
Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper 1

The DevSecGuide to
 Infrastructure as Code
DevSecOps has paved the way for teams to automate security and embed
it into the DevOps lifecycle. In this guide, we’ll explore the challenges of
leveraging DevSecOps to secure the cloud and how infrastructure as code
makes it all possible.

2Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Table of Contents

Introduction to Infrastructure as Code . 3

Benefits of Infrastructure as Code . 3

Infrastructure as Code Risks .4

Open-Source IaC Security Challenges . 5

DevSecOps Challenges with IaC . 6

Tips for Embracing Cloud DevSecOps and IaC . 7

Cloud Security in the DevOps Lifecycle . 8

Conclusion . 10

3Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Introduction to Infrastructure as Code
Infrastructure as code refers to the technology and processes used to manage and provision infrastruc-
ture using code. It enables DevOps processes such as version control, peer reviews, automated testing,
tagging, continuous integration, and continuous delivery.

The Rise of IaC
Infrastructure as code—also known as IaC—was first introduced in 2009 by DevOps company Puppet in
response to the traditional methods of deploying and managing infrastructure. According to Puppet:
 “The older methods of infrastructure management—manual processes and documentation, brittle

single-purpose scripts, and graphical user interface-based tools—each had their uses in the past.
Today, though, with the perpetual need to scale infrastructure, adoption of ephemeral infrastructure,
and greater application system complexity, new ways of keeping things under control are needed.”

Since then, IaC has become the foundation for several companies such as Ansible, Chef, Salt, and others.
In more recent years, IaC’s popularity has been driven by Terraform, a popular open-source IaC frame-
work by HashiCorp used primarily to define resources in public cloud services. Terraform has made IaC
limitlessly customizable and accessible, paving the way for the surrounding IaC ecosystem.
Simultaneously, cloud providers have created their own configuration frameworks to help simplify
and automate infrastructure orchestration and management. AWS CloudFormation, Azure Resource
 Manager (ARM), and Google’s Cloud Deployment Manager all make it easier for infrastructure engi-
neers to build repeatable environments.

How It Works
IaC can be either declarative, meaning it defines what is going to be provisioned, or imperative, mean-
ing it defines how it’s going to be provisioned. Terraform and CloudFormation are both examples of
declarative frameworks, while AWS Cloud Development Kit (CDK) is an example of an imperative IaC
framework. Kubernetes is also closely aligned with IaC in that its configuration can be defined in the
form of code.
Each specific framework has its own conventions and syntax,
but IaC is generally made up of resource declarations, input
variables, output values, configuration settings, and other
parameters. IaC is most often JSON, HCL, or YAML-based and
contains all the configuration needed to spin up your infrastruc-
ture, such as compute, networking, storage, security, identity
and access management (IAM), and more.

Benefits of Infrastructure as Code
Because IaC uses code to define what’s needed to get resources
up and running, it enables the ability to automate and scale
cloud provisioning with improved repeatability.

Automation
Today’s businesses deploy countless applications daily, and infrastructure needs are constantly changing
to meet those demands.
IaC simplifies cloud provisioning by templating all manual configurations into code. By transforming
manual infrastructure configurations into machine-readable templates, IaC makes it so that developers
don’t have to provision and manage infrastructure manually. Instead, it enables engineers to develop,
test, and deploy new infrastructure through automated workflows.

Scalability
IaC makes it easier and more foolproof for teams to configure cloud resources at scale while reducing
the risk of misconfiguration without spending unnecessary time and resources. Automation and code
configuration make it much easier to deploy cloud services the same way each and every time.
It also makes it easier to de-provision infrastructure when it’s not in use, decreasing overall computing
costs and maintenance expenses.

module “s3_bucket” {
 source = “terraform-aws-modules/s3-bucket/aws”

 bucket = “my-s3-bucket”
 acl = “private”

 versioning = {
 enabled = true
 }

}

Here is an example of a Terraform module that creates
a private S3 bucket with versioning enabled.

4Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Repeatability
Consistency is key for cloud infrastructure. With IaC, compute, storage, and networking services are
deployed the same way every time so that you can maintain consistency across resources and even
across multicloud environments. That consistency puts human error at a minimum with the potential
for complete versioning and logging. The repeatability factor means you can provision more resources
with less effort while maintaining high-quality standards, security best practices, and compliance with
industry benchmarks.

Security
 IaC provides a crucial opportunity for collaboration across teams. By provisioning cloud resources
across environments and clouds with a unified, common language, developers and operations can more
easily stay on the same page and work together to keep cloud native applications secure.

Infrastructure as Code Risks
For all its flexibility and benefits, IaC comes with some drawbacks that teams should be aware of—
especially around security and compliance.

Adoption Gaps
Much like bringing in a new open-source library or SaaS platform, IaC has the ability to improve
 efficiencies but needs the right level of buy-in and awareness. Because IaC is still relatively new, one
of the biggest challenges teams face when adopting IaC is accurately integrating new frameworks with
existing infrastructure.
Bringing IaC into your stack may introduce added complexity and confusion as to how and where your
resources are provisioned, governed, and secured.

Immutable Drift
With IaC, instead of managing infrastructure in one centralized console, you have another framework
running in parallel that should be your source of truth. If changes are made to infrastructure inde-
pendent of the code provisioning it, you may experience drift between running resources and their
 underlying IaC configuration.
Without adequate tooling in place, it can also lead to misconfigurations and risk in your environment.

Security Gets Left Behind
Misconfigurations are the leading source of cloud data breaches. And according to some sources, 99%
of organizations’ misconfigurations go unnoticed.1
Cloud security tooling provides the necessary visibility and monitoring to combat that statistic but
 provides feedback that can be at odds with IaC.
For teams leveraging IaC, surfacing misconfigurations reactively after they’ve been merged and
deployed can result in friction between teams and additional work created to investigate, prioritize,
schedule, and finally, implement a fix.

Summary
To summarize, IaC saves teams time and resources by:
• Leveraging automation to make resource provisioning scalable and fast.
• Minimizing human error by making infrastructure deployment consistent and predictable.
• Fostering team collaboration and codifying institutional knowledge that reduces

 future risk.

1. “What is Cloud Security?" McAfee, last visited November 9, 2021, https://www.mcafee.com/enterprise/en-us/security-awareness/cloud.html.

https://www.mcafee.com/enterprise/en-us/security-awareness/cloud.html

5Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Figure 1: High-level findings from Bridgecrew’s Open Source Helm Security research (left);
high-level findings from Bridgecrew’s State of Open Source Terraform Security Report (right)

The best way to combat that challenge is to shift cloud security left so instead of monitoring infrastruc-
ture in runtime, you scan for misconfigurations in code. Addressing security issues at the IaC level has
lagged. We’ll explore this in the next section.

Summary
To summarize, IaC can cause friction and risk due to:
• Gaps in how fully IaC is embraced and embedded across environments, teams, and

workflows.
• Miscommunication as to how and where infrastructure is governed, and policies are

 enforced.
• Cloud security tooling getting left behind rather than providing proactive, actionable

feedback.

Open-Source IaC Security Challenges
Although IaC enables ready-built, open-source templates or modules, it’s important to understand that
these components aren’t typically shared with a security-first mindset.
The open-source IaC economy is gaining momentum in places like GitHub as well as in purpose-built
repositories such as the Terraform Registry and Artifact Hub. While open-source IaC makes it easier and
faster for developers to get cloud services up and running, security is often an afterthought.
Around half of all open-source Terraform modules within the Terraform Registry and Helm charts within
Artifact Hub contained misconfigurations. This research highlights the gap in how and where cloud secu-
rity is being addressed. It also shows how much security has lagged and how big an impact DevSecOps can
have for securing cloud infrastructure.

4.3K 47%

47%

6%

Scanned Helm charts by compliance

Misconfigured Compliant N/A

2.5K
56%

44%

Scanned Terraform modules by compliance

Misconfigured Compliant

https://bridgecrew.io/wp-content/uploads/kubernetes-helm-security-research.pdf
https://bridgecrew.io/wp-content/uploads/state-of-open-source-terraform-security-2020.pdf

6Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

DevSecOps Challenges with IaC
Without the right approach, strategy, and tooling, adopting DevSecOps to secure the cloud can create
more bottlenecks and friction between teams.
It’s no secret that the motivations of developers and security are often at odds. DevOps wants to move
fast and work iteratively, while security’s out-of-sprint, reactive feedback gets in the way.
DevSecOps aims to bring security into the fold of DevOps to avoid misconfigurations or weak imple-
mentations that can leave cloud native applications vulnerable. Without the right approach, incor-
porating a DevSecOps strategy comes with its own list of challenges—especially when it comes to
securing the cloud.
There are two main reasons for this. First, the infrastructure landscape is rapidly changing, and keeping
up with these changes requires experience and expertise that may not always be available within the
organization. Second, many existing processes and tools were not designed with cloud security in mind
and can therefore create bottlenecks for cloud native engineering and security teams.

Inconsistent Governance
DevSecOps in the cloud is difficult because of the lack of processes for developing scalable infrastruc-
ture. IaC is an answer to that call, alleviating the performance and cost-related challenges of deploying
infrastructure at scale.
Policy governance is of the utmost importance with IaC, as it creates additional permutations of cloud
infrastructure managed by different teams with varying workflows. These workflows create layers of
complexity and ambiguity as to where and when policies are being enforced. At best, that ambiguity
creates redundancy. At worst, it can lead to risk.
How does this unfold in the wild?
• Engineering assumes that security and compliance policies are

being enforced at the cloud level, using cloud provider tools or
other security solutions.

• Security is unaware of all the provisioning frameworks in place
and whether or not the resources they are deploying have the
proper policies in place.

Having a workflow to close this gap is key, or else cloud resources
deployed with misconfigured code will result in additional engi-
neering work.

Skills and Access Gaps
Automated tools are great at surfacing everything from critical security issues down to informational
best-practice violations. But even the latest and greatest tool cannot substitute for reliable cloud
DevSecOps processes and workflows.
That’s because misconfigurations identified by a tool still need to be understood in context, prioritized,
and remediated. Getting security and engineering together to do that isn’t always straightforward. The
problem is that security and compliance typically don’t have the necessary access to code repos or cloud
consoles to implement fixes. Even if they do, they may lack the know-how and full application context
to fix cloud misconfigurations themselves. On the flip side, engineering lacks the security context and
understanding to prioritize fixes accurately. Even if they did have the knowledge, having the time to
actually implement the fix after they’ve switched contexts is also a challenge.
Here’s an example of how automation might exacerbate the very bottleneck it is trying to alleviate:
• Security opens a ticket, assigns it to a team lead who maybe is or isn’t working on the team for which

the issue is related.
• After some Jira roulette, that remediation gets slotted into some numbered sprint.
• Meanwhile, ten more “P0” tickets have been created.
• With automated scanning in place, those tickets easily snowball into hundreds more, and the whole

process is repeated ad nauseam.
Now add in the well-documented cybersecurity skills shortage, and the result is security and compli-
ance responsibilities get put on the plates of developers who are often not adequately prepared.

Tip: Fix Issues at the Source
If a misconfiguration only gets fixed
in runtime when IaC is in use, there
is a 70% chance of it coming back,
 according to our data. Fixing issues at
the source prevents misconfigurations
from resurfacing down the line.

7Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Whether there are security resources at hand or not, it is unrealistic to expect developers to have com-
prehensive knowledge of all possible configuration issues they may face when building cloud infra-
structure. This makes it easy for misconfigurations to be deployed. Unaddressed misconfigurations
aren’t just risky; they become exponentially more costly to address the further away from developers’
workstations they get.

Summary
To summarize, DevSecOps can end up causing more friction if there is:
• Unclear and inconsistent policy governance between infrastructure code and deployed

cloud resources.
• A skill or access gap when it comes to identifying and fixing misconfigurations that may

lead to cloud risk.

Tips for Embracing Cloud DevSecOps and IaC
So far, we’ve addressed potential challenges for approaching DevSecOps in the cloud. These are the
three things you can do to overcome those challenges:
1. Automate Everything
 Your engineering teams are likely already automating much of your software testing, from unit

testing to dependency scanning. Cloud security should be no different. Even the most seasoned
security experts can’t be expected to stay up to date with every single security best practice across
every cloud provider, service layer, orchestration platform, resource, etc., and apply it back to their
specific architecture.

 Automated scanning is the only way to comprehensively and programmatically apply security and
compliance guardrails without spending excessive time and resources combing through docu-
mentation. Without actionable feedback, automation can end up creating more friction and work
for engineering. That’s why finding the proper tooling—whether commercial solutions or open-
source tools such as Checkov—to automate both finding and fixing issues is imperative.

2. Leverage Existing Processes
 Surfacing even the most actionable feedback at the wrong time in the wrong place can be noisy and

unproductive. The only way to make DevSecOps in the cloud easily adopted is by embedding it into
the tools and processes developers depend on every day. Luckily for us, the key to embracing auto-
mation and security as code is already likely in place.

 Where and how you enforce guardrails will depend on several factors, including your current suite
of tools, organizational goals, and security maturity.

3. Secure in Code
 Much of the DevSecOps friction comes from the historically reactive security mindset, which relies

on monitoring for issues rather than preventing them in the first place. With IaC, you can flip that
mindset into a proactive approach. Whether you call it policy as code or security as code, translat-
ing governance automation into a common language equips both security practitioners and DevOps
 engineers with timely feedback and actionable solutions.

 Enforcing policies at the code layer ensures that cloud security is consistently applied and enables
it to scale throughout the environment over time. It will also end up saving you resources in the
long run, as it can cost 100X more to fix a software flaw in production than in code.2 It’s also true,
however, that the earlier in the lifecycle you are, the less information is available about what infra-
structure will look like and, thus, what misconfigurations may be present.

 That’s why it’s crucial to address infrastructure security throughout each phase of the DevOps
lifecycle.

2. Mukesh Soni, Defect Prevention: Reducing Cost and Enhancing Quality,
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/.

https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/

8Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Cloud Security in the DevOps Lifecycle
Although there’s no one-size-fits-all solution for every organization, the key to encouraging the
 adoption of cloud DevSecOps is to enforce guardrails early in IaC and surface actionable feedback
throughout the DevOps lifecycle.

IDE Pre-commit Pull/Merge request CI/CD Runtime

Available information, representative of running resource

Complexity, time, and risk of finding and fixing errors

Figure 2: Pros and cons of identifying cloud misconfigurations at each stage of the development lifecycle

IDE Scanning
Raising flags as soon as possible is the epitome of shift-left security, and what better place to surface
feedback than the time and place developers are actually writing code?
To shift cloud security as far “left” as possible (besides the design and plan phases), embedding guard-
rails into your integrated development environment (IDE) is the best way to go. This likely will come
in the form of a plug-in or extension, such as the Checkov VS Code extension. Because it minimizes
context switching, IDE scanning is the cheapest and most foolproof way to identify issues.

Pre-Commit Hooks
Pre-commit unit and integration testing is a generally accepted best practice. Now, pre-commit IaC
security scanning should be as well.
Scanning IaC locally for misconfigurations is the best way to address errors in the safety of your own
workspace before code gets integrated into a shared repository. Another major benefit of pre-commit
scanning is not having to waste time failing builds (and delaying your teammates’ builds) or tripping
the wire on pull request checks.
Whether you’re taking the feedback and implementing changes in the moment, or you’re using IDE
suggestions as an educational tool for writing secure infrastructure, there are very few downsides. The
only drawback of local scanning is that the onus is on the developer to actually run the scans and make
the changes.
With the right balance of passive analysis and actionable feedback, you can become a better security
advocate without an outsized amount of effort.

9Prisma by Palo Alto Networks | The DevSecGuide to Infrastructure as Code | White Paper

Pull/Merge Request Checks
For teams who live and die by their version control systems (VCS),
embedding security into sanctioned code review processes has
many benefits. Depending on what triggers your CI/CD builds, this
approach can be used with, or instead of, scanning via CI/CD.
Your VCS may also afford some unique controls for implementing
guardrails. All three major platforms (e.g., GitHub, GitLab, and
Bitbucket) offer versioning, branching, embedded code review,
and authorization controls that allow developers to test without
compromising running production systems and continue making
code changes before merging.

CI/CD Jobs
CI/CD pipelines are critical in compiling infrastructure and testing compiled code before it’s deployed.
Scanning this level of abstraction is important to surface misconfigurations in the core resources,
 variables, and dependent modules about to be provisioned.
The other benefit of embedding infrastructure security into the CI/CD pipeline is that it’s automated
and can be fully customized for your workflow. You can determine what kinds of checks fail builds and
surface feedback directly in your CI/CD provider. It’s also a collaborative process that your entire team
uses to review, reject, and approve changes.
Regardless of whether you’re scanning in CI/CD or your VCS, this level of control promotes
 collaboration and accessibility to developers.

Security in Runtime
Keep in mind that developer-first security doesn’t preclude “traditional” cloud security methods of
monitoring running cloud resources for security and compliance misconfigurations.
Even if you’re fully covered by IaC, manual changes can still happen, resulting in unintentional drift
between code and running cloud resources. Cloud drift management can provide insight into those
resources to determine potentially risky gaps.
Relying solely on build-time findings without attributing them to actual states in runtime could result
in configuration clashes. Because runtime scanning follows the actual states of configurations, it is the
only viable way of evaluating configuration changes over time when managing configuration in multiple
methods. It’s also a great way to satisfy compliance audits that require continuous change control audit-
ing and tracing.

Summary
A well-rounded cloud DevSecOps program should include:
• Making tools accessible to developers for early, inexpensive feedback.
• Enforcing guardrails collectively within your VCS or CI/CD pipeline.
• Getting continuous visibility into runtime resources to address drift resulting in manual

configuration changes.

Tip: Add Security Guardrails
You may want to set up your code
review settings to block merges when
checks fail, further ensuring that
 misconfigured IaC doesn’t make its way
to your master branch.

3000 Tannery Way
Santa Clara, CA 95054

Main: +1.408.753.4000
Sales: +1.866.320.4788
Support: +1.866.898.9087

www.paloaltonetworks.com

© 2021 Palo Alto Networks, Inc. Palo Alto Networks is a registered
trademark of Palo Alto Networks. A list of our trademarks can be found at
https://www.paloaltonetworks.com/company/trademarks.html. All other
marks mentioned herein may be trademarks of their respective companies.
prisma_wp_devsecguide-to-infrastructure-as-code_110421

Conclusion
IaC makes deploying and managing infrastructure more efficient and is crucial to enabling cloud DevSec-
Ops. Although it brings its own set of challenges, IaC can be leveraged to secure your infrastructure.
By embedding IaC scanning and security-as-code fixes throughout the DevOps lifecycle, you can
 embrace a more modern approach to cloud security.
As is true with adopting any new technology, IaC can introduce new complexity and risk—especially
when several frameworks are in use across teams. Because it can also run in parallel with manual cloud
orchestration, implementing IaC without full adoption and visibility can lead to gaps in how resources
are provisioned and, most importantly—secured.
The benefits of IaC generally outweigh the costs, allowing for automation, scalability, and repeatability
in cloud provisioning and management.
The Prisma Cloud team also sees IaC as the key to bridging the gap between infrastructure engineering,
DevOps, and security. By leveraging IaC’s benefits, teams can automate cloud security and embed it into
the DevOps lifecycle. Our codified cloud security platform enables such collaboration by integrating IaC
scanning and security-as-code fixes with the tools and workflows developers already use.

Get started with Prisma Cloud to:
• Find and fix misconfigurations in cloud resources and IaC.
• Enforce hundreds of built-in policies across security and compliance benchmarks.
• Embed guardrails via IDE plug-ins, pre-commit hooks, and native VCS and CI/CD integrations.

Request a Trial

Figure 3: IaC Security capabilities in Prisma Cloud

https://www.paloaltonetworks.com/prisma/request-a-prisma-cloud-trial

