenges and
risks. It’s also just large enough to get hands-on work started. Your team will then
proceed to quickly deliver functionality, and subsequently prove or disprove assumptions
made about the notional architecture. Your backlog is a living artifact; it is continually
groomed, and additional stories are added and prioritized to incrementally advance thin
slice implementation.

Notice a pattern? Backlog grooming, event storming, Boris, SNAP and slice definition
are iterative processes. You’ll repeat them as many times as necessary during a system
modernization. These methods are most effective when conducted by cross-functional
teams that have strong executive support. The practices produce working software,
flexible architecture, and a catalog of recipes and patterns.

FIGURE 8: Sample SNAP output .

SNAP documents the outcomes of a Boris exercise
Remember SNAP from our discussion of replatforming? It plays a role in modernization as
well. SNAP is used to quickly document the outcomes of a Boris exercise in real time.
Information is often grouped into APIs, data, pub/sub, external systems/UI, stories and
risks. The key artifact is a poster-sized sticky paper on a conference room wall, with one
SNAP per node or service depicted on Boris.

DataAPI UI/Exit

SubPubStories

Current
OMS

Mobile
Consumer

Order
Details

Historical
Order
Info

Order
 Placed

Order
Complete

Driver
 Assigned

Food
Picked

 Up

Update
 Order
Notes

Get
Order
Status

Get
Order

 Details

Order

W H I T E PA P E R | 1 5

Tackle Application Modernization in Days and Weeks, Not Months and Years

Use quantitative measurements to track your success
We recommend defining (and continuously refining) OKRs for each step. The ideal OKR
is a quantitative measurement that covers process, time and cost improvements. OKRs
should provide fine-grained insight, for intended project outcomes, that roll into the
broader mission.

How do you know what good looks like? We like the metrics offered by the DevOps
Research and Assessment (DORA). Here are a few signals that show your effort
is succeeding:

• Increased deployment frequency – More software releases this quarter than last quarter

• Release management efficiency – Lower lead and process time, fewer steps and
hand-offs

• Improved operational metrics for transitioned apps – Mean time to recovery (MTTR),
mean time between failures (MTBF), support upgrades and so on

• Improved security – Faster patching, zero downtime upgrades and so on

• Efficient infrastructure usage – Higher density compute, auto-scaling and
cost reduction

Pivotal (now part of VMware) helps organizations all over the world to modernize large
systems across entire portfolios. However, we do not have all the answers; we learn as
much from our customers as we teach them. Customer journeys such as Liberty Mutual
have informed much of the advice discussed in this white paper.

Next steps and recommended reading
Take a look through the following to learn more about how we partner with organizations
like yours:
• Application Modernization at VMware Tanzu [Webpage]

• How AirFrance KLM is Modernizing 2,000 Legacy Applications [Webinar]

• App Modernization with .NET Core: A Journey from Mainframe to Microservices
[Webinar]

• DICK’S Sporting Goods: What is the Future of Retail in a Cloud App World? [Webinar]

• Monolithic Transformation: Using DevOps, Agile, and Cloud Platforms to Execute a
Digital Transformation Strategy [eBook]

• Microservices eBook: Migrating to Cloud-Native Application Architectures [eBook]

• The Top Ten App Transformations [Blog]

• How a Large Fintech is Breaking Up Monolithic Applications into Microservices
[Webinar]

• Application Modernization Recipes [Technical Deep-Dive]

• Application Modernization Should Be Business-Centric, Continuous and Multiplatform
[Gartner Report]

• How The Home Depot Became a Digital Powerhouse [Forrester Research Report]

• Pivotal Application Analyzer: Your Forensic Source Code Analysis [Blog]

• Pivotal Platform Solutions: Why You Should Treat Platform as a Product [White paper]

If you have insights about application modernization you would like to share, please
contact us at tanzu@vmware.com.

https://cloud.google.com/devops/
https://cloud.google.com/devops/
https://tanzu.vmware.com/customers/liberty-mutual
https://tanzu.vmware.com/application-modernization
https://tanzu.vmware.com/content/webinars/dec-11-how-airfrance-klm-is-modernizing-2-000-legacy-applications-webinar
https://tanzu.vmware.com/content/webinars/jan-23-app-modernization-with-net-core-how-travelers-insurance-is-going-cloud-native-webinar
https://tanzu.vmware.com/content/webinars/jul-11-dicks-sporting-goods-what-is-the-future-of-retail-in-a-cloud-app-world-webinar
https://tanzu.vmware.com/content/ebooks/monolithic-transformation
https://tanzu.vmware.com/content/ebooks/monolithic-transformation
https://tanzu.vmware.com/content/ebooks/migrating-to-cloud-native-application-architectures
https://tanzu.vmware.com/content/ops/the-top-ten-app-transformations
https://tanzu.vmware.com/content/webinars/sep-26-how-a-large-fintech-is-breaking-up-monolithic-applications-into-microservices-webinar
https://tanzu.vmware.com/application-modernization-recipes
https://tanzu.vmware.com/content/analyst-reports/gartner-application-modernization-should-be-business-centric-continuous-and-multiplatform
https://tanzu.vmware.com/content/content-library/how-the-home-depot-became-a-digital-powerhouse
https://tanzu.vmware.com/content/practitioners/pivotal-application-analyzer-your-forensic-source-code-analysis
https://tanzu.vmware.com/content/white-papers/why-you-should-treat-platform-as-a-product

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 vmware.com Copyright © 2020 VMware, Inc.
All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents
listed at vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions.
All other marks and names mentioned herein may be trademarks of their respective companies. Item No: Tackle Application Modernization in Days and Weeks, Not
Months and Years 5/13

