
CI/CD Security Risks
TOP 10

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

Introduction

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

CI/CD environments, processes, and systems are the beating heart of any
modern software organization. They deliver code from an engineer’s
workstation to production. Combined with the rise of the DevOps
discipline and microservice architectures, CI/CD systems and processes
have reshaped the engineering ecosystem:

● The technical stack is more diverse, both in relation to coding languages as well as to
technologies and frameworks adopted further down the pipeline (e.g. GitOps, K8s).

● Adoption of new languages and frameworks is increasingly quicker, without
significant technical barriers.

● There is an increased use of automation and Infrastructure as Code (IaC) practices.
● 3rd parties, both in the shape of external providers as well as dependencies in code,

have become a major part of any CI/CD ecosystem, with the integration of a new
service typically requiring no more than adding 1-2 lines of code

These characteristics allow faster, more flexible and diverse software delivery. However,
they have also reshaped the attack surface with a multitude of new avenues and
opportunities for attackers.

Adversaries of all levels of sophistication are shifting their attention to CI/CD, realizing
CI/CD services provide an efficient path to reaching an organization’s crown jewels. The
industry is witnessing a significant rise in the amount, frequency and magnitude of
incidents and attack vectors focusing on abusing flaws in the CI/CD ecosystem, including :
The compromise of the SolarWinds build system, used to spread malware through to
18,000 customers.

● The compromise of the SolarWinds build system, used to spread malware through
to 18,000 customers.

● The Codecov breach, that led to exfiltration of secrets stored within environment
variables in thousands of build pipelines across numerous enterprises.

● The PHP breach, resulting in publication of a malicious version of PHP containing
a backdoor.

● The Dependency Confusion flaw, which affected dozens of giant enterprises, and
abuses flaws in the way external dependencies are fetched to run malicious code
on developer workstations and build environments.

● The compromises of the ua-parser-js, coa and rc NPM packages, with millions
● of weekly downloads each, resulting in malicious code running on millions of build

environments and developer workstations.

While attackers have adapted their techniques to the new realities of CI/CD, most
defenders are still early on in their efforts to find the right ways to detect, understand, and
manage the risks associated with these environments. Seeking the right balance between
optimal security and engineering velocity, security teams are in search for the most
effective security controls that will allow engineering to remain agile without
compromising on security.

2

The “Top 10 CI/CD Security Risks” Initiative

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

This document helps defenders identify focus areas for securing their
CI/CD ecosystem. It is the result of extensive research into attack vectors
associated with CI/CD, and the analysis of high profile breaches and
security flaws.

Numerous industry experts across multiple verticals and disciplines came together to
collaborate on this document to ensure its relevance to today’s threat landscape, risk
surface, and the challenges that defenders face in dealing with these risks.
We would like to thank and acknowledge all experts which took part in reviewing and
validating this document.

Authors

Reviewers

Iftach Ian Amit
Advisory CSO
at Rapid7

Jonathan Jaffe
CISO at Lemonade
Insurance

Ron Peled
Founder & CEO
at ProtectOps, Former
CISO at LivePerson

Hiroki Suezawa
Security Engineer
at Mercari, inc.

Noa Ginzbursky
DevOps Engineer
at Prisma Cloud AppSec

Jonathan Claudius
Director of Security
Assurance at Mozilla

Adrian Ludwig
Chief Trust Officer
at Atlassian

Ty Sbano
CISO at Vercel

Tyler Welton
Principal Security Engineer
at Built Technologies,
Owner at Untamed Theory

Asi Greenholts
Security Researcher
at Prisma Cloud AppSec

Michael Coates
CEO & Co-Founder
at Altitude Networks,
Former CISO at Twitter

Travis McPeak
Head of Product Security
at Databricks

Astha Singhal
Director, Information
Security at Netflix

Tyler Young
Head of Security
at Relativity

Daniel Krivelevich
CTO Application Security
Prisma Cloud

Omer Gil
Director of AppSec Research
Prisma Cloud

3

Top 10 Risks

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

Presented below are the top 10 CI/CD security risks.
All risks follow a consistent structure :

● Definition - Concise definition of the nature of the risk.

● Description - Detailed explanation of the context and the adversary motivation.

● Impact - Detail around the potential impact the realization of the risk can have
on an organization.

● Recommendations - A set of measures and controls recommended for optimizing
an organization’s CI/CD posture in relation to the risk in question.

● References - A list of real world examples and precedents in which the risk in
question was exploited.

The list was compiled on the basis of extensive research and analysis based
on the following sources:

● Analysis of the architecture, design and security posture of hundreds of CI/CD
environments across multiple verticals and industries.

● Profound discussions with industry experts.

● Publications detailing incidents and security flaws within the CI/CD security domain.
Examples are provided where relevant.

4

List of the Top 10 CI/CD Security Risks

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

CICD-SEC-1

CICD-SEC-2

CICD-SEC-3

CICD-SEC-4

CICD-SEC-5

CICD-SEC-6

CICD-SEC-7

CICD-SEC-8

CICD-SEC-9

CICD-SEC-10

Insufficient Flow Control Mechanisms

Inadequate Identity and Access Management

Dependency Chain Abuse

Poisoned Pipeline Execution (PPE)

Insufficient PBAC (Pipeline-Based Access Controls)

Insufficient Credential Hygiene

Insecure System Configuration

Ungoverned Usage of 3rd Party Services

Improper Artifact Integrity Validation

Insufficient Logging and Visibility

06

09

12

16

24

27

30

33

36

39

5

CICD-SEC-1
Insufficient Flow Control
Mechanisms

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 6

Definition

Insufficient flow control mechanisms refer to the ability of an attacker that
has obtained permissions to a system within the CI/CD process (SCM, CI,
Artifact repository, etc.) to single handedly push malicious code or
artifacts down the pipeline, due to a lack in mechanisms that enforce
additional approval or review.

Description

CI/CD flows are designed for speed. New code can be created on a
developer’s machine and get to production within minutes, often with full
reliance on automation and minimal human involvement. Seeing that CI/CD
processes are essentially the highway to the highly gated and secured
production environments, organizations continuously introduce measures
and controls aimed at ensuring that no single entity (human or application)
can push code or artifacts through the pipeline without being required to
undergo a strict set of reviews and approvals.

Impact

An attacker with access to the SCM, CI, or systems further down the pipeline,
can abuse insufficient flow control mechanisms to deploy malicious artifacts.
Once created, the artifacts are shipped through the pipeline - potentially all
the way to production - without any approval or review. For example, an
adversary may:
● Push code to a repository branch, which is automatically deployed through the

pipeline to production.
● Push code to a repository branch, and then manually trigger a pipeline that ships the

code to production.
● Directly push code to a utility library, which is used by code running in a production

system.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 7

● Abuse an auto-merge rule in the CI that automatically merges pull requests that
meet a predefined set of requirements, thus pushing malicious unreviewed code.

● Abuse insufficient branch protection rules—for example, excluding specific users or
branches to bypass branch protection and push malicious unreviewed code.

● Upload an artifact to an artifact repository, such as a package or container, in the
guise of a legitimate artifact created by the build environment. In such a scenario, a
lack of controls or verifications could result in the artifact being picked up by a deploy
pipeline and deployed to production.

● Access production and directly change application code or infrastructure (e.g AWS
Lambda function), without any additional approval/verification.

Recommendations

Establish pipeline flow control mechanisms to ensure that no single entity
(human / programmatic) is able to ship sensitive code and artifacts through
the pipeline without external verification or validation. This can be achieved
by implementing the following measures:
● Configure branch protection rules on branches hosting code which is used in

production and other sensitive systems. Where possible, avoid exclusion of user
accounts or branches from branch protection rules. Where user accounts are granted
permission to push unreviewed code to a repository, ensure those accounts do not
have the permission to trigger the deployment pipelines connected to the repository
in question.

● Limit the usage of auto-merge rules and ensure that wherever they are in use - they
are applicable to the minimal amount of contexts. Review the code of all auto-merge
rules thoroughly to ensure they cannot be bypassed and avoid importing 3rd party
code in the auto-merge process.

● Where applicable, prevent accounts from triggering production build and
deployment pipelines without additional approval or review.

● Prefer allowing artifacts to flow through the pipeline only in the condition that they
were created by a pre-approved CI service account. Prevent artifacts that have been
uploaded by other accounts from flowing through the pipeline without secondary
review and approval.

● Detect and prevent drifts and inconsistencies between code running in production
and its CI/CD origin, and modify any resource that contains a drift.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 8

References

● Backdoor planted in the PHP git repository. The attackers pushed malicious
unreviewed code directly to the PHP main branch, ultimately resulting in a
formal PHP version being spread to all PHP websites.
https://news-web.php.net/php.internals/113981

● Bypassing auto-merge rules in Homebrew, by RyotaK. An auto-merge rule
used to merge insignificant changes into the main branch was susceptible
to bypass, allowing adversaries to merge malicious code into the project.
https://brew.sh/2021/04/21/security-incident-disclosure/

● Bypassing required reviews using GitHub Actions, by Omer Gil. The flaw
allowed leveraging GitHub Actions to bypass the required reviews
mechanism and push unreviewed code to a protected branch.
https://www.cidersecurity.io/blog/research/bypassing-required-reviews-usin
g-github-actions/

https://news-web.php.net/php.internals/113981
https://twitter.com/ryotkak
https://brew.sh/2021/04/21/security-incident-disclosure/
https://twitter.com/omer_gil
https://www.cidersecurity.io/blog/research/bypassing-required-reviews-using-github-actions/
https://www.cidersecurity.io/blog/research/bypassing-required-reviews-using-github-actions/

CICD-SEC-2
Inadequate Identity
and Access Management

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 9

Definition

Inadequate Identity and Access Management risks stem from the
difficulties in managing the vast amount of identities spread across the
different systems in the engineering ecosystem, from source control to
deployment. The existence of poorly managed identities both human
and programmatic accounts - increases the potential and the extent
of damage of their compromise.

Description

Software delivery processes consist of multiple systems connected together
with the aim of moving code and artifacts from development to production.
Each system provides multiple methods of access and integration (username
& password, personal access token, marketplace application, oauth
applications, plugins, SSH keys). The different types of accounts and method
of access can potentially have their own unique provisioning method, set of
security policies and authorization model. This complexity creates challenges
in managing the different identities throughout the entire identity lifecycle
and ensuring their permissions are aligned with the principle of least
privilege.

Furthermore, in a typical environment, the average user account of an SCM or
CI is highly permissive, as these systems have not traditionally been a major
focus area for security teams. These identities are mostly used by engineers
that require the flexibility to be able to create major changes in code and
infrastructure.

Some of the major concerns and challenges around identity and access
management within the CI/CD ecosystem include:
● Overly permissive identities – Maintaining the principle of least privilege for both

applicative and humac accounts. For example, in SCMs - Ensuring each human and
applicative identity has been granted only the permissions required and only against
the actual repositories it needs to access is not trivial.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 10

● Stale identities – Employees/Systems that are not active and/or no longer require
access but have not had their human and programmatic account against all CI/CD
systems deprovisioned.

● Local identities – Systems which do not have their access federated with a
centralized IDP, creating identities that are managed locally within the system in
question. Local accounts create challenges in enforcing consistent security policies
(e.g. password policy, lockout policy, MFA) as well as properly deprovisioning access
across all systems (for example, when an employee leaves the organization).

● External identities –
○ Employees registered with an email address from a domain not owned or

managed by the organization – In this scenario, the security of these accounts is
highly dependent on the security of the external accounts they are assigned to.
Since these accounts are not managed by the organization, they are not
necessarily compliant with the organization's security policy.

○ External collaborators – Once access is granted to external collaborators to a
system, the security level of the system is derived from the level of the external
collaborator’s work environment, outside of the organization’s control.

● Self-registered identities – In systems where self-registration is allowed, it is often the
case that a valid domain address is the only prerequisite for self-registration and
access to CI/CD systems. Usage of default/base set of permissions to a system which is
anything different than “none” significantly expands the potential attack surface.

● Shared identities – Identities shared between human users / applications / both
humans and applications increase the footprint of their credentials as well as create
challenges having to do with accountability in case of a potential investigation.

Impact

The existence of hundreds (or sometimes thousands) of identities - both
human and programmatic - across the CI/CD ecosystem, paired with a lack of
strong identity and access management practices and common usage of
overly permissive accounts, leads to a state where compromising nearly any
user account on any system, could grant powerful capabilities to the
environment, and could serve as a segway into the production environment.

Recommendations

● Conduct a continuous analysis and mapping of all identities across all systems within
the engineering ecosystem. For each identity, map the identity provider, level of
permissions granted and level of permissions actually used. Ensure all methods of
programmatic access are covered within the analysis.

● Remove permissions not necessary for the ongoing work of each identity across the
different systems in the environment.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 11

● Determine an acceptable period for disabling/removing stale accounts and
disable/remove any identity which has surpassed the predetermined period of
inactivity.

● Avoid creating local user accounts. Instead, create and manage identities using a
centralized organization component (IdP). Whenever local user accounts are in use,
ensure that accounts which no longer require access are disabled/removed and that
security policies around all existing accounts match the organization’s policies.

● Continuously map all external collaborators and ensure their identities are aligned
with the principle of least privilege. Whenever possible, grant permissions with a
predetermined expiry date - for both human and programmatic accounts - and
disable their account once the work is done.

● Prevent employees from using their personal email addresses, or any address which
belongs to a domain not owned and managed by the organization, against the SCM,
CI, or any other CI/CD platform. Continuously monitor for non-domain addresses
across the different systems and remove non-compliant users.

● Refrain from allowing users to self-register to systems, and grant permission on an
as-needed basis.

● Refrain from granting base permissions in a system to all users, and to large groups
where user accounts are automatically assigned to.

● Avoid using shared accounts. Create dedicated accounts for each specific context, and
grant the exact set of permissions required for the context in question.

References

● The Stack Overflow TeamCity build server compromise -
The attacker was able to escalate their privileges in the environment due to
the fact the newly registered accounts were assigned administrative
privileges upon access to the system.
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-secur
ity-incident

● Mercedes Benz source code leaked after a self-maintained internet-facing
GitLab server was available for access by self-registration.
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-sourc
e-code-leaks-online/

● A self-managed GitLab server of the New York state government was
exposed to the internet, allowing anyone to self-register and log in to the
system, which stored sensitive secrets.
https://techcrunch.com/2021/06/24/an-internal-code-repo-used-by-new-yor
k-states-it-office-was-exposed-online/

● Malware added to the Gentoo Linux distribution source code, after the
GitHub account password of a project maintainer was compromised.
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_Reports/2018-06-
28_Github

https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://techcrunch.com/2021/06/24/an-internal-code-repo-used-by-new-york-states-it-office-was-exposed-online/
https://techcrunch.com/2021/06/24/an-internal-code-repo-used-by-new-york-states-it-office-was-exposed-online/
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_Reports/2018-06-28_Github
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_Reports/2018-06-28_Github

CICD-SEC-3
Dependency Chain Abuse

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 12

Definition

Dependency chain abuse risks refer to an attacker’s ability to abuse flaws
relating to how engineering workstations and build environments fetch
code dependencies. Dependency chain abuse results in a malicious
package inadvertently being fetched and executed locally when pulled.

Description

Managing dependencies and external packages used by self written code is
becoming increasingly complex given the total number of systems involved
in the process across all development contexts in an organization. Packages
are oftentimes fetched using a dedicated client per programming language,
typically from a combination of self-managed package repositories (e.g. Jfrog
Artifactory) and language specific SaaS repositories (for example - Node.js has
npm and the npm registry, Python’s pip uses PyPI, and Ruby’s gems uses
RubyGems).

Many organizations go to great lengths to detect usage of packages with
known vulnerabilities and conduct static analysis of both self-written and 3rd
party code. However, in the context of using dependencies, there is an equally
important set of controls required to secure the dependency ecosystem -
involving securing the process defining how dependencies are pulled.
Inadequate configurations may cause an unsuspecting engineer, or worse -
the build system, to download a malicious package instead of the package
that was intended to be pulled. In many cases, the package is not only
downloaded, but also immediately executed after download, due to
pre-install scripts and similar processes which are designed to run a
package’s code immediately after the package is pulled.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 13

The main attack vectors in this context are:
● Dependency confusion - Publication of malicious packages in public repositories

with the same name as internal package names, in an attempt to trick clients into
downloading the malicious package rather than the private one.

● Dependency hijacking - Obtaining control of the account of a package maintainer
on the public repository, in order to upload a new, malicious version of a widely used
package, with the intent of compromising unsuspecting clients who pull the latest
version of the package.

● Typosquatting - Publication of malicious packages with similar names to those of
popular packages in the hope that a developer will misspell a package name and
unintentionally fetch the typosquatted package.

● Brandjacking - Publication of malicious packages in a manner that is consistent with
the naming convention or other characteristics of a specific brand’s package, in an
attempt to get unsuspecting developers to fetch these packages due to falsely
associating them with the trusted brand.

Impact

The objective of adversaries which upload packages to public package
repositories using one of the aforementioned techniques is to execute
malicious code on a host pulling the package. This could either be a
developer’s workstation, or a build server pulling the package. Once the
malicious code is running, it can be leveraged for credentials theft and lateral
movement within the environment it is executed in.

Another potential scenario is for the attacker’s malicious code to make its way
to production environments from the build server. In many cases the
malicious package would continue to also maintain the original, safe
functionality the user was expecting, resulting in a lower probability of
discovery.

Recommendations

There is a wide range of mitigation methods which are specific to the configuration of the
different language-specific clients and the way internal proxies and external package
repositories are used.
That said, all recommended controls share the same guiding principles -
● Any client pulling code packages should not be allowed to fetch packages directly

from the internet or untrusted sources. Instead, the following controls should be
implemented:

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 14

○ Whenever 3rd party packages are pulled from an external repository, ensure all
packages are pulled through an internal proxy rather than directly from the
internet. This allows deploying additional security controls at the proxy layer, as
well as providing investigative capabilities around packages pulled - in case of a
security incident.

○ Where applicable, disallow pulling of packages directly from external
repositories. Configure all clients to pull packages from internal repositories,
containing pre-vetted packages, and establish a mechanism to verify and
enforce this client configuration.

● Enable checksum verification and signature verification for pulled packages.
● Avoid configuring clients to pull the latest version of a package. Prefer configuring a

pre-vetted version or version ranges. Use the framework specific techniques to
continuously “lock” the package version required in your organization to a stable and
secure version.

● Scopes:
○ Ensure all private packages are registered under the organization’s scope.
○ Ensure all code referencing a private package uses the package’s scope.
○ Ensure clients are forced to fetch packages that are under your organization’s

scope solely from your internal registry.
● When installation scripts are being executed as part of the package installation,

ensure that a separate context exists for those scripts, which does not have access to
secrets and other sensitive resources available in other stages in the build process.

● Ensure that internal projects always contain configuration files of package managers
(for example .npmrc in NPM) within the code repository of the project, to override any
insecure configuration potentially existing on a client fetching the package.

● Avoid publishing names of internal projects in public repositories.
● As a general rule, given the amount of package managers and configurations in use

simultaneously, complete prevention of 3rd party chain abuse is far from trivial. It is
therefore recommended to ensure that an appropriate level of focus is placed around
detection, monitoring and mitigation to ensure that in case of an incident, it is
identified as quickly as possible and has the minimal amount of potential damage.
In this context, all relevant systems should be hardened properly according to the
guidelines under the “CICD-SEC-7: Insecure System Configuration” risk.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 15

References

● Dependency Confusion, by Alex Birsan. An attack vector that tricks package
managers and proxies into fetching a malicious package from a public
repository instead of the intended package of the same name from an
internal repository.
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

● Amazon, Zillow, Lyft, and Slack NodeJS apps targeted by threat actors using
the Dependency Confusion vulnerability.
https://www.bleepingcomputer.com/news/security/malicious-npm-package
s-target-amazon-slack-with-new-dependency-attacks/

● The ua-parser-js NPM library, with 9 million downloads a week, was hijacked
to launch cryptominers and steal credentials.
https://github.com/advisories/GHSA-pjwm-rvh2-c87w

● The coa NPM library, with 9 million downloads a week, was hijacked to steal
credentials. https://github.com/advisories/GHSA-73qr-pfmq-6rp8

● The rc NPM library, with 14 million downloads a week, was hijacked to steal
credentials. https://github.com/advisories/GHSA-g2q5-5433-rhrf

https://twitter.com/alxbrsn
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.bleepingcomputer.com/news/security/malicious-npm-packages-target-amazon-slack-with-new-dependency-attacks/
https://www.bleepingcomputer.com/news/security/malicious-npm-packages-target-amazon-slack-with-new-dependency-attacks/
https://github.com/advisories/GHSA-pjwm-rvh2-c87w
https://github.com/advisories/GHSA-73qr-pfmq-6rp8
https://github.com/advisories/GHSA-g2q5-5433-rhrf

CICD-SEC-4
Poisoned Pipeline Execution (PPE)

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 16

Definition

Poisoned Pipeline Execution (PPE) risks refer to the ability of an attacker
with access to source control systems - and without access to the build
environment, to manipulate the build process by injecting malicious
code/commands into the build pipeline configuration, essentially
‘poisoning’ the pipeline and running malicious code as part of the build
process

Description

The PPE vector abuses permissions against an SCM repository, in a way that
causes a CI pipeline to execute malicious commands.

Users that have permissions to manipulate the CI configuration files, or other
files which the CI pipeline job relies on, can modify them to contain malicious
commands, ultimately “poisoning” the CI pipeline executing these
commands.

Pipelines executing unreviewed code, for example those which are triggered
directly off of pull requests or commits to arbitrary repository branches, are
more susceptible to PPE. The reason is that these scenarios, by design,
contain code which has not undergone any reviews or approvals.

Once able to execute malicious code within the CI pipeline, the attacker can
conduct a wide array of malicious operations, all within the context of the
pipeline’s identity.

There are three types of PPE:

Direct PPE (D-PPE): In a D-PPE scenario, the attacker modifies the CI config
file in a repository they have access to, either by pushing the change directly
to an unprotected remote branch on the repo, or by submitting a PR with the
change from a branch or a fork. Since the CI

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 17

pipeline execution is triggered off of the “push” or ”PR” events, and the
pipeline execution is defined by the commands in the modified CI
configuration file, the attacker’s malicious commands ultimately run in the
build node once the build pipeline is triggered.

Indirect PPE (I-PPE): In certain cases, the possibility of D-PPE is not available
to an adversary with access to an SCM repository:
● If the pipeline is configured to pull the CI configuration file from a separate,

protected branch in the same repository.
● If the CI configuration file is stored in a separate repository from the source code,

without the option for a user to directly edit it.
● If the CI build is defined in the CI system itself – instead of in a file stored in the

source code.

In such a scenario, the attacker can still poison the pipeline by injecting
malicious code into files referenced by the pipeline configuration file, for
example:
● make: Executes commands defined in the “Makefile” file.
● Scripts referenced from within the pipeline configuration file, which are stored in the

same repository as the source code itself (e.g. python myscript.py - where
myscript.py would be manipulated by the attacker).

● Code tests: Testing frameworks running on application code within the build process
rely on dedicated files, stored in the same repository as the source code itself.
Attackers that are able to manipulate the code responsible for testing are then able
to run malicious commands inside the build.

● Automatic tools: Linters and security scanners used in the CI, are also commonly
reliant on a configuration file residing in the repository. Many times these
configurations involve loading and running external code from a location defined
inside the configuration file.

So rather than poisoning the pipeline by inserting malicious commands
directly into the pipeline definition file, In I-PPE, an attacker injects malicious
code into files referenced by the configuration file. The malicious code is
ultimately executed on the pipeline node once the pipeline is triggered and
runs the commands declared in the files in question.

Public-PPE (3PE): Execution of a PPE attack requires access to the repository
hosting the pipeline configuration file, or to files it references. In most cases,
the permission to do so would be given to organization members - mainly
engineers. Therefore, attackers would typically have to be in possession of an
engineer's permission to the repository to execute a direct or indirect PPE
attack.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 18

However, in some cases poisoning CI pipelines is available to anonymous
attackers on the internet: Public repositories (for example open source
projects) oftentimes allow any user to contribute - usually by creating pull
requests, suggesting changes to the code. These projects are commonly
automatically tested and built using a CI solution, in a similar fashion to
private projects.

If the CI pipeline of a public repository runs unreviewed code suggested by
anonymous users, it is susceptible to a Public PPE attack, or in short - 3PE.
This also exposes internal assets, such as secrets of private projects, in cases
where the pipeline of the vulnerable public repository runs on the same CI
instance as private ones.

Examples
Example 1: Credential theft via Direct-PPE (GitHub Actions)

In the following example, a GitHub repository is connected with a GitHub
Actions workflow that fetches the code, builds it, runs tests, and eventually
deploys artifacts to AWS. When new code is pushed to a remote branch in the
repository, the code - including the pipeline configuration file - is fetched by
the runner (the workflow node).

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 19

In this scenario, a D-PPE attack would be carried out as follows:
1. An attacker creates a new remote branch in the repository, in which they

update the pipeline configuration file with malicious commands
intended to access AWS credentials scoped to the GitHub organization
and then to send them to a remote server.

2. Once the update is pushed, this triggers a pipeline which fetches
the code from the repository, including the malicious pipeline
configuration file.

3. The pipeline runs based on the configuration file “poisoned” by the
attacker. As per the attacker’s malicious commands, AWS credentials
stored as repository secrets are loaded into memory.

4. The pipeline proceeds to execute the attacker’s commands which send
the AWS credentials to a server controlled by the attacker.

5. The attacker is then able to use the stolen credentials to access
the AWS production environment.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 20

Example 2: Credential theft via Indirect-PPE (GitHub Actions)

This time, it is a Jenkins pipeline that fetches code from the repository, builds
it, runs tests, and eventually deploys to AWS. In this scenario the pipeline
configuration is such that the file describing the pipeline - the Jenkinsfile - is
always fetched from the main branch in the repository, which is protected.
Therefore, the attacker cannot manipulate the build definition, meaning that
fetching secrets stored on the Jenkins credential store, or running the job on
other nodes are not a possibility.

However - this does not mean that the pipeline is risk free;
In the build stage of the pipeline, AWS credentials are loaded as environment
variables, making them available only to the commands running in this stage.
In the example below, the make command, which is based on the contents of
Makefile (also stored in the repository), runs as part of this stage.

The Jenkinsfile:

The Makefile:

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 21

In this scenario, an I-PPE attack would be carried out as follows:
1. An attacker creates a pull request in the repository, appending malicious

commands to the Makefile file.

2. Since the pipeline is configured to be triggered upon any PR against the
repo, the Jenkins pipeline is triggered, fetching the code from the
repository, including the malicious Makefile.

3. The pipeline runs based on the configuration file stored in the main
branch. It gets to the build stage, and loads the AWS credentials into
environment variables - as defined in the original Jenkinsfile. Then, it
runs the make build command, which executes the malicious
command that was added into Makefile.

4. The malicious build function defined in the Makefile is executed,
sending the AWS credentials to a server controlled by the attacker.

5. The attacker is then able to use the stolen credentials to access
the AWS production environment.

Impact

In a successful PPE attack, attackers execute malicious unreviewed code in
the CI. This provides the attacker with the same abilities and level of access as
the build job, including:

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 22

● Access to any secret available to the CI job, such as secrets injected as environment
variables or additional secrets stored in the CI. Being responsible for building code
and deploying artifacts, CI/CD systems typically contain dozens of high-value
credentials and tokens - such as to a cloud provider, to artifact registries, and to the
SCM itself.

● Access to external assets the job node has permissions to, such as files stored in the
node’s file system, or credentials to a cloud environment accessible through the
underlying host.

● Ability to ship code and artifacts further down the pipeline, in the guise of legitimate
code built by the build process.

● Ability to access additional hosts and assets in the network/environment of the job
node

Recommendations

Preventing and mitigating the PPE attack vector involves multiple measures spanning
across both SCM and CI systems:
● Ensure that pipelines running unreviewed code are executed on isolated nodes, not

exposed to secrets and sensitive environments.
● Evaluate the need for triggering pipelines on public repositories from external

contributors. Where possible, refrain from running pipelines originating from forks,
and consider adding controls such as requiring manual approval for pipeline
execution.

● For sensitive pipelines, for example those that are exposed to secrets, ensure that
each branch that is configured to trigger a pipeline in the CI system has a correlating
branch protection rule in the SCM.

● To prevent the manipulation of the CI configuration file to run malicious code in the
pipeline, each CI configuration file must be reviewed before the pipeline runs.
Alternatively, the CI configuration file can be managed in a remote branch, separate
from the branch containing the code being built in the pipeline. The remote branch
should be configured as protected.

● Remove permissions granted on the SCM repository from users that do not need
them.

● Each pipeline should only have access to the credentials it needs to fulfill its purpose.
The credentials should have the minimum required privileges.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 23

References

● Exploiting Continuous Integration and Automated Build systems, DEF CON
25, by Tyler Welton. The talk covered exploitation techniques of the
Direct-PPE and 3PE attack vectors, targeting pipelines running unreviewed
code. https://www.youtube.com/watch?v=mpUDqo7tIk8

● PPE - Poisoned Pipeline Execution. Running malicious code in your CI,
without access to your CI. By Daniel Krivelevich and Omer Gil.
https://www.cidersecurity.io/blog/research/ppe-poisoned-pipeline-execution/

● Build Pipeline Security, by xssfox. An Indirect-PPE vulnerability was exposed

in the CodeBuild pipeline of a website belonging to AWS. This allowed
anonymous attackers to modify a script executed by the build configuration
file with the creation of a pull request, resulting in the compromise of
deployment credentials. https://sprocketfox.io/xssfox/2021/02/18/pipeline/

● GitHub Actions abused to mine cryptocurrency by pull requests that
contained malicious code.
https://dev.to/thibaultduponchelle/the-github-action-mining-attack-throug
h-pull-request-2lmc

● A terraform provider for execution of OS commands during run of terraform
plan in the pipeline, by Hiroki Suezawa.
https://github.com/rung/terraform-provider-cmdexec

● Abusing the terraform plan command for execution of OS commands in the
CI/CD, by Alex Kaskasoli. https://alex.kaskaso.li/post/terraform-plan-rce

● A vulnerability found in Teleport’s CI implementation, that allowed attackers
from the internet to execute a Direct-3PE attack by creating a pull request in
a public GitHub repository linked with a Drone CI pipeline, and modifying
the CI configuration file to execute a malicious pipeline.
https://goteleport.com/blog/hack-via-pull-request/

https://www.youtube.com/watch?v=mpUDqo7tIk8
https://twitter.com/Dkrivelev
https://twitter.com/omer_gil
https://www.cidersecurity.io/blog/research/ppe-poisoned-pipeline-execution/
https://twitter.com/xssfox
https://sprocketfox.io/xssfox/2021/02/18/pipeline/
https://dev.to/thibaultduponchelle/the-github-action-mining-attack-through-pull-request-2lmc
https://dev.to/thibaultduponchelle/the-github-action-mining-attack-through-pull-request-2lmc
https://twitter.com/rung
https://github.com/rung/terraform-provider-cmdexec
https://twitter.com/alxk7i
https://alex.kaskaso.li/post/terraform-plan-rce
https://goteleport.com/blog/hack-via-pull-request/

CICD-SEC-5
Insufficient PBAC
(Pipeline-Based Access Controls)

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 24

Definition

Pipeline execution nodes have access to numerous resources and
systems within and outside the execution environment. When running
malicious code within a pipeline, adversaries leverage insufficient PBAC
(Pipeline-Based Access Controls) risks to abuse the permission granted to
the pipeline for moving laterally within or outside the CI/CD system.

Description

Pipelines are the beating heart of CI/CD. Nodes executing pipelines carry out
the commands specified in the pipeline configuration and by doing so -
conduct a wide array of sensitive activities:
● Access source code, build and test it.
● Obtain secrets from various locations, such as environment variables, vaults,

dedicated cloud-based identity services (such as the AWS metadata service),
and other locations.

● Create, modify and deploy artifacts.

PBAC is a term which refers to the context in which each pipeline - and each step within
that pipeline - is running. Given the highly sensitive and critical nature of each pipeline, it
is imperative to limit each pipeline to the exact set of data and resources it needs access
to. Ideally, each pipeline and step should be restricted in such a manner that will ensure
that in case an adversary is able to to execute malicious code within the context of the
pipeline, the extent of potential damage is minimal.

PBAC includes controls relating to numerous elements having to do with the pipeline
execution environment:
● Access within the pipeline execution environment: to code, secrets, environment

variables, and other pipelines.
● Permissions to the underlying host and other pipeline nodes.
● Ingress and egress filters to the internet.

Impact

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

A piece of malicious code that is able to run in the context of the pipeline
execution node has the full permissions of the pipeline stage it runs in. It can
access secrets, access the underlying host and connect to any of the systems
the pipeline in question has access to. This can lead to exposure of
confidential data, lateral movement within the CI environment - potentially
accessing servers and systems outside the CI environment, and deployment
of malicious artifacts down the pipeline, including to production.

The extent of the potential damage of a scenario in which an adversary is able
to compromise pipeline execution nodes or inject malicious code into the
Build process is determined by the granularity of the PBAC in the
environment.

25

Recommendations

● Do not use a shared node for pipelines with different levels of sensitivity / that require
access to different resources. Shared nodes should be used only for pipelines with
identical levels of confidentiality.

● Ensure secrets that are used in CI/CD systems are scoped in a manner that allows
each pipeline and step to have access to only the secrets it requires.

● Revert the execution node to its pristine state after each pipeline execution.
● Ensure the OS user running the pipeline job has been granted OS permissions on the

execution node according to the principle of least privilege.
● CI and CD pipeline jobs should have limited permissions on the controller node.

Where applicable, run pipeline jobs on a separate, dedicated node.
● Ensure the execution node is appropriately patched.
● Ensure network segmentation in the environment the job is running on is configured

to allow the execution node to access only the resources it requires within the
network. Where possible, refrain from granting unlimited access towards the internet
to build nodes.

● When installation scripts are being executed as part of the package installation,
ensure that a separate context exists for those scripts, which does not have access to
secrets and other sensitive resources available in other stages in the build process.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 26

References

● Codecov, a popular code coverage tool used in the CI, was compromised and
used to steal environment variables from builds.
https://about.codecov.io/security-update/

● Amazon, Zillow, Lyft, and Slack NodeJS apps targeted by threat actors using
the Dependency Confusion vulnerability. Organizations that were victims of
Dependency Confusion attacks had malicious code executed on CI nodes,
allowing the adversary to move laterally within the environment and abuse
insufficient PBAC.
https://www.bleepingcomputer.com/news/security/malicious-npm-package
s-target-amazon-slack-with-new-dependency-attacks/

● A vulnerability found in Teleport’s CI implementation, allowed attackers from
the internet to execute a Direct-3PE attack to run a privileged container and
escalate to root privilege on the node itself - leading to secret exfiltration,
release of malicious artifacts, and access to sensitive systems.
https://goteleport.com/blog/hack-via-pull-request/

https://about.codecov.io/security-update/
https://www.bleepingcomputer.com/news/security/malicious-npm-packages-target-amazon-slack-with-new-dependency-attacks/
https://www.bleepingcomputer.com/news/security/malicious-npm-packages-target-amazon-slack-with-new-dependency-attacks/
https://goteleport.com/blog/hack-via-pull-request/

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 27

Definition

Insufficient credential hygiene risks deal with an attacker’s ability to
obtain and use various secrets and tokens spread throughout the pipeline
due to flaws having to do with access controls around the credentials,
insecure secret management and overly permissive credentials.

Description

CI/CD environments are built of multiple systems communicating and
authenticating against each other, creating great challenges around
protecting credentials due to the large variety of contexts in which
credentials can exist.

Application credentials are used by the application at runtime, credentials to
production systems are used by pipelines to deploy infrastructure, artifacts
and apps to production, engineers use credentials as part of their testing
environments and within their code and artifacts.

This variety of contexts, paired with the large amount of methods and
techniques for storing and using them, creates a large potential for insecure
usage of credentials. Some major flaws that affect credential hygiene:
● Code containing credentials being pushed to one of the branches of an SCM

repository: This can be either by mistake - without noticing the existence of the
secret in the code, or deliberately - without understanding the risk of doing that. From
that moment on, the credentials are exposed to anyone with read access to the
repository, and even if deleted from the branch it was pushed into - they continue to
appear in the commit history, available to be viewed by anyone with repository access.

● Credentials used insecurely inside the build and deployment processes: These
credentials are used to access code repositories, read from and write to artifact
repositories, and deploy resources and artifacts to production environments. Given
the large amount of pipelines and target systems they need access to, it’s imperative
to understand:

CICD-SEC-6
Insufficient Credential Hygiene

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 28

○ In which context, and using which method, is each set of credentials used?
○ Can each pipeline access only the credentials it needs to fulfill its purpose?
○ Can credentials be accessed by unreviewed code flowing through the pipeline?
○ How are these credentials called and injected to the build? Are these credentials

accessible only in run-time, and only from the contexts where they are required?
● Credentials in container image layers: Credentials that were only required for

building the image, still exist in one of the image layers - available to anyone who is
able to download the image.

● Credentials printed to console output: Credentials used in pipelines are often
printed to the console output, deliberately or inadvertently. This might leave
credentials exposed in clear-text in logs, available to anyone with access to the build
results to view. These logs can potentially flow to log management systems,
expanding their exposure surface.

● Unrotated credentials: Since the credentials are spread all over the engineering
ecosystem, they are exposed to a large number of employees and contractors. Failing
to rotate credentials results in a constantly growing amount of people and artifacts
that are in possession of valid credentials. This is especially true for credentials used by
pipelines - for example deploy keys - which are oftentimes managed using the “If it
isn’t broken, don’t fix it” directive - which leaves valid credentials unrotated for
many years.

Impact

Credentials are the most sought-after object by adversaries, seeking to use
them for accessing high-value resources or for deploying malicious code and
artifacts. In this context, engineering environments provide attackers with
multiple avenues to obtain credentials. The large potential for human error,
paired with knowledge gaps around secure credentials management and the
concern of breaking processes due to credential rotation, put the high-value
resources of many organizations at the risk of compromise due the exposure
of their credentials.

Recommendations

● Establish procedures to continuously map credentials found across the different
systems in the engineering ecosystem - from code to deployment. Ensure each set of
credentials follows the principle of least privilege and has been granted the exact set
of permission needed by the service using it.

● Avoid sharing the same set of credentials across multiple contexts. This increases the
complexity of achieving the principle of least privilege as well as having a negative
effect on accountability.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 29

● Prefer using temporary credentials over static credentials. In case static credentials
need to be in use - establish a procedure to periodically rotate all static credentials
and detect stale credentials.

● Configure usage of credentials to be limited to predetermined conditions (like
scoping to a specific source IP or identity) to ensure that even in case of compromise,
exfiltrated credentials cannot be used outside your environment.

● Detect secrets pushed to and stored on code repositories. Use controls such as an IDE
plugin to identify secrets used in the local changes, automatic scanning upon each
code push, and periodical scans on the repository and its past commits.

● Ensure secrets that are used in CI/CD systems are scoped in a manner that allows
each pipeline and step to have access to only the secrets it requires.

● Use built-in vendor options or 3rd party tools to prevent secrets from being printed to
console outputs of future builds. Ensure all existing outputs do not contain secrets.

● Verify that secrets are removed from any type of artifact, such as from layers of
container images, binaries, or Helm charts.

References
● Thousands of credentials, stored as environment variables, were stolen by

attackers through compromising Codecov, a popular code coverage tool
used in the CI. https://about.codecov.io/security-update/

● Travis CI injected secure environment variables of public repositories into
pull request builds, causing them to be susceptible to compromise by
anonymous users issuing pull requests against public repositories.
https://travis-ci.community/t/security-bulletin/12081

● An attacker compromised the TeamCity Build server of Stack Overflow
and was able to steal secrets due to their insecure storage method.
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-secur
ity-incident/

● Samsung exposed overly permissive secrets in public GitLab repositories.
https://techcrunch.com/2019/05/08/samsung-source-code-leak/

● Attackers accessed Uber’s private GitHub repositories that contained
permissive and shared AWS tokens, leading to data exfiltration of millions
of drivers and passengers.
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/0
4/152_3054_uber_revised_consent_analysis_pub_frn.pdf

● Gaining write access to Homebrew, by Eric Holmes. The Homebrew Jenkins
instance revealed environment variables of executed builds, including a
GitHub token which allowed an attacker to make malicious changes to the
Homebrew project itself.
https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-i
n-30-minutes-2ae314df03ab

https://about.codecov.io/security-update/
https://travis-ci.community/t/security-bulletin/12081
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/
https://techcrunch.com/2019/05/08/samsung-source-code-leak/
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-in-30-minutes-2ae314df03ab
https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-in-30-minutes-2ae314df03ab

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 30

Definition

Insecure system configuration risks stem from flaws in the security
settings, configuration and hardening of the different systems across the
pipeline (e.g. SCM, CI, Artifact repository), often resulting in “low hanging
fruits” for attackers looking to expand their foothold in the environment.

Description

CI/CD environments are comprised of multiple systems, provided by a variety
of vendors. To optimize CI/CD security, defenders are required to place strong
emphasis both on the code and artifacts flowing through the pipeline, and
the posture and resilience of each individual system. In a similar way to other
systems storing and processing data, CI/CD systems involve various security
settings and configurations on all levels - application, network and
infrastructure. These settings have a major influence on the security posture
of the CI/CD environments and the susceptibility to a potential compromise.
Adversaries of all levels of sophistication, are always on the lookout for
potential CI/CD vulnerabilities and misconfigurations that can be leveraged to
their benefit.

Examples of potential hardening flaws:
● A self-managed system and/or component using an outdated version or lacking

important security patches.
● A system having overly permissive network access controls.
● A self-hosted system that has administrative permissions on the underlying OS.
● A system with insecure system configurations. Configurations typically determine key

security features having to do with authorization, access controls, logging and more.
In many cases, the default set of configurations is not secure and requires
optimization.

● A system with inadequate credential hygiene - for example default credentials which
are not disabled, overly permissive programmatic tokens, and more.

CICD-SEC-7
Insecure System Configuration

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 31

While usage of SAAS CI/CD solutions, rather than their self-hosted alternative,
eliminates some of the potential risks associated with system hardening and
lateral movement within the network, organizations are still required to be
highly diligent in securely configuring their SAAS CI/CD solution. Each
solution has its own set of unique security configurations and best practices
which are essential for maintaining optimal security posture.

Impact

A security flaw in one of the CI/CD systems may be leveraged by an adversary
to obtain unauthorized access to the system or worse - compromise the
system and access the underlying OS. These flaws may be abused by an
attacker to manipulate legitimate CI/CD flows, obtain sensitive tokens and
potentially access production environments. In some scenarios, these flaws
may allow an attacker to move laterally within the environment and outside
the context of CI/CD systems.

Recommendations

● Maintain an inventory of systems and versions in use, including mapping of a
designated owner for each system. Continuously check for known vulnerabilities in
these components. If a security patch is available, update the vulnerable component.
If not, consider removing the component / system, or reduce the potential impact of
exploiting the vulnerability by restricting access to the system, or the system’s ability
to perform sensitive operations.

● Ensure network access to the systems is aligned with the principle of least access.
● Establish a process to periodically review all system configurations for any setting that

can have an effect on the security posture of the system, and ensure all settings are
optimal.

● Ensure permissions to the pipeline execution nodes are granted according to the
principle of least privilege. A common misconfiguration in this context is around
granting debug permissions on execution nodes to engineers. While in many
organizations this is a common practice, it is imperative to take into consideration that
any user with the ability to access the execution node in debug mode may expose all
secrets while they are loaded into memory and use the node’s identity- effectively
granting elevated permissions to any engineer with this permission.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 32

References

● The compromise of the SolarWinds build system, used to spread malware
through SolarWinds to 18,000 organizations.
https://sec.report/Document/0001628280-20-017451/#swi-20201214.htm

● Backdoor planted in the PHP git repository. The attackers pushed malicious
unreviewed code directly to the PHP main branch, ultimately resulting in a
formal PHP version being spread to all PHP users. The attack presumably
originated in a compromise of the PHP self-maintained git server.
https://news-web.php.net/php.internals/113981

● An attacker compromised Stack Overflow’s TeamCity build server, which
was accessible from the internet.
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-secur
ity-incident/

● Attackers compromised an unpatched Webmin build server, and added a
backdoor to the local copy of the code after being fetched from the
repository, leading to a supply chain attack on servers using Webmin.
https://www.webmin.com/exploit.html

● Nissan source code leaked after a self-managed Bitbucket instance left
accessible from the internet with default credentials.
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-r
epo-misconfiguration/

● Mercedes Benz source code leaked after a self-maintained internet-facing
GitLab server was made open for self-registration.
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-sourc
e-code-leaks-online/

● A self-managed GitLab server of the New York state government was
exposed to the internet, allowing anyone to self-register and log in to the
system, which stored sensitive secrets.
https://techcrunch.com/2021/06/24/an-internal-code-repo-used-by-new-yor
k-states-it-office-was-exposed-online/

https://sec.report/Document/0001628280-20-017451/#swi-20201214.htm
https://news-web.php.net/php.internals/113981
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/
https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/
https://www.webmin.com/exploit.html
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-repo-misconfiguration/
https://www.zdnet.com/article/nissan-source-code-leaked-online-after-git-repo-misconfiguration/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://www.zdnet.com/article/mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/
https://techcrunch.com/2021/06/24/an-internal-code-repo-used-by-new-york-states-it-office-was-exposed-online/
https://techcrunch.com/2021/06/24/an-internal-code-repo-used-by-new-york-states-it-office-was-exposed-online/

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 33

Definition

The CI/CD attack surface consists of an organization’s organic assets,
such as the SCM or CI, and the 3rd party services which are granted
access to those organic assets. Risks having to do with ungoverned usage
of 3rd party services rely on the extreme ease with which a 3rd party
service can be granted access to resources in CI/CD systems, effectively
expanding the attack surface of the organization.

Description

It is rare to find an organization which does not have numerous 3rd parties
connected to its CI/CD systems and processes. Their ease of implementation,
combined with their immediate value, has made 3rd parties an integral part
of the engineering day-to-day. The methods of embedding or granting
access to 3rd parties are becoming more diverse and the complexities
associated with implementing them are diminishing.

Taking a common SCM - GitHub SAAS - as en example, 3rd party applications
can be connected through one or more of these 5 methods:
● GitHub Application
● OAuth application
● Provisioning of an access token provided to the 3rd party application
● Provisioning of an SSH key provided to the 3rd party application.
● Configuring webhook events to be sent to the 3rd party.

Each method takes somewhere between seconds and minutes to
implement, and grants 3rd parties with numerous capabilities, ranging from
reading code in a single repository, all the way to fully administering the
GitHub organization. Despite the potentially high level of permission these
third parties are granted against the system, in many cases no special
permissions or approvals are required by the organization prior to the actual
implementation.

CICD-SEC-8
Ungoverned Usage
of 3rd-Party Services

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 34

Build systems also allow easy integration of 3rd parties. Integrating 3rd parties
into build pipelines is usually no more complex than adding 1-2 lines of code
within the pipeline configuration file, or installing a plugin from the build
system’s marketplace (e.g. actions in Github Actions, Orbs in CircleCI). The 3rd
party functionality is then imported and executed as part of the Build process
with full access to whatever resources are available from the pipeline stage it
is executed in.

Similar methods of connectivity are available in various shapes and forms
across most CI/CD systems, creating the process of governing and
maintaining least privilege around 3rd party usage across the entire
engineering ecosystem extremely complex. Organizations are grappling with
the challenge of obtaining full visibility around which 3rd parties have access
to the different systems, what methods of access they have, what level of
permission/access they have been granted, and what level of
permissions/access they are actually using.

Impact

Lack of governance and visibility around 3rd party implementations prevents
organizations from maintaining RBAC within their CI/CD systems. Given how
permissive 3rd parties tend to be, organizations are only as secure as the 3rd
parties they implement. Insufficient implementation of RBAC and least
privilege around 3rd parties, coupled with minimal governance and diligence
around the process of 3rd party implementations create a significant increase
of the organization’s attack surface.

Given the highly interconnected nature of CI/CD systems and environments,
compromise of a single 3rd party can be leveraged to cause damage far
outside the scope of the system the 3rd party is connected to (for example, a
3rd party with write permissions on a repository, can be leveraged by an
adversary to push code to the repository which will in turn trigger a build and
run the adversary’s malicious code on the build system).

Recommendations

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

Governance controls around 3rd party services should be implemented
within every stage of the 3rd party usage lifecycle:
● Approval – Establish vetting procedures to ensure 3rd parties granted access to

resources anywhere across the engineering ecosystem are approved prior to being
granted access to the environment, and that the level of permission they are granted
is aligned with the principle of least privilege.

● Integration – Introduce controls and procedures to maintain continuous visibility over
all 3rd parties integrated to CI/CD systems, including:

○ Method of integration. Make sure all methods of integration for each system
are covered (including marketplace apps, plugins, OAuth applications,
programmatic access tokens, etc.).

○ Level of permission granted to the 3rd party.
○ Level of permission actually in use by the 3rd party.

● Visibility over ongoing usage – Ensure each 3rd party is limited and scoped to the
specific resources it requires access to and remove unused and/or redundant
permissions. 3rd parties which are integrated as part of the Build process should run
inside a scoped context with limited access to secrets and code, and with strict
ingress and egress filters.

● Deprovisioning – Periodically review all 3rd parties integrated and remove those
no longer in use.

35

References

● Codecov, a popular code coverage tool used in the CI, is compromised
to steal environment variables from builds.
https://about.codecov.io/security-update/

● Attackers compromise a GitHub user account of a DeepSource (a static
analysis platform) engineer. Using the compromised account, they obtain
the permissions of the DeepSource GitHub application, granting them full
access to the codebase of all DeepSource clients that have installed the
compromised GitHub application.
https://discuss.deepsource.io/t/security-incident-on-deepsource-s-github-ap
plication/131

● Attackers gain access to the database of Waydev, a git analytics platform,
stealing GitHub and GitLab OAuth tokens of their customers.
https://changelog.waydev.co/github-and-gitlab-oauth-security-update
-dw98s

https://about.codecov.io/security-update/
https://discuss.deepsource.io/t/security-incident-on-deepsource-s-github-application/131
https://discuss.deepsource.io/t/security-incident-on-deepsource-s-github-application/131
https://changelog.waydev.co/github-and-gitlab-oauth-security-update-dw98s
https://changelog.waydev.co/github-and-gitlab-oauth-security-update-dw98s

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 36

Definition

Improper artifact integrity validation risks allow an attacker with access
to one of the systems in the CI/CD process to push malicious (although
seemingly benign) code or artifacts down the pipeline, due to insufficient
mechanisms for ensuring the validation of code and artifacts.

Description

CI/CD processes consist of multiple steps, ultimately responsible for taking
code all the way from an engineer’s workstation to production. There are
multiple resources being fed into each step - combining internal resources
and artifacts with 3rd party packages and artifacts fetched from remote
locations. The fact that the ultimate resource is reliant upon multiple sources
spread across the different steps, provided by multiple contributors, creates
multiple entry points through which this ultimate resource can be tampered
with.

If a tampered resource was able to successfully infiltrate the delivery process,
without raising any suspicion or encountering any security gates - it will most
likely continue flowing through the pipeline - all the way to production - in
the guise of a legitimate resource.

CICD-SEC-9
Improper Artifact Integrity
Validation

Impact

Improper artifact integrity validation can be abused by an adversary with a
foothold within the software delivery process to ship a malicious artifact
through the pipeline, ultimately resulting in =the execution of malicious code
- either on systems within the CI/CD process or worse - in production.

Recommendations

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

The prevention of improper artifact integrity validation risks requires a
collection of measures, across different systems and stages within the
software delivery chain. Consider the following controls:
● Implement processes and technologies to validate the integrity of resources all the

way from development to production. When a resource is generated, the process will
include signing that resource using an external resource signing infrastructure. Prior
to consuming the resource in subsequent steps down the pipeline, the resource’s
integrity should be validated against the signing authority. Some prevalent measures
to consider in this context:

○ Code signing - SCM solutions provide the ability to sign commits using a
unique key for each contributor. This measure can then be leveraged to
prevent unsigned commits from flowing down the pipeline.

○ Artifact verification software - Usage of tools for signing and verification of
code and artifacts provide a way to prevent unverified software from being
delivered down the pipeline. An example for such a project is Sigstore, created
by the Linux Foundation.

○ Configuration drift detection - Measures aimed at detecting configuration
drifts (e.g. resources in cloud environments which aren’t managed using a
signed IAC template), potentially indicative of resources that were deployed by
an untrusted source or process.

● 3rd party resources fetched from build/deploy pipelines (such as scripts imported and
executed as part of the build process) should follow a similar logic - prior to using 3rd
party resources, the hash of the resource should be calculated and cross referenced
against the official published hash of the resource provider.

37

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 38

References

● The hack of the SolarWinds build system, used to spread malware through
SolarWinds to 18,000 organizations. The code of the Orion software was
changed in the build system during the build process, leaving no trace in the
codebase.
https://sec.report/Document/0001628280-20-017451/#swi-20201214.htm

● Codecov, a popular code coverage tool used in the CI, is compromised to
steal environment variables from builds. Attackers gained access to the GCP
(Google Cloud Platform) account hosting the Codecov script, and modified it
to contain malicious code. The attack was identified by a customer
comparing the hash of the script stored on GitHub with the script
downloaded from the GCP account.
https://about.codecov.io/security-update/

● Backdoor planted in the PHP git repository, ultimately resulting in a formal
PHP version being spread to all PHP users. The attackers push malicious
unreviewed code directly to the PHP main branch, committing the code as if
it were made by known PHP contributors.
https://news-web.php.net/php.internals/113981

● Attackers compromise the Webmin build server, and add a backdoor to one
of the application’s scripts. The backdoor continued to persist even after the
compromised build server was decommissioned due to the fact that code
was restored from a local backup, rather than the source control system.
Webmin users were susceptible to RCE through a supply chain attack for a
duration of over 15 months, until the backdoor was removed.
https://www.webmin.com/exploit.html

https://sec.report/Document/0001628280-20-017451/#swi-20201214.htm
https://about.codecov.io/security-update/
https://news-web.php.net/php.internals/113981
https://www.webmin.com/exploit.html

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 39

Definition

Insufficient logging and visibility risks allow an adversary to carry out
malicious activities within the CI/CD environment without being detected
during any phase of the attack kill chain, including identifying the
attacker’s TTPs (Techniques, Tactics and Procedures) as part of any
post-incident investigation.

Description

The existence of strong logging and visibility capabilities is essential for an
organization’s ability to prepare for, detect and investigate a security related
incident.

While workstations, servers, network devices and key IT and business
applications are typically covered in depth within an organization’s logging
and visibility programs, it is often not the case with systems and processes in
engineering environments.

Given the amount of potential attack vectors leveraging engineering
environments and processes it is imperative that security teams build the
appropriate capabilities to detect these attacks as soon as they happen. As
many of these vectors involve leveraging programmatic access against the
different systems, a key aspect of facing this challenge is to create strong
levels of visibility around both human and programmatic access.

Given the sophisticated nature of CI/CD attack vectors, there is an equal level
of importance to both the audit logs of the systems - e.g. user access, user
creation, permission modification, and the applicative logs - e.g. push event
to a repo, execution of builds, upload of artifacts.

CICD-SEC-10
Insufficient Logging
and Visibility

Impact

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks

With adversaries gradually shifting their focus to engineering environments
as a means to achieve their goals, organizations which do not ensure the
appropriate logging and visibility controls around those environments, may
fail to detect a breach, and face great difficulties in mitigation/remediation
due to minimal investigative capabilities.

Time and data are the most valuable commodities to an organization under
attack. The existence of all relevant data sources in a centralized location may
be the difference between a successful and devastating outcome in an
incident response scenario.

40

Recommendations

There are several elements to achieving sufficient logging and visibility:
● Mapping the environment – Strong visibility capabilities cannot be achieved without

an intimate level of familiarity with all the different systems involved in potential
threats. A potential breach may involve any of the systems which take part in the
CI/CD processes, including SCM, CI, Artifact repositories, package management
software, container registries, CD, and orchestration engines (e.g. K8s). Identify and
build an inventory of all the systems in use within the organization, containing every
instance of these systems (specifically relevant for self-managed systems e.g. Jenkins).

● Identifying and enabling the appropriate log sources – Once all relevant systems
are identified, the next step is ensuring that all relevant logs are enabled, as this is not
the default state in the different systems. Visibility should be optimized around both
human access as well as programmatic access through all the various measures it is
allowed. It is important to place an equal level of emphasis on identifying all relevant
audit log sources, as well as the applicative log sources.

● Shipping logs to a centralized location (e.g. SIEM), to support aggregation and
correlation of logs between different systems for detection and investigation.

● Creating alerts to detect anomalies and potential malicious activity, both in each
system on its own and anomalies in the code shipping process, which involves
multiple systems and requires deeper knowledge in the internal build and
deployments processes.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 41

References

● Logging and visibility capabilities are essential and relevant for being able to
detect and investigate any incident, regardless of the risk that was exploited
in the incident. Any security incident in recent years involving CI/CD systems
required the victim organization to have strong visibility to be able to
properly investigate and understand the extent of damage of the attack in
question.

www.paloaltonetworks.com

3000 Tannery Way
Santa Clara, CA 95054

Main:
Sales:
Support:

+1.408.753.4000
+1.866.320.4788
+1.866.898.9087

© 2023 Palo Alto Networks, Inc. Palo Alto Networks is a registered trademark
of Palo Alto Networks. A list of our trademarks can be found at:
https://www.paloaltonetworks.com/company/trademarks. All other marks
mentioned herein may be trademarks of their respective companies.

© 2023 Palo Alto Networks | Top 10 CI/CD Security Risks 42

